Какую опасность представляет ртуть из градусника для людей. Разбился ртутный градусник - что делать и насколько это опасно

О том, насколько опасны шарики ртути, все хорошо знают еще с детства. Тяжелые отравления, в некоторых случаях приводящие к инвалидности и даже летальному исходу, - одно из возможных последствий такой интоксикации.

Но далеко не во всех случаях ртуть действительно представляет существенную угрозу для здоровья. В этой статье Вы узнаете когда стоит ее опасаться и что делать, чтобы минимизировать риски.

Чем опасна ртуть

Ртуть относится к веществам 1-го класса опасности. При попадании в организм этот металл имеет свойство накапливаться - 80% вдыхаемых паров не выводятся. При остром отравлении может вызывать тяжелую интоксикацию и смерть, при хроническом - приводить к тяжелой инвалидности. В первую очередь страдают те органы, которые накапливают вещество лучше всего - печень, почки, головной мозг. Поэтому частым результатом отравления ртутью становится слабоумие, почечная и печеночная недостаточность. При вдыхании паров сначала отравление отражается на состоянии дыхательной системы, позже поражаются центральная нервная система (ЦНС) и внутренние органы, а при длительном воздействии постепенно страдают все системы организма. Особенно опасна ртуть для беременных, поскольку влияет на внутриутробное развитие, и детей.

Однако такие тяжелые последствия вызывает не сам металл, а его пары - именно они представляют главную опасность в быту. Шарики ртути из разбившегося градусника начинают испаряться уже при температуре +18°С. Поэтому в домашних условиях, где температура воздуха, как правило, намного выше, вещество испаряется достаточно активно.

Не менее опасны для организма соединения ртути, например метилртуть. В 1956 году в Японии было выявлено массовое отравление, вызванное именно этим соединением. В залив, из которого рыбаки добывали рыбу, компания Chisso систематически сливала ртуть. В результате 35% из отравившихся зараженной рыбой человек погибло. После этого случая подобные интоксикации получили название болезни Минаматы (по названию местного города). В быту с такими тяжелыми отравлениями человек практически не сталкивается.

Острое отравление ртутью отличается выраженными признаками. Среди характерных симптомов следующие:

  • Слабость.
  • Тошнота и рвота.
  • Головные боли.
  • Боли в груди и животе.
  • Диарея, иногда с примесями крови.
  • Затрудненное дыхание, отечность слизистых.
  • Слюноотделение и металлический привкус во рту.
  • Повышение температуры (в некоторых случаях до 40°С).

Симптомы отравления развиваются на протяжении нескольких часов после попадания высокой концентрации паров или соединений ртути в организм. Если за это время пострадавший не получит квалифицированной медицинской помощи, отравление приведет к необратимым последствиям. У человека развивается нарушение функций ЦНС, поражение головного мозга, печени и почек, потеря зрения, а при большой дозе токсичного вещества может наступить смерть. Острое отравление встречается крайне редко: чаще при авариях на производстве, в бытовых условиях такая ситуация практически невозможна.

Меркуриализм, или хроническое отравление ртутью, случается намного чаще. Ртуть не имеет запаха, поэтому заметить шарики вещества, которые, например, закатились под плинтус, в щели между половицами или остались в ворсе ковра, практически невозможно. Но даже мельчайшие капли продолжают выделять смертельно опасные пары. Поскольку их концентрация незначительна, симптомы выражены не так ярко. При этом малые дозы на протяжении длительного периода приводят к тяжелым последствиям, ведь ртуть имеет способность накапливаться в организме.

Среди первых характерных признаков:

  • Общая слабость, усталость.
  • Сонливость.
  • Головные боли.
  • Головокружения.

Длительное воздействие паров ртути может приводить к гипертонии, атеросклерозу, поражениям мозга и ЦНС, повышает риск туберкулеза и других поражений легких. От отравления парами ртути страдает щитовидная железа, развиваются болезни сердца (в том числе наблюдается брадикардия и другие нарушения ритма). К сожалению, симптомы меркуриализма на начальных стадиях отравления неспецифичны, поэтому люди часто не придают им должного значения.

В том случае если в доме разбился ртутный градусник или металл попал в открытое пространство из другого источника (например, из ртутной лампы), важно убедиться, что ртуть собрана полностью. Также необходимо обратиться в службы, которые помогут утилизировать вещество - выброшенная в мусорный контейнер собранная ртуть представляет не меньшую угрозу.

Конечно, главным источником паров ртути в бытовых условиях является ртутный термометр. В среднем один градусник содержит до 2 грамм ртути. Такого количества недостаточно для сильного отравления (если ртуть правильно и вовремя собрана), но вполне хватит для легкой и хронической интоксикации. На бытовые вызовы специальные службы МЧС, как правило, не приезжают, но консультацию по конкретному случаю дадут. Кроме этого, именно они подскажут, куда сдать собранный металл.

