Пищевая сеть животных. Пищевая сеть

Представители разных трофических уровней связаны между собой односторонне направленной передачей биомассы в пищевые цепи. При каждом переходе на следующий трофический уровень часть доступной энер­гии не воспринимается, часть отдается в виде тепла, а часть расходуется на дыхание. При этом общая энергия каждый раз уменьшается в несколько раз. Следствие этого -ограниченная длина пищевых цепей. Чем коро­че пищевая цепь или чем ближе организм к ее началу, тем больше количество доступной энергии.

Пищевые цепи хищников идут от продуцентов к тра­воядным, поедаемым мелкими плотоядными, а они слу­жат пищей более крупным хищникам и т. д. По мере

продвижения по цепи хищников животные увеличивают­ся в размерах и уменьшаются в числе. Относительно про­стая и короткая пищевая цепь хищников включает консументов II порядка:

Более длинная и сложная цепь включает консументов V порядка:

Удлинение цепи происходит благодаря участию в ней хищников.

В детритных цепях консументами являются детритофаги, относящиеся к различным систематическим груп­пам: мелкие животные, преимущественно беспозвоноч­ные, которые живут в почве и питаются опавшей листвой, или бактерии и грибы, разлагающие органические ве­щества по схеме:

В большинстве случаев деятельность обеих групп детритофагов характеризуется строгой согласованностью: животные создают условия для работы микроорганиз­мов, разделяя трупы животных и мертвые растения на мелкие части.



Пищевые цепи, начинающиеся с зеленых растений и от мертвого органического вещества, чаще всего пред­ставлены в экосистемах совместно, но почти всегда одна из них доминирует над другой. Тем не менее, в некото­рых специфических средах (например, абиссальной и подземной), где существование организмов с хлорофил­лом невозможно из-за отсутствия света, сохраняются пищевые цепи только детритного типа.

Пищевые цепи не изолированы одна от другой, а тес­но переплетены. Они составляют так называемые пище­вые сети. Принцип образования пищевых сетей состоит в следующем. Каждый продуцент имеет не одного, а несколько консументов. В свою очередь, консументы, среди которых преобладают полифаги, пользуются не одним, а несколькими источниками питания. Для иллюс­трации приведем примеры простой (рис, 9.3, а) и слож­ной (рис. 9.3, б) пищевых сетей.

В сложном природном сообществе те организмы, ко-

торые получают пищу от растений, занимающих первый

трофический уровень, через одинаковое число этапов, считаются принадлежащими к одному трофическому уровню. Так, травоядные занимают второй трофический уровень (уровень первичных консументов), хищники, поедающие травоядных,- третий (уровень вторичных кон­сументов), а вторичные хищники - четвертый (уровень третичных консументов). Необходимо подчеркнуть, что трофическая классификация делит на группы не сами виды, а типы их жизнедеятельности. Популяция одного вида может занимать один или более трофических уров­ней, в зависимости от того, какие источники энергии эти виды используют. Точно так же любой трофический уро­вень представлен не одним, а несколькими видами, в результате чего цепи питания сложно переплетены.

Рассмотрим диаграмму потока энергии в простой (неразветвленной) пищевой цепи, включающей три (1-3) трофических уровня (рис. 9.4).

Для данной конкретной экосистемы энергетический бюджет оценивался следующим образом: L =3000 ккал/м 2 в день, L A =1500, т.е. 50% от L, P N = 15, т.е. 1% от L A ,

Рис. 9.3. Важнейшие связи в пищевых сетях американской прерии (а ) и экосистемы северных морей для сельди (б ),

а - по Риклефсу, 1979; б - из Алимова, 1989.

Рис. 9.4. Упрощенная диаграмма потока энергии,

показывающая три трофических уровня

в линейной пищевой цепи (по: Одум, 1975).

Последовательные потоки энергии: L - общее освещение, L A - свет,

поглощенный растительным покровом (I - поступившая или

поглощенная энергия), P G - валовая первичная продукция,

P N - чистая первичная продукция, Р- вторичная продукция (консумен-

тов), NU - не используемая энергия, NA - не ассимилированная

консументами (выделенная с экскрементами) энергия, R -энергия.

