Влияние на скорость химических реакций. Химическая кинетика

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
Факторы, влияющие на скорость химических реакций.
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Примеры
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

AA + bB + . . . ® . . .

  • [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:



(t 2 - t 1) / 10
Vt 2 / Vt 1 = g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

  • e -Ea/RT

где
A - постоянная, зависящая от природы реагирующих веществ;
R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
Энергетическая диаграмма химической реакции.

Экзотермическая реакция Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

Скорость химической реакции – это изме­нение концентрации реагирующих веществ в единицу времени.

При гомогенных реакциях пространством реакции обозначается объем реакционного сосуда, а при гетерогенных — по­верхность, на которой протекает реакция. Концентрацию реагиру­ющих веществ обычно выражают в моль/л — количестве молей вещества в 1 литре раствора.

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, давления, поверхности соприкосновения веществ и ее характера, присутствия катализаторов.


Увеличение концентрации веществ, вступающих в химическое взаимодействие, приводит к увеличению скорости химической реакции. Это происходит потому, что все химические реакции проходят между некоторым количеством реагирующих частицами (атомами, молекулами, ионами). Чем больше этих частичек в объеме реакционного пространства, тем чаще они соударяются и происходит химическое взаимодействие. Химическая реакция может протекать через один или несколько элементарных актов (соударений). На основании уравнения реакции можно записать выражение зависимости скорости реак­ции от концентрации реагирующих веществ. Если в элементарном акте участвует лишь одна молекула (при реакции разложения), зависи­мость будет иметь такой вид:

v = k*[A]

Это уравнение мономолекулярной реакции. Когда в элемен­тарном акте происходит взаимодействие двух разных моле­кул, зависимость имеет вид:

v = k*[A]*[B]

Реакция называется бимолекулярной. В случае соударения трех молекул справедливо выражение:

v = k*[A]*[B]*[C]

Реакция называется тримолекулярной. Обозначения коэффициентов:

v скорость реакции;

[А], [В], [С] — концентрации реагирующих веществ;

k — коэффициент пропорциональности; называется кон­стантой скорости реакции.

Если концентрации реагирующих веществ равны единице (1 моль/л) или их произведение равно единице, то v = k.. Константа скорости зави­сит от природы реагирующих веществ и от температуры. Зависимость скорости простых реакций (т. е. реак­ций, протекающих через один элементарный акт) от кон­центрации описывается законом действующих масс: ско­рость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ, воз­веденных в степень их стехиометрических коэффициен­тов.

Для примера разберем реакцию 2NO + O 2 = 2NO 2 .

В ней v = k* 2 *

В случае, когда уравнение химической реакции не соответствует элементарному акту взаимодействия, а отражает лишь связь между массой вступивших в реакцию и образовавшихся веществ, то степени у концентраций не будут равны коэффициентам, стоящим перед формулами соответствующих веществ в уравне­нии реакции. Для реакции, которая протекает в несколько стадий, скорость реакции оп­ределяется скоростью самой медленной (лимитирующей) стадии.

Такая зависимость скорости реакции от кон­центрации реагирующих веществ справедлива для газов и реакций, проходящих в растворе. Реакции с участием твердых веществ не подчиняются закону действующих масс, так как взаимодействие молекул происходит лишь на поверх­ности раздела фаз. Следовательно, скорость гетерогенной реакции зависит еще и от величины и характера поверхности соприкоснове­ния реагирующих фаз. Чем больше поверхность – тем быстрее будет идти реакция.