Большая капля ртути и такое же количество металла в мелких шариках будут по-разному испаряться. За счет большей площади поверхности мелкие капельки выбросят больше опасных паров за короткий период. А именно их часто пропускают люди, самостоятельно устраняющие последствия разбитого градусника.

Наиболее опасные ситуации:

  • Металл попал на мягкую мебель, детские игрушки, ковер, тканевые тапочки (полностью собрать с таких поверхностей ртуть невозможно, вещи придется выбросить).
  • Ртуть долгое время находилась в комнате с закрытыми окнами (так повышается концентрация паров).
  • Шарики ртути раскатились по полу с подогревом (увеличивается скорость испарения).
  • Пол застелен паркетом, ламинатом, деревянными досками. Для того чтобы полностью убрать всю ртуть, на месте ее разлива нужно будет снимать покрытие - мелкие шарики легко закатываются в щели.

Кроме градусников ртуть содержится в некоторых приборах, в ртутных газоразрядных лампах и энергосберегающих люминесцентных лампах. Количество вещества в последних достаточно мало - не более 70 мг ртути. Опасность они представляют лишь в том случае, если в помещении было разбито несколько ламп. Нельзя выбрасывать люминесцентные лампы в мусорный контейнер, их нужно сдавать в специальные центры утилизации.

Часто об опасности ртути говорят и в контексте прививок. Действительно, ее соединение тиомерсал (мертиолят) использовалось как консервант во многих вакцинах. Еще в 20-х годах ХХ века концентрация была довольно опасной; начиная с 1980-х годов ее содержание в одной дозе не превышает 50 мкг. Период полувыведения соединений ртути в таком количестве составляет около 4 дней даже у младенцев, а через 30 дней вещество выводится из организма полностью.

Несмотря на это, сегодня большинство вакцин вообще не содержат мертиолят в своем составе. Связано это не столько с опасностью консерванта, сколько со скандалом, который начался 20 лет назад. В 1998 году в самом престижном медицинском журнале Lancet вышла статья исследователя Эндрю Уэйкфилда, который связал вакцинацию (в частности, содержащую тиомерсал вакцину MMR от кори, краснухи, паротита) с развитием аутизма. Материал вызвал бурные обсуждения в медицинском сообществе и настоящую панику среди обычных граждан. Однако уже через несколько лет было доказано, что статья Уэйкфилда была основана на подставных данных, в ее основе нет реальных фактов, а сама связь аутизма с тиомерсалом не доказана. В том же журнале Lancet было опубликовано опровержение материала. Тем не менее, именно эту статью активно цитируют представители антипрививочного движения. Сегодня вакцины, выпускающиеся в Европе и США, не содержат мертиолята, а поэтому не могут представлять никакой опасности отравления ртутью.

В малых количествах ртуть может содержаться в морской рыбе и морепродуктах. Попадание значимых количеств металла с пищей, как правило, вызывает легкую интоксикацию, последствия которой несложно устранить. Первая помощь при таких отравлениях проста - нужно вызвать рвоту, а после выпить несколько таблеток активированного угля или принять любой другой сорбент. После этого обязательно обратиться к врачу. Особенно важно это для беременных и детей, поскольку для них отравление ртутью представляет наибольшую опасность.

Симптомы интоксикации ртутью:

  • Тошнота.
  • Головокружение.
  • Заметный привкус железа во рту.
  • Отек слизистых.
  • Одышка.

Если в доме разбился градусник, не стоит паниковать - быстро принятые меры помогут избежать негативных последствий. В аптеках продаются специальные наборы для демеркуризации, но собрать ртуть можно и без них.

Проветривание и уменьшение температуры воздуха
Открытое окно поможет снизить концентрацию паров ртути. Желательно не входить в комнату, где разбился градусник, еще несколько дней, а окна там держать постоянно открытыми. Зимой следует выключить теплый пол и прикрутить батареи - чем ниже температура в комнате, тем меньше испаряется ртуть.

  • Сбор ртути

Для больших капель можно использовать спринцовку, для мелких - обычную клейкую ленту, пластилин, мокрую вату. Перед уборкой посветить на место разбитого градусника лампой - так будут видны все, даже мельчайшие шарики. Ртуть собирают в перчатках, бахилах и респираторе, только в герметичную емкость (пластиковый или стеклянный контейнер). Все предметы, на которые попала ртуть, в том числе и то, чем она собиралась, также помещаются в герметичную емкость.