Цифры внизу - порядок потерь энергии при каждом переносе.

P2 = 1,5, т.е. 10% от P N’ , и Р 3 = 0,3 ккал/м 2 в день, т. е. 20% от предыдущего уровня. На первом трофическом уровне поглощается 50% падающего света, а переходит в хими­ческую энергию пищи всего 1% поглощенной энергии. Вторичная продукция на каждом последующем трофичес­ком уровне консументов составляет около 10% предыду­щий, хотя на уровне хищников эффективность может быть выше.

Статьи поступления и расхода энергии, т.е. энерге­тический баланс, удобно рассмотреть с помощью уни­версальной модели, которая приложима к любому жи­вому компоненту системы, будь то растение, животное, микроорганизм или же особь, популяция, трофическая группа (рис. 9.5). Не вся энергия, поступившая в био­массу (/), подвергается превращению. Часть ее (NA ) не включается в метаболизм. Например, пища может прой­ти через пищеварительный тракт, не включаясь в мета-

Рис. 9.5. Компоненты «универсальной» модели

потока энергии (по: Одум, 1975).

Объяснение в тексте.

болизм, а часть энергии света проходит через расте­ния, не усваиваясь. Используемая, или ассимилируемая, часть энергии (А) тратится на дыхание (R ) и продуцирование органического вещества (Р ). Продукция может принимать различные формы: G – рост, или увеличение биомассы; Е – ассимилированное органическое вещество, выделяемое с экскрементами или секретируемое (про­стые сахара, аминокислоты, мочевина, слизь и т.д.), S -запас (например, жировые накопления, которые мо­гут быть реассимилированы позднее). Обратный путь за­пасенной продукции называют также «рабочей петлей», поскольку это та часть продукции, которая обеспечива­ет организм энергией в будущем (например, хищник использует энергию запасенных веществ для того, что­бы найти новую жертву). Оставшаяся за вычетом Е часть продукции - биомасса (В). Суммируя все статьи поступ­ления и расхода энергии, получим: A=I-NA; P = A-R; P=G + E + S; B = P-E; B = G + S.

Универсальную модель потока энергии можно использовать двояко. Во-первых, она может представлять популяцию какого-либо вида. В этом случае каналы притока энергии и связи дан­ного вида с другими составляют диаграмму пищевой сети с на­званием отдельных видов в ее узлах (рис. 9.6). Процедура пост­роения сетевой диаграммы включает: 1) составление схемы распределения популяций по трофическим уровням; 2) соедине­ние их пищевыми связями; 3) определение с помощью универ­сальной модели ширины каналов потоков энергии; при этом наи­более широкие каналы будут проходить через популяции видов-полифагов, в данном случае через популяции поденок, мошек и комаров-дергунов (рис. 9.6).

Рис. 9.6. Фрагмент пищевой сети пресноводного водоема.

Во-вторых, универсальная модель потока энергии может представлять определенный энергетический уровень. В этом варианте прямоугольники биомассы и каналы потоков энергии представляют все популяции, поддерживаемые одним источ­ником энергии. Обычно пищей лисам служат частично расте­ния (плоды и т. д.), частично травоядные животные (зайцы, полевые мыши и др.). Если мы хотим подчеркнуть аспект внутрипопуляционной энергетики, то всю популяцию лис необхо­димо изобразить одним прямоугольником. Если же требуется распределить метаболизм популяции лис на два трофических уровня соответственно пропорции растительной и животной пищи, то следует построить два или несколько прямоугольни­ков.

Зная универсальную модель потока энергии, мож­но определить отношения величин энергетического по­тока в разных точках пищевой цепи. Выраженные в процентах, эти отношения называют экологической эф­фективностью. В зависимости от задач исследования эколог изучает те или иные группы экологических эф-фективностей. Важнейшие из них рассматриваются ниже.