Влияние температуры на скорость химической ре­акции

Влияние температуры на скорость химической ре­акции определяется правилом Вант-Гоффа: при повыше­нии температуры на каждые 10 ° C скорость реакции уве­личивается в 2-4 раза. Математически это правило пере­дается следующим уравнением:

v t2 = v t1 * g (t2-t1)/10

где v t1 и v t2 — скорости реакций при тем­пературах t2 и t1; g — температурный коэффициент реак­ции — число, показы­вающее, во сколько раз увеличивается скорость реакции при повышении температуры на каждые 10 ° C. Такая значительная зависимость скорости химической реакции от температуры объясняется тем, что образование новых веществ происходит не при вся­ком столкновении реагирующих молекул. Взаимодействуют только те молекулы (активные молекулы), кото­рые обладают достаточной энергией, чтобы разорвать связи в исходных частицах. Поэтому каждая реакция характеризуется энергетическим барьером. Для его преодо­ления молекуле необходима энергия активации — некоторая из­быточная энергия, которой должна обладать молекула для того, чтобы ее столкновение с другой молекулой привело к образованию нового вещества. С ростом температуры число активных молекул быстро увеличивается, что приводит в резко­му возрастанию скорости реакции по правилу Вант-Гоффа. Энергия активации для каждой конкретной реакции зависит от природы реагирующих веществ.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние катализатора

Одно из наиболее эффективных средств воздействия на скорость химических реакций — использование катализаторов. Катализаторы — это вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными по составу и по массе. Иначе говоря, в момент самой реакции катализатор активно участвует в химическом про­цессе, но к концу реакции реагенты изменяют свой химический состав, превращаясь в продукты, а катализатор выделяется в перво­начальном виде. Обычно роль катализатора заключается в увеличении скорости реакции, хотя некоторые катализаторы не ускоряют, а замедляют процесс. Явление ускорения химических реакций благодаря присутствию катализаторов носит название катализа, а замедления — ингибирования.

Некоторые вещества не обладают каталитическим действием, но их добавки резко увеличивают каталитическую способность катализаторов. Такие вещества называются промоторами . Другие вещества (каталитические яды) уменьшают или даже полностью блокируют действие катализаторов, этот процесс называется отравлением катализатора .

Существуют два вида катализа: гомогенный и гетерогенный . При гомогенном катализе реагенты, продукты и катализатор составляют одну фазу (газовую или жидкую). В этом случае отсутствует поверх­ность раздела между катализатором и реагентами.

Особенность гетерогенного катализа состоит в том, что катали­заторы (обычно твердые вещества) находятся в ином фазовом состоя­нии, чем реагенты и продукты реакции. Реакция развивается обычно на поверхности твердого тела.

При гомогенном катализе происходит образование промежуточных продуктов между катализатором и реагирующим веществом в результате реакции с меньшим значением энер­гии активации. При гетерогенном катализе увеличение скорости объясняется адсорбцией реагиру­ющих веществ на по­верхности катализатора. В результате этого их концентрация увеличивается и скорость реакции растет.

Особым случаем катализа является аутокатализ. Смысл его заключается в том, что химический процесс ускоряется одним из про­дуктов реакции.

Изучением скорости химической реакции и условиями, влияющими на ее изменение, занимается одно из направлений физической химии - химическая кинетика. Она также рассматривает механизмы протекания этих реакций и их термодинамическую обоснованность. Эти исследования важны не только в научных целях, но и для контроля взаимодействия компонентов в реакторах при производстве всевозможных веществ.

Понятие скорости в химии

Скоростью реакции принято называть некое изменение концентраций, вступивших в реакцию соединений (ΔС) в единицу времени (Δt). Математическая формула скорости химической реакции выглядит следующим образом:

ᴠ = ±ΔC/Δt.

Измеряют скорость реакции в моль/л∙с, если она происходит во всем объеме (то есть реакция гомогенная) и в моль/м 2 ∙с, если взаимодействие идет на поверхности, разделяющей фазы (то есть реакция гетерогенная). Знак «-» в формуле имеет отношение к изменению значений концентраций исходных реагирующих веществ, а знак «+» - к изменяющимся значениям концентраций продуктов той же самой реакции.

Примеры реакций с различной скоростью

Взаимодействия химических веществ могут осуществляться с различной скоростью. Так, скорость нарастания сталактитов, то есть образования карбоната кальция, составляет всего 0,5 мм за 100 лет. Медленно идут некоторые биохимические реакции, например, фотосинтез и синтез белка. С довольно низкой скоростью протекает коррозия металлов.