  • Обработка места, где была разлита ртуть

Поверхности обрабатываются раствором марганцовокислого калия или хлорсодержащим препаратом (например, «Белизной» в концентрации 1 л на 8 л воды). Пол и поверхности оставляют на 15 минут, затем смывают чистой водой. Завершающий этап - обработка пола перманганатом калия (1 г марганцовки на 8 л воды). В результате образуются соединения ртути, не вырабатывающие паров.

  • Что запрещено

Нельзя собирать ртуть веником, шваброй или пылесосом. Нельзя также стирать зараженную одежду, тапочки, мягкие игрушки - вещество сложно смыть, кроме этого, оно может остаться в механизме стиральной машины. Все вещи, на которые попала ртуть, нужно утилизировать.

  • Как помочь себе

Человек, который собирал ртуть, должен после процедуры хорошо промыть руки и прополоскать рот, почистить зубы. Можно выпить 2-3 таблетки активированного угля. Перчатки, бахилы и одежду, если на нее попала ртуть, нужно утилизировать.

В частности. Сегодня у нас вода со ртутью. И мы поговорим про ртуть и её вред . А также необычный вред , о котором обычно люди не задумываются, но который приводит к серьёзным проблемам, которые стоит начать решать.

Ртуть, наверное, знают все, — причина отравления; она — чрезвычайно опасное вещество. При этом металлическая ртуть не настолько опасна, как соединения ртути. Поэтому ртуть в воде — хуже, ведь микроорганизмы превращают её в растворимое органическое соединение, которое легче проникает через кожу и оболочки клеток, чем металлическая ртуть.

Откуда, чаще всего берётся ртуть в воде?

  1. В результате деятельности химических производств
  2. В результате сжигания каменного угля.
  3. Из семян сельскохозяйственных растений

Каменный уголь содержит ртуть (древние растения накопили для каких-то целей). Также каменный уголь получает ртуть из-под земли по линиям разломов земной коры (из-за активности мантии Земли). При сжигании угля ртуть вылетает, оседает и смывается дождём в воду. Значит, максимум ртути — вокруг ТЭЦ, где уголь — основное топливо.

Кстати, для справки: энергосберегающие люминесцентные лампы содержат до десятков миллиграмм ртути. Так что не стоит разбивать их в помещении.

Ещё один путь попадания ртути — из посевных семян, которые протравливают ртутью, чтобы защитить от вредителей. Высокотоксичные вещества (хлорид ртути (I) (каломель), хлорид ртути (II) (сулема), мертиолят и т.д.) используют и как пестициды. Само собой, затем: дождь — вода — человек.

Для справки: ПДК ртути в воздухе 0,005 мг/м³; ПДК ртути в воде 0,0005 мг/л.

Вред ртути для человека

Ртуть активно разъедает слизистые оболочки. Яркие симптомы отравления —

  • сильное воспаление дыхательных путей (при вдыхании паров),
  • головная боль
  • общая слабость
  • металлический привкус во рту
  • боль в животе
  • понос
  • температура
  • рвота с кровью (при съедании),
  • повышенная возбудимость (во всех случаях).

Если, например, кто-нибудь на спор съел термометр, то

  1. Вызвать скорую помощь
  2. Промыть желудок
  3. Дать выпить молоко (впрочем, как и при любых других отравлениях).

Молоко обволакивает желудок плёнкой, через неё сложнее впитывается ртуть. Активированный уголь здесь не поможет, он не взаимодействует с металлами. Хотя, если ничего другого под рукой нет, то можно и его.

Само собой, металлическая ртуть не очень токсична, и мгновенно человек не умрёт. Но помучается 🙂

Кстати, если вы раздобыли где-то хотя бы миллилитров 50 ртути, и у вас есть вытяжка, то можете провести интересный опыт — бросить гайку на поверхность ртути. Она будет плавать.

Отравление парами ртути будет — но не сильное. И если вы больше никогда в жизни не планируете сталкиваться со ртутью, то можете рискнуть.

Почему «никогда в жизни»? Потому что ртуть оказывает кумулятивный (т.е. накопительный) эффект. Она очень плохо выводится из организма. И поэтому накапливается. Раз за разом, с каждым контактом, всё больше ртути… И потом — бац! Отравление.

Так, в Англии в 19 веке шляпы изготавливали с помощью ртути. И шляпные мастера постепенно сходили с ума, постоянно дыша парами ртути. Отсюда и выражение — «Безумный Шляпник» из Алисы.

Эффект очень похож на накопление радиации в теле. Да и воздействие похожее — и канцерогенный, и мутагенный эффект, и воздействие на половые клетки… Но вернёмся к теме.