Первая группа энергетических отношений: В/R и P/R. Часть энергии,идущая на дыхание, т.е. на поддержа­ние структуры биомассы, велика в популяциях крупных организмов (люди, деревья и др.) При сильном стрессе R возрастает. Величина Р значительна в активных попу­ляциях мелких организмов, например бактерий и водо­рослей, а также в системах, получающих энергию из­вне.

Вторая группа отношений: А/I и Р/А. Первое из них называется эффективностью ассимиляции, второе -эф­фективностью роста тканей. Эффективность ассимиля­ции варьирует от 10 до 50% и больше. Она может быть либо очень мала, как в случае использования энергии света растениями или при ассимиляции пищи животными-детритофагами, либо очень велика, как в случае ас­симиляции пищи животными или бактериями, питающи­мися высококалорийной пищей, например сахарами или аминокислотами.

Эффективность ассимиляции у растительноядных животных соответствует питательным свойствам их пищи: она достигает 80% при поедании семян, 60% -молодой листвы, 30-40% -бо­лее старых листьев и 10-20% и даже менее при поедании дре­весины, в зависимости от степени ее разложения. Пища жи­вотного происхождения переваривается легче, чем раститель­ная. Эффективность ассимиляции у хищных видов составляет 60-90% потребленной пищи, причем виды, поедающие насеко­мых, стоят на нижней ступени этого ряда, а питающиеся мясом и рыбой - на верхней. Причина такого положения заключается в том, что жесткий хитиновый наружный скелет, на который приходится значительная часть массы тела у многих видов на­секомых, не переваривается. Это снижает эффективность ас­симиляции у животных, которые питаются насекомыми.

Эффективность роста тканей также широко варьиру­ет. Наибольших значений она достигает в тех случаях, когда организмы мелкие и условия среды, в которой они обитают, не требуют больших затрат на поддержание оптимальной для роста организмов температуры.

И, наконец, третья группа энергетических отношений: Р/В.

В тех случаях, когда Р оценивается как скорость, Р/В представляет собой отношение продукции в конкретный момент времени к биомассе: Р/В = В/(ВТ) = Т - 1 , где Т - время. Если рассчитывается интегральная продукция за некоторый промежуток времени, значение отношения Р/В определяется с учетом среднейза этот же отрезок времени биомассы. В этом случае отношение Р/В - величина безразмерная;она показывает, во сколь­ко раз продукция больше или меньше биомассы. Отно­шение продуктивности к биомассе можно рассматривать как внутри одного трофического уровня, так и между соседними.

Сравнивая продуктивность P t и биомассу B t внутри одного трофического уровня (t), отметим S -образный характер изменения P t в определенном диапазоне изме­нений B t . Например, на первом трофическом уровне про­дукция увеличивается сначала медленно, так как неве­лика поверхность листьев, затем быстрее и при боль­шой плотности биомассы - опять медленно, поскольку

фотосинтез в условиях значительного затенения листь­ев нижних ярусов ослабляется. На втором и третьем тро­фических уровнях при очень малом и при очень боль­шом числе животных на единицу площади отношение продуктивности к биомассе снижается, главным обра­зом из-за уменьшения рождаемости.

Отношение продуктивности предыдущего трофиче­ского уровня (Р t -1 ) к биомассе настоящего (B t) опре­деляется тем, что фитофаги, выедая часть растений, тем самым способствуют ускорению их прироста, т. е. фитофаги своей деятельностью содействуют продук­тивности растений. Аналогичное влияние оказывают на продуктивность консументов I порядка хищники, кото­рые, уничтожая больных и старых животных, способ­ствуют повышению коэффициента рождаемости фито­фагов.

Наиболее проста зависимость продуктивности по­следующего трофического уровня (P t +1) от биомассы на­стоящего (В t). Продуктивность каждого последующего трофического уровня возрастает при росте биомассы предыдущего.Отношение Р t +1 /B t показывает, в частности, от чего зависитвеличина вторичной продукции, а именно от величины первичной продукции, длины пищевой цепи, природы и величины энергии, привносимой извне в экосистему.