Средней скоростью можно охарактеризовать реакции, требующие от одного до нескольких часов. Примером может послужить приготовление пищи, сопровождающееся разложением и превращением соединений, содержащихся в продуктах. Синтез отдельных полимеров требует нагревания реакционной смеси в течение определенного времени.

Примером химических реакций, скорость которых довольно высока, могут послужить реакции нейтрализации, взаимодействие гидрокарбоната натрия с раствором уксусной кислоты, сопровождающееся выделением углекислого газа. Также можно упомянуть взаимодействие нитрата бария с сульфатом натрия, при котором наблюдается выделение осадка нерастворимого сульфата бария.

Большое число реакций способно протекать молниеносно и сопровождаются взрывом. Классический пример - взаимодействие калия с водой.

Факторы, влияющие на скорость химической реакции

Стоит отметить, что одни и те же вещества могут реагировать друг с другом с различной скоростью. Так, например, смесь газообразных кислорода и водорода может довольно длительное время не проявлять признаков взаимодействия, однако при встряхивании емкости или ударе реакция приобретает взрывной характер. Поэтому химической кинетикой и выделены определенные факторы, которые имеют способность оказывать влияние на скорость химической реакции. К ним относят:

  • природу взаимодействующих веществ;
  • концентрацию реагентов;
  • изменение температуры;
  • наличие катализатора;
  • изменение давления (для газообразных веществ);
  • площадь соприкосновения веществ (если говорят о гетерогенных реакциях).

Влияние природы вещества

Столь существенное отличие в скоростях химических реакций объясняется разными значениями энергии активации (Е а). Под ней понимают некое избыточное количество энергии в сравнении со средним ее значением, необходимым молекуле при столкновении, для того чтобы реакция произошла. Измеряется в кДж/моль и значения обычно бывают в границах 50-250.

Принято считать, что если Е а =150 кДж/моль для какой-либо реакции, то при н. у. она практически не протекает. Эта энергия тратится на преодоление отталкивания между молекулами веществ и на ослабление связей в исходных веществах. Иными словами, энергия активации характеризует прочность химических связей в веществах. По значению энергии активации можно предварительно оценить скорость химической реакции:

  • Е а < 40, взаимодействие веществ происходят довольно быстро, поскольку почти все столкнове-ния частиц при-водят к их реакции;
  • 40-<Е а <120, предполагается средняя реакция, поскольку эффективными будет лишь половина соударений молекул (например, реакция цинка с соляной кислотой);
  • Е а >120, только очень малая часть стол-кновений частиц приведет к реакции, и скорость ее будет низкой.

Влияние концентрации

Зависимость скорости реакции от концентрации вернее всего характеризуется законом действующих масс (ЗДМ), который гласит:

Скорость химической реакции имеет прямо пропорциональную зависимость от произведения концентраций, вступивших в реакцию веществ, значения которых взяты в степенях, соответствующих им стехиометрическим коэффициентам.

Этот закон подходит для элементарных одностадийных реакций, или же какой-либо стадии взаимодействия веществ, характеризующегося сложным механизмом.

Если требуется определить скорость химической реакции, уравнение которой можно условно записать как:

αА+ bB = ϲС, то,

в соответствии с выше обозначенной формулировкой закона, скорость можно найти по уравнению:

V=k·[A] a ·[B] b , где

a и b - стехиометрические коэффициенты,

[A] и [B] - концентрации исходных соединений,

k - константа скорости рассматриваемой реакции.