Механизм действия ртути

Ртуть легко проходит через клеточные оболочки, и «прилипает» к белкам, которые содержат серу. До поры до времени это никак не проявляется. Так ртуть может накапливаться в почках, печени, мозге. Но когда образуется критическое количество белков с ртутью, клетки не в состоянии выполнять свои функции, ферменты работают намного хуже. Как следствие — нарушение проводимости нервных импульсов, слабоумие, дрожь пальцев рук, нарушение координации.

Ртуть с точно таким же успехом может откладывться в половых клетках человека. Нарушается механизм передачи генетической информации (так как белки работают неправильно). Следствие — генетические уродства.

Кстати, основа лечения отравления ртутью — её свойство взаимодействовать с серосодержащими белками. Поэтому препараты для выведения ртути так же содержат серу, ртуть цепляется к ней и выводится из огранизма (так как эти препараты делаются быстровыводимыми).

Поэтому при отравлении ртутью и отсутствии в ближайшее время скорой помощи используется «белковая вода» — два взбитых яичных белка на литр воды. Эту воду должен пить пострадавший. После этого даётся яичный желток. Естественно, всё в сыром виде.

«Но концентрация ртути в воде и т.д. очень мала! — скажете вы. — На неё можно не обращать внимания!»

Это правильно, в обычной ситуации даже с кумулятивным эффектом на неё можно забить. Но лишь если не учитывать необычный вред ртути, о котором мы говорили в начале статьи.

Необычный вред ртути

Данные про необычный вред ртути взяты из книги Вольфдитриха Эйхлера «Яды в вашей пище» .

Для начала разберёмся с терминами. Метилртуть — фунгицид (убивает грибок), мощный яд. Также метилртуть — продукт переработки микроорганизмами всех других форм ртути.

Пищевая цепь — ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища - потребитель. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе.

Факт: от звена к звену теряется около 90 % энергии, которая рассеивается в виде тепла. И примерно так же концентрируются вещества.

Пример из Швеции, 1940 год, массовое протравливание зерна метилртутью. Концентрация ртути минимальна. Однако спустя 10 лет стало заметным вымирание зерноядных птиц (голуби, фазаны, домашние куры, серые куропатки и овсянки).

Что произошло? Ртуть КОНЦЕНТРИРОВАЛАСЬ в птицах. Одно зерно птицу не убивает. Но птица ест много зерна… Ртуть передаётся и через половые клетки…

Но это лишь начало.

Второе звено наземной пищевой цепи, загрязненной ртутью — хищные птицы и совы (чья еда -зерноядные): пустельга, ястреб, сокол-сапсан, филин. Эти виды частично также погибли или перестали размножаться. Например, пустельга в некоторых районах Швеции уже почти полностью вымерла, а поголовье соколов-сапсанов и ястребов очень заметно уменьшилось.

Что произошло? Если зерноядный голубь может всю жизнь жрать ядовитое зерно и лишь чувствовать себя немного хуже (последствия скажутся на потомках), то пустельге или ястребу достаточно съесть сотню притравленных голубей, чтобы получить смертельную или около-смертельную дозу ртути. Голуби КОНЦЕНТРИРОВАЛИ в себе ртуть. А хищники сконцентрировали её ещё больше.

Само собой, какие-то птицы власти не волновали. Беспокойство проявилось только тогда, когда и в куриных яйцах были найдено немеряно ртути. То есть, в пищевую цепь начал встраиваться человек. А это действительно неприятно.

В большей степени накопление ртути по пищевой цепи заметно в море. Ртуть накапливают планктонные организмы (например, водоросли), которыми питаются ракообразные. Ракообразных поедают рыбы. Концевыми звеньями пищевых цепей нередко бывают чайки, чомги, скопы, орланы-белохвосты. Ну и люди, как без этого.

Точно так же, для одного планктончика ртути недостаточно даже для того, чтобы замедлить вращение цитоплазмы. Но миллионы водорослей, которые съели рачки, заставляют рачков слегка колбаситься. Ну а рыба, наевшаяся этих рачков, получает солидный дозняк — и НАМНОГО ХУЖЕ убегает от хищника.

То есть, подтравленные ртутью животные (рыбы, птицы, лягушки и т.д.) — это более лёгкая добыча для хищника. Поэтому хищная рыба типа окуня, щуки будет чаще всего питаться отравленными ртутью жертвами (так как их легче поймать, их координация нарушена). А дальше — секир-башка людям.

Пример в виде рисунка: точки — это количество ртути. Чем больше ртути, тем медленнее рыбы. Тем легче их добыть птицам. И умереть.

Поэтому намного более опасно, когда ртуть попадает в организм человека с пищей.