Приведенные рассуждения позволяют заметить, что на энергетические характеристики экосистемы опреде­ленное влияние оказывают размеры особей. Чем мель­че организм, тем выше его удельный метаболизм (на единицу массы) и, следовательно, меньше биомасса, которая может сохраняться на данном трофическом уров­не. И наоборот, чем крупнее организм, тем больше био­масса на корню. Так, «урожай» бактерий в данный мо­мент будет гораздо ниже «урожая» рыбы или млекопи­тающих, хотя эти группы использовали одинаковое количество энергии. Иначе обстоит дело с продуктивнос­тью. Поскольку продуктивность - это скорость прироста биомассы, то преимуществами здесь обладают мелкие организмы, которые благодаря более высокому уровню

метаболизма имеют более высокие темпы размножения и обновления биомассы, т. е. более высокую продуктив­ность.

Перенос энергии пищи от его источника – автотрофов (растений) – через ряд организмов, происходящий путём поедания одних организмов другими, называется пищевой цепью .

При каждом очередном переносе большая часть потенциальной энергии (80÷90%) теряется, переходя в тепло. Поэтому чем короче пищевая цепь (чем ближе организм к её началу – солнечной энергии), тем больше количество энергии, доступной для популяции.

Пищевые цепи можно разделить на два основных типа: пастбищная цепь , которая начинается с зелёного растения и идёт далее к пасущимся растительноядным животным и к их хищникам, идетритная цепь , которая от мёртвого органического вещества идёт к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя так называемыепищевые сети .

Пастбищная

Солнечный Растительноядные Хищники

Детритная

Потребители детрита Хищники

Наиболее упрощенные пастбищная и детритная пищевые цепи объединены в пищевую сеть в виде Y-образной или двухканальной диаграммы потока энергии .

Величины тех частей энергии чистой продукции, которые текут по двум путям, различны в экосистемах разного типа и часто варьируют по сезонам или по годам в одной и той же экосистеме. На некоторых мелководьях и на интенсивно используемых пастбищах и в степях по пастбищной цепи может идти 50% и более чистой продукции. Напротив, прибрежные марши, океаны, леса, да и большинство природных экосистем, функционируют как детритные системы; в них 90% и более процентов автотрофной продукции потребляется гетеротрофами только после того, как листья, стебли и другие части растений отмирают, подвергаются «переработке», превращаясь в диспергированное или растворённое органическое вещество, поступающее в воду, донные осадки и почву. Такое отсроченное потребление увеличивает структурную сложность, а также накопительную и буферную ёмкость экосистем.

Тесная связь пастбищной и детритной пищевых цепей приводит к тому, что при изменении уровня энергетического воздействия извне на экосистему быстро происходит переключение потоков между каналами, что позволяет поддерживать устойчивость экосистем. Не вся пища, съеденная пасущимися животными, усваивается: часть её, например через фекалии, уходит в детритную цепь.

Степень влияния травоядных животных на сообщество зависит не только от количества ассимилированной ими энергии пищи, но и от скорости изъятия живых растений. Прямое изъятие травоядными животными или человеком более 30-50% годового прироста наземной растительности уменьшает способность экосистемы сопротивляться стрессу. Перевыпас скота был одной из причин упадка многих цивилизаций. «Недовыпас » также может оказаться вредным. Если прямое потребление живых растений совершенно отсутствует, то детрит может накапливаться быстрее, чем идёт его разложение микроорганизмами. Это замедляет круговорот минеральных веществ, и, кроме того, система может стать пожароопасной.

В сложных природных сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню . Так, зелёные растения занимают первый трофический уровень (уровень продуцентов), травоядные – второй (уровень первичных консументов), первичные хищники, поедающие травоядных, – третий (уровень вторичных консументов), а вторичные хищники – четвёртый (уровень третичных консументов). Эта трофическая классификация относится к функциям, а не к видам как таковым. Популяция данного вида может занимать один или несколько трофических уровней, смотря по тому, какие источники энергии она использует. Поток энергии через трофический уровень равен общей ассимиляции (А ) на этом уровне, которая в свою очередь равна продукции (Р ) биомассы плюс дыхание (R ):

A =P +R .

