Значение слова b-частица в медицинских терминах. Ядра и частицы A b частицы

От приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10 −24 до 10 −22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц .

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии , импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: время жизни , масса , спин , электрический заряд , магнитный момент , барионный заряд , лептонный заряд , странность, изотопический спин , чётность , зарядовая чётность , G-чётность , CP-чётность .

Классификация

По времени жизни

  • Стабильные элементарные частицы - частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон , электрон , нейтрино , фотон и их античастицы).
  • Нестабильные элементарные частицы - частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы - частицы с нулевой массой (фотон , глюон).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина

Все элементарные частицы делятся на два класса:

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

  • Адроны - частицы, участвующие во всех видах фундаментальных взаимодействий . Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны - адроны с целым спином , то есть являющиеся бозонами ;
    • барионы - адроны с полуцелым спином, то есть фермионы . К ним, в частности, относятся частицы, составляющие ядро атома , - протон и нейтрон .

Фундаментальные (бесструктурные) частицы

  • Лептоны - фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10 −18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны , мюоны , тау-лептоны) и не наблюдалось для нейтрино . Известны 6 типов лептонов.
  • Кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон - частица, переносящая электромагнитное взаимодействие ;
    • восемь глюонов - частиц, переносящих сильное взаимодействие ;
    • три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие ;
    • гравитон - гипотетическая частица, переносящая гравитационное взаимодействие . Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц .

Размеры элементарных частиц

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10 −15 м , что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц - калибровочных бозонов, кварков и лептонов - в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10 −18 м ) (см. пояснение ). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной , равной 1,6·10 −35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет , представляющий частицу как суперпозицию точно локализованных квантовых состояний , всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими - например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц - фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов , которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны , которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов , ~3×10 −18 м , а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10 −15 м ), выступающего здесь как переносчик взаимодействия.

История

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи . Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков .

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные частицы» .

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон , глюоны , W - и Z -бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса , отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью - например, такие, как гравитон (частица, гипотетически переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу .

Фермионы

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них - кварки . Другие шесть - лептоны , три из которых являются нейтрино , а оставшиеся три несут единичный отрицательный заряд: электрон , мюон и тау-лептон .

Поколения частиц
Первое поколение Второе поколение Третье поколение
Электрон : e − Мюон : μ − Тау-лептон : τ −
Электронное нейтрино : ν e Мюонное нейтрино : ν μ Тау-нейтрино : ν τ {\displaystyle \nu _{\tau }}
u-кварк («верхний»): u c-кварк («очарованный»): c t-кварк («истинный»): t
d-кварк («нижний»): d s-кварк («странный»): s b-кварк («прелестный»): b

Античастицы

Также существуют 12 фермионных античастиц, соответствующих вышеуказанным двенадцати частицам.

Античастицы
Первое поколение Второе поколение Третье поколение
позитрон : e + Положительный мюон: μ + Положительный тау-лептон: τ +
Электронное антинейтрино: ν ¯ e {\displaystyle {\bar {\nu }}_{e}} Мюоное антинейтрино: ν ¯ μ {\displaystyle {\bar {\nu }}_{\mu }} Тау-антинейтрино: ν ¯ τ {\displaystyle {\bar {\nu }}_{\tau }}
u -антикварк: u ¯ {\displaystyle {\bar {u}}} c -антикварк: c ¯ {\displaystyle {\bar {c}}} t -антикварк: t ¯ {\displaystyle {\bar {t}}}
d -антикварк: d ¯ {\displaystyle {\bar {d}}} s -антикварк: s ¯ {\displaystyle {\bar {s}}} b -антикварк: b ¯ {\displaystyle {\bar {b}}}

Кварки

Кварки и антикварки никогда не были обнаружены в свободном состоянии - это объясняется явлением

Из чего состоят ядра? Чем части ядра удерживаются вместе? Обнаружено, что существуют силы огромной величины, которые и удерживают составные части ядра. Когда эти силы высвобождаются, то выделяемая энергия по сравнению с химической энергией огромна, это все равно, что сравнить взрыв атомной бомбы со взрывом тротила. Объясняется это тем, что атомный взрыв вызван изменениями внутри ядра, тогда как при взрыве тротила перестраиваются лишь электроны на внешней оболочке атома.

Так каковы же те силы, которыми нейтроны и протоны скреплены в ядре?

Электрическое взаимодействие связывают с частицей - фотоном. Аналогично этому Юкава предположил, что силы притяжения между протоном и нейтроном обладают полем особого рода, а колебания этого поля ведут себя как частицы. Значит, не исключено, что, помимо нейтронов и протонов, в мире существуют некоторые иные частицы. Юкава сумел вывести свойства этих частиц из уже известных характеристик ядерных сил. Например, он предсказал, что они должны иметь массу, в 200- 300 раз большую, чем электрон. И-о, чудо!- в космических лучах как раз открыли частицу с такой массой! Впрочем, чуть погодя выяснилось, что это совсем не та частица. Назвали ее μ-мезон, или мюон.

И все же несколько попозже, в 1947 или 1948г., обнаружилась частица-π-мезон, или пион,- удовлетворявшая требованиям Юкавы. Выходит, чтобы получить ядерные силы, к протону и нейтрону надо добавить пион. «Прекрасно! - воскликнете вы.- С помощью этой теории мы теперь соорудим квантовую ядродинамику, и пионы послужат тем целям, ради которых их ввел Юкава; посмотрим, заработает ли эта теория, и если да, то объясним все». Напрасные надежды! Выяснилось, что расчеты в этой теории столь сложны, что никому еще не удалось их проделать и извлечь из теории какие-либо следствия, никому не выпала удача сравнить ее с экспериментом. И тянется это уже почти 20 лет!