Одно из самых массовых отравлений по схеме было в Японии в начале 50-х. На острове Кюсю в городе Минамата работал химкомбинат, сливавший отходы в море. Тысячи японцев отравились и умерли, используя в пищу моллюсков и рыб, выловленных в заливе. Теперь эту болезнь называют – «болезнь Минамата». Самое страшное – она поражает генный аппарат и передается по наследству.

В 1967 году высокое содержание ртути в рыбе привело к запрету на промышленный лов в сорока шведских озерах. По той же причине лов рыбы был запрещен в некоторых озерах Северной Америки.

Что делать? Неужели всё так плохо?

Ртуть приносит вред, причём пути её попадания в человека необычны.

Но надежда есть: вы узнали про это, и можете рассказать другим. А там, глядишь, и общественное сознание изменится, после чего и загрязнение поуменьшится…

Ртуть (Hg) - жидкий металл, использующийся в быту и технике в качестве рабочей жидкости различных измерительных приборов и электрических реле пространственного положения. Благодаря своим уникальным свойствам, а также легкости получения в чистом виде ртуть получила широкое распространение. Вокруг этого металла, особенно в последнее время, появилось много домыслов и мифов, основанных в большинстве своем на незнании школьной химии и физики, а не на реальных свойствах ртути.

Ртуть очень ядовита. Даже разбитый медицинский термометр может вызвать мгновенное отравление. Металлическая ртуть ядовита настолько же, насколько ядовит любой другой тяжелый металл (например, медь). В средние века алхимики даже принимали ртуть во внутрь в качестве "лечебных" пилюль и, тем не менее, оставались живы. Следует оговориться, что при попадании в пищеварительную систему относительно безопасна именно металлическая ртуть, а не ее соли! Пресловутая же "ядовитость" обусловлена её парами, содержащимися в воздухе. При температуре 18°С начинается интенсивное испарение ртути в атмосферу, вдыхание такого воздуха способствует её накоплению в организме откуда она уже не выводится (как и другие тяжелые металлы). Однако чтобы накопить серьезную долю ртути в организме, необходимо в течение нескольких месяцев или лет регулярно пребывать в помещении с серьезным превышением ПДК этого металла в воздухе.

В медицинском термометре так мало ртути, что можно не обращать внимания, если его разобьешь. Шарика ртути размером с булавочную головку достаточно, чтобы в комнате средних размеров с закрытыми окнами и работающей вентиляцией концентрация паров ртути превысила ПДК в сотни, а то и в тысячи раз (однако, при интенсивном проветривании практически сразу установится норма). Поэтому пренебрегать разливом ртути даже в малых количествах не стоит.

Можно предотвратить испарение ртути, храня ее под слоем воды. Растворимость ртути в воде хоть и мала, но намного выше растворимости ртути в воздухе. Поэтому очевидно, что ртуть из водного раствора все равно будет испаряться в воздух.

Шарики ртути можно собрать пылесосом. Ни в коем случае этого делать нельзя. Во-первых, это не очень эффективно, так как ртуть имеет очень высокую плотность, и большинство пылесосов просто не смогут убрать шарики из труднодоступных мест. Во-вторых, воздух, проходя по патрубкам, нагревается, что приводит к еще более интенсивному испарению попавшей в мешок ртути, и распространению этих паров по всему объему помещения. Фактически, из пылесоса получается очень эффективный "испаритель" ртути. В-третьих, после такой "обработки" придется также выбрасывать и пылесос.

Ртуть можно вылить в канализацию (унитаз, раковину). Этим вы нанесете вред, прежде всего себе, так как ртуть просто останется лежать на дне водяного затвора (колена трубы), откуда она будет годами испаряться обратно в квартиру. Лучше просто выбросить собранную ртуть в уличный мусорный контейнер (но не мусоропровод!).

Ртуть радиоактивна. У ртути есть радиоактивные изотопы, но они, естественно, не используются в производстве бытовых термометров, да и вообще во всех случаях, где это не является необходимым. Но почему-то регулярно приходится слышать высказывания о радиационной опасности ртути.

Ртуть дорого стоит. Стоимость ртути имеет тот же порядок, что и цены на другие металлы. Цена на рынке зависит от чистоты предлагаемой ртути и объема поставляемой партии. В свободной продаже ее естественно нет, так как ртуть относится к АХОВ (аварийно химически-опасные отравляющие вещества). В быту же, чтобы ртуть забрали на утилизацию, придется еще и заплатить соответствующим организациям.

Ртуть собирают с помощью сложных средств, доступных только специалистам. Демеркуризацию (сбор ртути) проводят в два этапа. Сначала удаляют всю видимую металлическую ртуть механическим путем (вычерпывание, сметание жесткой щеткой, всасывание спринцовкой или шприцем, собирание шариков на скотч и т.д.). Затем проводят химическую обработку поверхности (если эту поверхность нельзя удалить саму по себе, как ковролин или верхний слой грунта). Из широкого спектра химических демеркуризаторов наиболее доступно хлорно железо (FeCl3, которым радиолюбители вытравливают печатные платы), а также раствор марганцовки (перманганат калия), НО обязательно с добавлением соляной кислоты (HCl). При разливах промышленного масштаба для связывания ртути используется сера, переводящая ртуть в сульфид.