При переносе энергии между трофическими уровнями часть потенциальной энергии теряется. Прежде всего, растение фиксирует лишь малую долю поступающей энергии солнечного света (около 1%). Поэтому число консументов (например, людей), которые могут прожить при данном выходе первичной продукции, сильно зависит от длины пищевой цепи; переход к каждому следующему звену в нашей традиционной сельскохозяйственной пищевой цепи уменьшает доступную энергию примерно на порядок величины (т.е. в 10 раз). Поэтому если в рационе увеличивается содержание мяса, то уменьшается число людей, которых можно прокормить.

Эффективность i-го трофического уровня принято оценивать, как отношение A i /A i-1 , гдеA i – ассимиляцияi -ым трофическим уровнем. Для первого (автотрофного) трофического уровня она составляет 1-5%, для последующих – 10-20%.

Может озадачить низкая эффективность природных экосистем в сравнении с высокими КПД электромоторов и других двигателей. Но на самом деле, долгоживущие, крупномасштабные экосистемы нельзя приравнивать в этом отношении к недолговечным механическим системам. Во-первых, в живых системах много «горючего» затрачивается на «ремонт» и самоподдержание, а при расчете КПД двигателей не учитываются амортизация и расходы энергии на ремонт. Во-вторых, в определенных условиях быстрый рост, который повышает потребление энергии, может иметь большее значение для выживания, чем максимальная эффективность использования энергии пищи или горючего.

Для экосистем важно понимать, что любое повышение их эффективности искусственным путём обернется увеличением затрат на ее поддержание. Всегда наступает такой предел, после которого выигрыш от роста эффективности сводится на нет ростом расходов, не говоря уже о том, что система может войти в опасное колебательное состояние, грозящее разрушением. Индустриализованные экосистемы, возможно, уже достигли такой стадии, когда увеличение расходов приводит к все меньшей отдаче.

Трофическая структура биоценозов

ЭКОЛОГИЯ СООБЩЕСТВ (СИНЭКОЛОГИЯ)

Популяции разных видов в природных условиях объединяются в системы более высокого ранга – сообщества и биоценоз .

Термин «биоценоз» был предложен немецким зоологом К. Мебиусом и обозначает организованную группу популяций растений, животных и микроорганизмов, приспособленных к совместному обитанию в пределах определенного объема пространства.

Любой биоценоз занимает определенный участок абиотической среды. Биотоп пространство с более или менее однородными условиями, заселенное тем или иным сообществом организмов.

Размеры биоценотических группировок организмов чрезвычайно разнообразны – от сообществ на стволе дерева или на болотной моховой кочке до биоценоза ковыльной степи. Биоценоз (сообщество) – не просто сумма образующих его видов, но и совокупность взаимодействий между ними. Экология сообществ (синэкология)– это также научный подход в экологии, в соответствии с которым прежде всего исследуют комплекс отношений и господствующие взаимосвязи в биоценозе. Синэкология занимается преимущественно биотическими экологическими факторами среды.

В пределах биоценоза различают фитоценоз – устойчивое сообщество растительных организмов, зооценоз – совокупность взаимосвязанных видов животных и микробиоценоз – сообщество микроорганизмов:

ФИТОЦЕНОЗ + ЗООЦЕНОЗ + МИКРОБИОЦЕНОЗ = БИОЦЕНОЗ.

При этом в чистом виде ни фитоценоз, ни зооценоз, ни микробиоценоз в природе не встречаются, как и биоценоз в отрыве от биотопа.

Биоценоз формируют межвидовые связи, обеспечивающие структуру биоценоза – численность особей, распределение их в пространстве, видовой состав и тому подобное, а также структуру пищевой сети, продуктивность и биомассу. Для оценки роли отдельного вида в видовой структуре биоценоза используют обилие вида – показатель, равный числу особей на единицу площади или объема занимаемого пространства.