Смысл коэффициента скорости химической реакции заключается в том, что ее значение будет равно скорости, если концентрации соединений будут равны единицам. Следует отметить, что для правильного расчета по этой формуле стоит учитывать агрегатное состояние реагентов. Концентрацию твердого вещества принимают равной единице и не включают в уравнение, поскольку в ходе реакции она остается постоянной. Таким образом, в расчет по ЗДМ включают концентрации только жидких и газообразных веществ. Так, для реакции получения диоксида кремния из простых веществ, описываемой уравнением

Si (тв) + Ο 2(г) = SiΟ 2(тв) ,

скорость будет определяться по формуле:

Типовая задача

Как изменилась бы скорость химической реакции монооксида азота с кислородом, если бы концентрации исходных соединений увеличили в два раза?

Решение: Этому процессу соответствует уравнение реакции:

2ΝΟ + Ο 2 = 2ΝΟ 2 .

Запишем выражения для начальной (ᴠ 1) и конечной (ᴠ 2) скоростей реакции:

ᴠ 1 = k·[ΝΟ] 2 ·[Ο 2 ] и

ᴠ 2 = k·(2·[ΝΟ]) 2 ·2·[Ο 2 ] = k·4[ΝΟ] 2 ·2[Ο 2 ].

ᴠ 1 /ᴠ 2 = (k·4[ΝΟ] 2 ·2[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

ᴠ 2 /ᴠ 1 = 4·2/1 = 8.

Ответ: увеличилась в 8 раз.

Влияние температуры

Зависимость скорости химической реакции от температуры была определена опытным путем голландским ученым Я. Х. Вант-Гоффом. Он установил, что скорость многих реакций возрастает в 2-4 раза с повышением температуры на каждые 10 градусов. Для этого правила имеется математическое выражение, которое имеет вид:

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 , где

ᴠ 1 и ᴠ 2 - соответствующие скорости при температурах Τ 1 и Τ 2 ;

γ - температурный коэффициент, равен 2-4.

Вместе с тем это правило не объясняет механизма влияния температуры на значение скорости той или иной реакции и не описывает всей совокупности закономерностей. Логично сделать вывод о том, что с повышением температуры, хаотичное движение частиц усиливается и это провоцирует большее число их столкновений. Однако это не особо влияет на эффективность соударения молекул, поскольку она зависит, главным образом, от энергии активации. Также немалую роль в эффективности столкновения частиц имеет их пространственное соответствие друг другу.

Зависимость скорости химической реакции от температуры, учитывающая природу реагентов, подчиняется уравнению Аррениуса:

k = А 0 ·е -Еа/RΤ , где

А о - множитель;

Е а - энергия активации.

Пример задачи на закон Вант-Гоффа

Как следует изменить температуру, чтобы скорость химической реакции, у которой температурный коэффициент численно равен 3, выроста в 27 раз?

Решение. Воспользуемся формулой

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 .

Из условия ᴠ 2 /ᴠ 1 = 27, а γ = 3. Найти нужно ΔΤ = Τ 2 -Τ 1 .

Преобразовав исходную формулу получаем:

V 2 /V 1 =γ ΔΤ/10 .

Подставляем значения: 27=3 ΔΤ/10 .

Отсюда понятно, что ΔΤ/10 = 3 и ΔΤ = 30.

Ответ: температуру следует повысить на 30 градусов.

Влияние катализаторов

В физической химии скорость химических реакций активно изучает также раздел, называемый катализом. Его интересует, как и почему сравнительно малые количества тех или иных веществ существенно увеличивают скорость взаимодействия других. Такие вещества, которые могут ускорять реакцию, но сами при этом в ней не расходуются, называются катализаторами.

Доказано, что катализаторы меняют механизм самого химического взаимодействия, способствуют появлению новых переходных состояний, для которых характерны меньшие высоты энергетического барьера. То есть они способствуют снижению энергии активации, а значит и увеличению количества эффективных ударений частиц. Катализатор не может вызвать реакцию, которая энергетически невозможна.

Так пероксид водорода способен разлагаться с образованием кислорода и воды:

Н 2 Ο 2 = Н 2 Ο + Ο 2 .