Есть особые растворы полностью "уничтожающие" ртуть. Любой демеркуризационный раствор, просто переводит ртуть из металлического состояния в связанное (обычно в хлорид HgCl2). Испаряемость солей ртути намного ниже испаряемости в свободном состоянии, на чем и основан эффект химической обработки (поэтому-то всегда лучше избавиться от загрязненной поверхности, чем ее обрабатывать).

Ртуть

РТУТЬ -и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо-белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный).

Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка.

ртуть

(лат. Hydrargyrum), химический элемент II группы периодической системы. Серебристый жидкий металл (отсюда латинское название; от греческого hýdōr - вода и árgyros - серебро). Плотность при 20°C 13,546 г/см 3 (тяжелее всех известных жидкостей), t пл –38,87°C, t кип 356,58°C. Пары ртути при высокой температуре и при электрическом разряде излучают голубовато-зелёный свет, богатый ультрафиолетовыми лучами. Химически стойка. Основной минерал - киноварь HgS; встречается также ртуть самородная. Используется при изготовлении термометров, манометров, газоразрядных приборов, в производстве хлора и гидроксида натрия (как катод). Сплавы ртути с металлами - амальгамы. Ртуть и многие её соединения ядовиты.

РТУТЬ

РТУ́ТЬ (лат. Hydrargyrum), Hg (читается «гидраргирум»), химический элемент с атомным номером 80, атомная масса 200,59.
Природная ртуть состоит из смеси семи стабильных нуклидов: 196 Hg (содержание 0,146% по массе), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg (13,22%), 202 Hg (29,80%) и 204 Hg (6,85%). Радиус атома ртути 0,155 нм. Радиус иона Hg + - 0,111 нм (координационное число 3), 0,133 нм (координационное число 6), иона Hg 2+ - 0,083 нм (координационное число 2), 0,110 нм (координационное число 4), 0,116 нм (координационное число 6) или 0,128 нм (координационное число 8). Энергии последовательной ионизации нейтрального атома ртути равны 10,438, 18,756 и 34,2 эВ. Расположена во IIВ группе, 6 периода периодической системы. Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 10 6s 2 . В соединениях проявляет степени окисления +1 и +2. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
История открытия
Ртуть известна человечеству с древнейших времен. Обжиг киновари (см. КИНОВАРЬ) HgS, приводящий к получению жидкой ртути, использовали еще в 5 в. до н. э. в Междуречье (см. МЕСОПОТАМИЯ) . Использование киновари и жидкой ртути описано в древних документах Китая, Ближнего Востока. Первое подробное описание получения ртути из киновари описано Теофрастом (см. ТЕОФРАСТ) около 300 лет до н. э.
В древности ртуть использовали для добычи золота (см. ЗОЛОТО (химический элемент)) из золотых руд. Этот способ основан на ее способности растворять многие металлы, образуя жидкие или легкоплавкие амальгамы (см. АМАЛЬГАМА) . При прокаливании амальгамы золота летучая ртуть испаряется, золото остается. Во второй половине 15 в в Мексике применяли амальгамирование для извлечения из руды серебра (см. СЕРЕБРО) .
Алхимики считали ртуть составной частью всех металлов, полагая, что изменением ее содержания можно осуществить превращение ртути в золото. Только в 20 в. физики установили, что в процессе ядерной реакции атомы ртути действительно превращаются в атомы золота. Но такой способ чрезвычайно дорог.
Жидкая ртуть - очень подвижная жидкость. Алхимики называли ртуть «меркурием» по имени римского бога Меркурия, славившегося своей быстротой в перемещении. В английском, французском, испанском и итальянском языках для ртути используется название «mercury». Современное латинское название происходит от греческих слов «хюдор» - вода и «аргирос» - серебро, т. е. «жидкое серебро».
Ртутные препараты использовали в медицине в средние века (ятрохимия (см. ЯТРОХИМИЯ) ).
Нахождение в природе
Редкий рассеянный элемент. Содержание ртути в земной коре 7,0·10 –6 % по массе. В природе ртуть встречается в свободном состоянии. Образует более 30 минералов. Основной рудный минерал киноварь. Минералы ртути в виде изоморфных примесей встречаются в кварце, халцедоне, карбонатах, слюдах, свинцово-цинковых рудах. Желтая модификация HgO встречается в природе в виде минерала монтроидита. В обменных процессах литосферы, гидросферы, атмосферы участвует большое количество ртути. Содержание ртути в рудах от 0,05 до 6-7%.
Получение
Первоначально ртуть получали из киновари (см. КИНОВАРЬ) , помещая ее куски в вязанки хвороста и обжигая киноварь в кострах.
В настоящее время ртуть получают окислительно-восстановительным обжигом руд или концентратов при 700-800 о С в печах кипящего слоя, трубчатых или муфельных. Условно процесс может быть выражен:
HgS + O 2 = Hg + SO 2
Выход ртути при таком способе составляет около 80%. Более эффективен способ получения ртути путем нагревания руды с Fe (см. ЖЕЛЕЗО) и CaO:
HgS + Fe = Hg – + FeS,
4HgS + 4CaO = 4Hg – + 3CaS + CaSO 4 .
Особо чистую ртуть получают электрохимическим рафинированием на ртутном электроде. При этом содержание примесей составляет от 1·10 –6 до 1·10 –7 %.
Физические и химические свойства
Ртуть - серебристо-белый металл, в парах бесцветный. Единственный жидкий при комнатной температуре металл. Температура плавления –38,87°C, кипения 356,58°C. Плотность жидкой ртути при 20°C 13,5457 г/см 3 , твердой ртути при –38,9°C - 14,193 г/см 3 .