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, – это пищевые связи хищника и жертвы: одни – поедающие, другие – поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т. п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

Пищевая цепь – это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе малой части высокоэффективной солнечной энергии, поступившей на Землю. В конечном итоге эта цепь возвращается в окружающую природную среду в виде низкоэффективной тепловой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.



Каждое звено пищевой цепи называют трофическим уровнем. Первый трофический уровень занимают автотрофы, иначе именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего – вторичными консументами и т. д. Обычно бывают четыре или пять трофических уровней и редко более шести (рис. 5.1).

Существуют два главных типа пищевых цепей – пастбищные (или «выедания») и детритные (или «разложения»).

Рис. 5.1. Пищевые цепи биоценоза по Н. Ф. Реймерсу: обобщенная (а) и реальная (б). Стрелками показано направление перемещения энергии, а цифрами – относительное количество энергии, приходящей на трофический уровень

В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй – пастбищные животные (термин «пастбищные» охватывает все организмы, питающиеся растениями), а третий – хищники. Так, пастбищными пищевыми цепями являются:

Детритная пищевая цепь начинается с детрита по схеме:

ДЕТРИТ → ДЕТРИТОФАГ → ХИЩНИК

Характерными детритными пищевыми цепями являются:

Концепция пищевых цепей позволяет в дальнейшем проследить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого‑то одного типа, в природе встречаются редко. Реальные пищевые связи намного сложнее, ибо животное может питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно характерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми цепями иллюстрирует предложенная Ю. Одумом модель потока энергии (рис. 5.2).

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

К числу важнейших взаимоотношений между организмами относятся пищевые. Можно проследить бесчисленные пути движения вещества в экосистеме, при которых один организм поедается другим, тот - третьим и т. д. Ряд таких звеньев называется пищевой цепью. Пищевые цепи переплетаются и образуют пищевую (трофическую) сеть.

Пищевые цепи разделяют на два типа. Один тип пищевой цепи начинается с растений и идет к растительноядным животным и далее к хищникам - это цепь выедания (пастбищная).

Относительно простая и короткая пищевая цепь:
трава → кролик → лисица

(продуцент) (консумент (консумент

I порядка) II порядка)

Другой тип начинается от растительных и животных остатков к мелким животным и микроорганизмам, а затем к хищникам - эта цепь разложения (детритная).

Итак, все пищевые цепи начинаются с продуцентов. Без непрерывного образования ими органического вещества экосистема быстро съела бы сама себя и прекратила сущест­вование.

Пищевые связи можно уподобить потоку питательных веществ и энергии от одного трофического уровня к другому.

Общую массу организмов (их биомассу) на каждом трофи­ческом уровне можно измерить путем сбора или отлова и последующего взвешивания соответствующих выборок животных и растений. На каждом трофическом уровне биомасса на 90-99% меньше, чем на предыдущем. Допустим биомасса продуцентов на участке луга 0,4 га составляет 10 т, тогда биомасса фитофагов на той же площади будет не более 1000 кг. Пищевые цепи в природе обычно включают 3-4 звена, существование большего числа трофических уровней невоз­можно из-за быстрого приближения биомассы к нулю.

Большая часть получаемой энергии (80-90%) используется организмами на построение тела и поддержание жизне­деятельности. На каждом трофическом уровне число особей прогрессивно уменьшается. Эта закономерность носит название экологической пирамиды . Экологическая пирамида это отражает число особей на каждом этапе пищевой цепи или количество биомассы, или количество энергии. Эти величины имеют одинаковую направленность. С каждым звеном в цепи организмы становятся крупнее, они медленнее размно­жаются, их число уменьшается.