Но эта реакция очень медленная и в наших аптечках она существует в неизменном виде довольно долгое время. Открывая лишь очень старые флаконы с перекисью, можно заметить небольшой хлопок, вызванный давлением кислорода на стенки сосуда. Добавление же всего нескольких крупинок оксида магния спровоцирует активное выделение газа.

Та же реакция разложения перекиси, но уже под действием каталазы, происходит при обработке ран. В живых организмах находится много различных веществ, которые увеличивают скорость биохимических реакций. Их принято называть ферментами.

Противоположный эффект на протекание реакций оказывают ингибиторы. Однако это не всегда плохо. Ингибиторы используют для защиты металлической продукции от коррозии, для продления срока хранения пищи, например, для предотвращения окисления жиров.

Площадь соприкосновения веществ

В том случае, если взаимодействие идет между соединениями, имеющими разные агрегатные состояния, или же между веществами, которые не способны образовывать гомогенную среду (не смешивающиеся жидкости), то еще и этот фактор влияет на скорость химической реакции существенно. Связано это с тем, что гетерогенные реакции осуществляются непосредственно на границе раздела фаз взаимодействующих веществ. Очевидно, что чем обширнее эта граница, тем больше частиц имеют возможность столкнуться, и тем быстрее идет реакция.

Например, гораздо быстрее идет в виде мелких щепок, нежели в виде бревна. С той же целью многие твердые вещества растирают в мелкий порошок, прежде чем добавлять в раствор. Так, порошкообразный мел (карбонат кальция) быстрее действует с соляной кислотой, чем кусочек той же массы. Однако, помимо увеличения площади, данный прием приводит также к хаотичному разрыву кристаллической решетки вещества, а значит, повышает реакционную способность частиц.

Математически скорость гетерогенной химической реакции находят, как изменение количества вещества (Δν), происходящее в единицу вре-мени (Δt) на единице поверхности

(S): V = Δν/(S·Δt).

Влияние давления

Изменение давления в системе оказывает влияние лишь в том случае, когда в реакции принимают участие газы. Повышение давления сопровождается увеличением молекул вещества в единице объема, то есть концентрация его пропорционально возрастает. И наоборот, понижение давление приводит к эквивалентному уменьшению концентрации реагента. В этом случае подходит для вычисления скорости химической реакции формула, соответствующая ЗДМ.

Задача. Как возрастет скорость реакции, описываемой уравнением

2ΝΟ + Ο 2 = 2ΝΟ 2 ,

если объем замкнутой системы уменьшить в три раза (Т=const)?

Решение. При уменьшении объема пропорционально увеличивается давление. Запишем выражения для начальной (V 1) и конечной (V 2) скоростей реакции:

V 1 = k· 2 ·[Ο 2 ] и

V 2 = k·(3·) 2 ·3·[Ο 2 ] = k·9[ΝΟ] 2 ·3[Ο 2 ].

Чтобы найти во сколько раз новая скорость больше начальной, следует разделить левые и правые части выражений:

V 1 /V 2 = (k·9[ΝΟ] 2 ·3[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

Значения концентраций и константы скорости сокращаются, и остается:

V 2 /V 1 = 9·3/1 = 27.

Ответ: скорость возросла в 27 раз.

Подводя итог, нужно отметить, что на скорость взаимодействия веществ, а точнее, на количество и качество столкновений их частиц, влияет множество факторов. В первую очередь - это энергия активации и геометрия молекул, которые практически невозможно скорректировать. Что касается остальных условий, то для роста скорости реакции следует:

  • увеличить температуру реакционной среды;
  • повысить концентрации исходных соединений;
  • увеличить давление в системе или уменьшить ее объем, если речь идет о газах;
  • привести разнородные вещества к одному агрегатному состоянию (например, растворив в воде) или увеличить площадь их соприкосновения.

Системы. Но данная величина не отражает настоящую возможность протекания реакции, ее скорость и механизм.

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм. Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные .

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

υ = ± dn / dt · V

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

υ = ± dC / dt ,

Единица измерения скорости реакции моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой , которая имеет вид:

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом: Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением :

υ = k·[A] a ·[B] b или

υ = k·C a A ·C b B

Здесь [ A ] и [ B ] (C A и C B )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ А и В равны 1, то υ = k .

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения .
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k .

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которя называется лимитирующей .

Каждая реакция имеет свой порядок . Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок . Например, в выражении скорости химической реакции для процесса

а А + b В = продукты

υ = k ·[ A ] a ·[ B ] b

a – порядок по реагенту А

b порядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Определим факторы, влияющие на скорость химической реакции υ.

  1. Зависимость скорости реакции от концентрации реагирующих веществ

    определяется законом действующих масс: υ = k [ A ] a ·[ B ] b

Очевидно, что с увеличением концентраций реагирующих веществ, υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами. Причем, важно учитывать порядок реакции: если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если по какому-либо реагенту n = 2 , то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

Как любые процессы, химические реакции происходят во времени и поэтому характеризуются той или иной скоростью.

Раздел химии, изучающий скорость химических реакций и механизм их протекания, называется химической кинетикой . Химическая кинетика оперирует понятиями «фаза», «система». Фаза это часть системы, отделенная от других ее частей поверхностью раздела.

Системы бывают гомогенные и гетерогенные. Гомогенные системы состоят из одной фазы . Например, воздух или любая смесь газов, раствор соли. Гетерогенные системы состоят из двух или нескольких фаз . Например, жидкая вода – лед – пар, раствор соли + осадок.

Реакции, протекающие в гомогенной системе , называются гомогенными . Например, N 2(г) + 3H 2(г) = 2NH 3(г) . Они протекают во всем объеме. Реакции, протекающиев гетерогенной системе , называютсягетерогенными . Например, С (к) + О 2(г) = СО 2(г) . Они протекают на поверхности раздела фаз.

Скорость химической реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

1. Природа реагирующих веществ.

Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы являются мало реакционноспособными. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

2. Концентрация.

С увеличением концентрации чаще происходят столкновения молекул реагирующих веществ – скорость реакции возрастает.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции

nA (г) + mB (г) = pAB (г)

зависимость скорости реакции выражается уравнением:

где С А и С В – концентрации реагирующих веществ, моль/л; k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид:

υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.



Для гетерогенных реакций (когда вещества находятся в разных агрегатных состояниях) скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЭДМ не входит:

nA (к) + mB (г) = pAB (г)

Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к)

3. Температура.

При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними. Чтобы реакция осуществлялась, сталкивающиеся молекулы должны обладать определенным избытком энергии. Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества , называется энергией активации . Энергию активации (Е а ) выражают в кДж/моль. Ее величина зависит от природы реагирующих веществ, т.е. для каждой реакции своя энергия активации. Молекулы, обладающие энергией активации , называют активными . Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С.

4. Поверхность соприкосновения реагирующих веществ.

Для гетерогенных систем, чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ – путем их растворения.

5. Катализаторы.

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

К гомогенному относятся такие процессы, в которых катализатор находится в том же агрегатном состоянии, что и реагирующие вещества.

2SO 2(г) + O 2(г) 2SO 3(г)

Действие гомогенного катализатора заключается в образовании более или менее прочных промежуточных активных соединений, из которых он затем полностью регенерируется.

К гетерогенному катализу относятся такие процессы, в которых катализатор и реагирующие вещества находятся в различных агрегатных состояниях, а реакция протекает на поверхности катализатора.

N 2(г) + 3H 2(г) 2NH 3(г)

Механизм действия гетерогенных катализаторов сложнее гомогенных. Значительную роль в этих процессах играют явления поглощения газообразных и жидких веществ на поверхности твердого вещества – явления адсорбции. В результате адсорбции увеличивается концентрация реагирующих веществ, повышается их химическая активность, что приводит к увеличению скорости реакции.