Твердая ртуть - бесцветные кристаллы октаэдрической формы, существующая в двух кристаллических модификациях. «Высокотемпературная» модификация обладает ромбоэдрической решеткой a-Hg, параметры ее элементарной ячейки (при 78 К) а= 0,29925 нм, угол b = 70,74 о. Низкотемпературная модификация b-Hg обладает тетрагональной решеткой (ниже 79К).
С использованием ртути голландский физик и химик Х.Камерлинг-Оннес (см. КАМЕРЛИНГ-ОННЕС Хейке) в 1911 впервые наблюдал явление сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) . Температура перехода a-Hg в сверхпроводящее состояние 4,153К, b-Hg - 3,949К. При более высоких температурах ртуть ведет себя как диамагнетик (см. ДИАМАГНЕТИК) . Жидкая ртуть не смачивает стекло и практически не растворяется в воде (в 100 г воды при 25°C растворяется 6·10 –6 г ртути).
Стандартный электродный потенциал пары Hg 2+ 2 /Hg 0 = +0.789 B, пары Hg 2+ /Hg 0 = +0.854B, пары Hg 2+ /Hg 2+ 2 = +0.920B. В неокисляющих кислотах ртуть не растворяется с выделением водорода (см. ВОДОРОД) . (см. КИСЛОРОД)
Кислород (см. КИСЛОРОД) и сухой воздух при обычных условиях ртуть не окисляют. Влажный воздух и кислород при ультрафиолетовом облучении или электронной бомбардировке окисляют ртуть с поверхности с образованием оксидов.
Ртуть окисляется кислородом воздуха при температуре выше 300°C, образуя оксид ртути HgO красного цвета:
2Hg + O 2 = 2HgO.
Выше 340°C этот оксид разлагается на простые вещества.
При комнатной температуре ртуть окисляется озоном (см. ОЗОН) .
Ртуть не реагирует при нормальных условиях с молекулярным водородом, но с атомарным водородом образует газообразный гидрид HgH. Ртуть не взаимодействует с азотом, фосфором, мышьяком, углеродом, кремнием, бором, германием.
С разбавленными кислотами ртуть не реагирует, но растворяется в царской водке (см. ЦАРСКАЯ ВОДКА) и в азотной кислоте. Причем, в случае с кислотой продукт реакции зависит от концентрации кислоты и соотношения ртути и кислоты. При избытке ртути, на холоду, протекает реакция:
6Hg + 8HNO 3 разбавл. = 3Hg 2 (NO 3) 2 + 2NO + 4H 2 O.
При избытке кислоты:
3Hg + 8HNO 3 = 3Hg(NO 3) 2 + 2NO + 4H 2 O.
С галогенами (см. ГАЛОГЕНЫ) ртуть активно взаимодействует с образованием галогенидов (см. ГАЛОГЕНИДЫ) . При реакциях ртути с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) возникают халькогениды (см. ХАЛЬКОГЕНИДЫ) HgS, HgSe, HgTe. Эти халькогениды праrтически не растворимы в воде. Например, значение ПР HgS = 2·10 –52 . Сульфид ртути растворяется только в кипящей HCl, царской водке (при этом образуется комплекс 2–) и в концентрированных растворах сульфидов щелочных металлов:
HgS + K 2 S = K 2 .
Сплавы ртути с металлами называют амальгамами (см. АМАЛЬГАМА) . Стойкие к амальгамированию металлы - железо (см. ЖЕЛЕЗО) , ванадий (см. ВАНАДИЙ) , молибден (см. МОЛИБДЕН) , вольфрам (см. ВОЛЬФРАМ) , ниобий (см. НИОБИЙ) и тантал (см. ТАНТАЛ (химический элемент)) . Со многими металлами ртуть образует интерметаллические соединения меркуриды.
Ртуть образует два оксида: оксид ртути(II) HgO и неустойчивый на свету и при нагревании оксид ртути(I) Hg 2 O (черные кристаллы).
HgO образует две модификации - желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg 2+ щелочи:
Hg(NO 3) 2 + 2NaOH = HgOЇ + 2NaNO 3 + H 2 O.
Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.
При добавлении щелочи к раствору соли ртути(I) образуется оксид ртути (I) Hg 2 O:
Hg 2 (NO 3) 2 + 2NaOH = Hg 2 O + H 2 O + 2NaNO 3 .
На свету Hg 2 O распадается на ртуть и HgO, давая осадок черного цвета.
Для соединений ртути(II) характерно образование устойчивых комплексных соединений (см. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ) :
2KI + HgI 2 = K 2 ,
2KCN + Hg(CN) 2 = K 2 .
Соли ртути(I) содержат группировку Hg 2 2+ со связью –Hg–Hg–. Получают эти соединения, восстанавливая соли ртути(II) ртутью:
HgSO 4 + Hg + 2NaCl = Hg 2 Cl 2 + Na 2 SO 4 ,
HgCl 2 + Hg = Hg 2 Cl 2 .
В зависимости от условий, соединения ртути(I) могут проявлять как окислительные, так и восстановительные свойства:
Hg 2 Cl 2 + Cl 2 = 2HgCl 2 ,
Hg 2 Cl 2 + SnCl 2 = 2Hg + SnCl 4 . (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ)
Пероксид (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ) HgO 2 - кристаллы; неустойчив, взрывается при нагревании и ударе.
Применение
Ртуть используют для изготовления катодов при электрохимическом получении едких щелочей и хлора, а также для полярографов, в диффузионных насосах, барометрах и манометрах; для определения чистоты фтора и его концентрации в газах. Парами ртути наполняют колбы газоразрядных ламп (ртутных и люминесцентных) и источников УФ излучения. Ртуть применяют при нанесении золотых покрытий и при добычи золота из руды. (см. )
Сулема (см. ) - важнейший антисептик, применяют при разбавлениях 1:1000. Оксид ртути (II), киноварь HgS применяются для лечения глазных и кожных и венерических заболеваний. Киноварь также используют для приготовления чернил и красок. В древности из киновари готовили румяна. Каломель (см. КАЛОМЕЛЬ) используется в ветеринарии в качестве слабительного средства.
Физиологическое действие
Ртуть и ее соединения высокотоксичны. Пары и соединения ртути накапливаясь в организме человека, сорбируются легкими, попадают в кровь, нарушают обмен веществ и поражают нервную систему. Признаки ртутного отравления проявляются уже при содержании ртути в концентрации 0.0002–0.0003 мг/л. Пары ртути фитотоксичны, ускоряют старение растений.
При работе с ртутью и ее соединениями следует предотвращать ее попадание в организм через дыхательные пути и кожу. Хранят в закрытых сосудах.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ртуть" в других словарях:

    Ртуть, и … Русский орфографический словарь

    Ртуть/ … Морфемно-орфографический словарь

    РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия

    Ртуть (Hg , от лат. Hydrargyrum ) - элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы). Простое вещество ртуть - переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты. Ртуть - один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент - бром).


1 История

Происхождение названия

2 Нахождение в природе

2.1 Месторождения

3 В окружающей среде

4 Изотопы

5 Получение

6 Физические свойства

7 Химические свойства

7.1 Характерные степени окисления

7.2 Свойства металлической ртути

8 Применение ртути и её соединений

8.1 Медицина

8.2 Техника

8.3 Металлургия

8.4 Химическая промышленность

8.5 Сельское хозяйство

9 Токсикология ртути

9.1 Гигиеническое нормирование концентраций ртути

9.2 Демеркуризация

История

Астрономический символ планеты Меркурий

Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природнойкиновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др.

Происхождение названия

Русское название ртути происходит от праслав. *rьt ǫ , связанного с лит. rìsti «катиться» . Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum (отдр.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).

Нахождение в природе

Ртуть - относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе - рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути - 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути - тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть не растворимы в воде, но при их наличии (Fe 2 (SO 4) 3 , озон, пероксид водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS nNa 2 S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями .

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда - шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения - терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.