Разные биогеоценозы отличаются своей продуктивностью, скоростью потребления первичной продукции, а также разнообразными цепями питания. Однако, для всех цепей питания свойственны определенные закономерности, касаю­щиеся соотношения расходуемой и запасаемой продукции, т.е. биомассы с заключенной в ней энергии на каждом из трофических уровней. Эти закономерности получили назва­ние «правила экологической пирамиды». Различают разные типы экологических пирамид, в зависимости от того, какой показатель положен в ее основу. Так, пирамида биомассы отображает количественные закономерности передачи по цепи питания массы органического вещества. Пирамида энергии отображает соответствующие закономерности передачи энергии от одного звена цепи питания к другому. Разработана и пирамида чисел, отображающая количество особей на каждом из трофических уровней цепи питания.

При изучении биотической структуры экосистемы становится очевидным, что одно из важнейших взаимоотношений между организмами - это пищевое. Можно проследить бесчисленные пути движения вещества в экосистеме, при котором один организм поедается другим, а тот - третьим и т.д.

Детритофаги

Орёл Детритофаги V

Лиса Человек Орёл Детритофаги IV

Мышь Заяц Корова Человек Детритофаги III

Пшеница Трава Яблоня I

Пищевая цепь - это путь движения вещества (источник энергии и строительный материал) в экосистеме от одного организма к другому.

Растение корова

Растение корова человек

Растение кузнечик мышь лиса орёл

Растение жук лягушка змея птица

Обозначает направление движения.

В природе пищевые цепи редко изолированы друг от друга. Гораздо чаще представители одного вида (растительноядные) питаются несколькими видами растений, а сами служат пищей для нескольких видов хищников. Перенос вредных веществ в экосистеме.

Пищевая сеть - это сложная сеть пищевых взаимоотношений.

Несмотря на многообразие пищевых сетей, они все соответствуют общей схеме: от зелёных растений к первичным консументам, от них к вторичным консументам и т.д. и к детритофагам. На последнем месте всегда стоят детритофаги, они замыкают пищевую цепь.

Трофический уровень - это совокупность организмов, занимающих определённое место в пищевой сети.

I трофический уровень - всегда растения,

II трофический уровень - первичные консументы

III трофический уровень - вторичные консументы и т.д.

Детритофаги могут находиться на II и выше трофическом уровне.


III 3,5 дж вторичный консумент (волк)


II 500 дж первичный консумент (корова)


I 6200 дж растения

2,6*10 дж поглощено солнечной энергии

1,3*10 дж падает на поверхность земли на

некоторую площадь


Пирамида энергии


III 10 кг лиса (1 )

II 100 кг заяц (10 )

I 1000 кг растения на лугу (100 )


Пирамида биомассы.

Обычно в экосистеме насчитывается 3-4 трофических уровня. Это объясняется тем, что значительная часть потребляемой пищи тратится на энергию (90 - 99 %), поэтому масса каждого трофического уровня меньше предыдущего. На формирование тела организма идет относительно немного (1 - 10 %.Соотношение между растениями, консументами, детритофагами выражают в виде пирамид.

Пирамида биомассы - показывает соотношение биомасс различных организмов на трофических уровнях.

Пирамида энергии- показывает поток энергии через экосистему. (см.рис.)

Очевидно, что существование большего числа трофических уровней невозможно, из-за быстрого приближения биомассы к нулю.

Автотрофы и гетеротрофы.

Автотрофы - это организмы, способные строить свои тела за счет неорганических соединений, используя солнечную энергию.

К ним относятся растения (только растения). Они синтезируют из СО , Н О (неорганические молекулы) под воздействием солнечной энергии - глюкозу (органические молекулы) и О . Они составляют первое звено в пищевой цепи и находятся на 1 трофическом уровне.

Гетсротрофы - это организмы, которые не могут строить собственное тело из неорганических соединений, а вынуждены использовать созданное автотрофами, употребляя их в пищу.

К ним относятся консументы и детритофаги. И находятся на II и выше трофическом уровне. Человек тоже гетеротроф.

Вернадскому принадлежит идея, что возможно превращение человеческого общества из гетеротрофного и автотрофное. В силу своих биологических особенностей человек не может перейти к автотрофности, но общество в целом способно осуществить автотрофный способ производства пищи, т.е. замена природных соединений (белки, жиры, углеводы) на органические соединения, синтезированные из неорганических молекул или атомов.