С теорией что-то не клеится; мы не знаем, верна она или нет; впрочем, мы уже знаем, что в ней чего-то не достает, что какие-то неправильности в ней таятся. Покуда мы топтались вокруг теории, пробуя вычислить следствия, экспериментаторы за это время кое-что открыли. Ну, тот же μ-мезон, или мюон. А мы до сей поры не знаем, на что он годится. Опять же, в космических лучах отыскали множество «лишних» частиц. К сегод¬няшнему дню их уже свыше 30, а связь между ними все еще трудно ухватить, и непонятно, чего природа от них хочет и кто из них от кого зависит. Перед нами все эти частицы пока не предстают как разные проявления одной и той же сущности, и тот факт, что имеется куча разрозненных частиц, есть лишь отражение наличия бессвязной информации без сносной теории. После неоспоримых успехов квантовой электродинамики - какой-то набор сведений из ядерной физики, обрывки знаний, полуопытных-полутеоретических. Задаются, скажем, характером взаимодействия протона с нейтроном и смотрят, что из этого выйдет, не понимая на самом деле, откуда эти силы берутся. Сверх описанного никаких особых успехов не произошло.


Но химических элементов ведь тоже было множество, и внезапно между ними удалось увидеть связь, выраженную периодической таблицей Менделеева. Скажем, калий и натрий - вещества, близкие по химическим свойствам,- в таблице попали в один столбец. Так вот, попробовали соорудить таблицу типа таблицы Менделеева и для новых частиц. Одна подобная таблица была предложена независимо Гелл-Манном в США и Нишиджимой в Японии. Основа их классификации - новое число, наподобие электрического заряда. Оно присваивается каждой частице и называется ее «странностью» S. Число это не меняется (так же как электрический заряд) в реакциях, производимых ядерными силами.

В табл. 2.2 приведены новые частицы. Мы не будем пока подробно говорить о них. Но из таблицы по крайней мере видно, как мало мы еще знаем. Под символом каждой частицы стоит ее масса, выраженная в определенных единицах, называемых мегаэлектронвольт, или Мэв (1 Мэв-это 1,782*10 -27 г ). Не будем входить в исторические причины, заставившие ввести эту единицу. Частицы помассивнее стоят в таблице повыше. В одной колонке стоят частицы одинакового электрического заряда, нейтральные - посерединке, положительные - направо, отрицательные - налево.

Частицы подчеркнуты сплошной линией, «резонансы» - штрихами. Некоторых частиц в таблице нет совсем: нет фотона и гравитона, очень важных частиц с нулевыми массой и зарядом (они не попадают в барион-мезон-лептонную схему классификации), нет и кое-каких новейших резонансов (φ, f, Y* и др.). Античастицы мезонов в таблице приводятся, а для античастиц лептонов и барионов надо было бы составить новую таблицу, сходную с этой, но только зеркально отраженную относительно нулевой колонки. Хотя все частицы, кроме электрона, нейтрино, фотона, гравитона и протона, неустойчивы, продукты их распада написаны только для резонансов. Странность лептонов тоже не написана, так как это понятие к ним неприменимо - они не взаимодействуют сильно с ядрами.

Частицы, стоящие вместе с нейтроном и протоном, называют барионами. Это «лямбда» с массой 1115,4 Мэв и три другие-«сигмы», называемые сигма-минус, сигма-нуль, сигма-плюс, с почти одинаковыми массами. Группы частиц почти одинаковой массы (отличие на 1-2%) называются мулътиплетами. У всех частиц в мультиплете странность одинакова. Первый мультиплет - это пара (дублет) протон - нейтрон, потом идет синглет (одиночка) лямбда, потом - триплет (тройка) сигм, дублет кси и синглет омега-минус. Начиная с 1961 г., начали открывать новые тяжелые частицы. Но частицы ли они? Живут они так мало (распадаются, едва возникнув), что неизвестно, назвать ли их новыми частицами или считать «резонансным» взаимодействием между их продуктами распада, скажем, Λ и π при некоторой фиксированной энергии.

Для ядерных взаимодействий, кроме барионов, необходимы другие частицы - мезоны. Это, во-первых, три разновидности пионов (плюс, нуль и минус), образующие новый триплет. Найдены и новые частицы - К-мезоны (это дублет К + и К 0 ). У каждой частицы бывает античастица, если только частица не оказывается своей собственной античастицей, скажем π + и π - - античастицы друг друга, a π 0 -сам себе античастица. Античастицы и К - с К + , и К 0 с К 0 `. Кроме того, после 1961 г. мы начали открывать новые мезоны, или вроде-мезоны, распадающиеся почти мгновенно. Одна такая диковинка называется омега, ω, ее масса 783, она превращается в три пиона; есть и другое образование, из которого получается пара пионов.

Подобно тому как из очень удачной таблицы Менделеева выпали некоторые редкие земли, точно так же из нашей таблицы выпадают некоторые частицы. Это те частицы, которые с ядрами сильно не взаимодействуют, к ядерному взаимодействию отношения не имеют и между собой сильно тоже не взаимодействуют (под сильным понимается мощный тип взаимодействия, дающего атомную анергию). Называются эти частицы лептоны; к ним относятся электрон (очень легкая частица с массой 0,51 Мэв) и мюон (с массой в 206 раз больше массы электрона). Насколько мы можем судить по всем экспериментам, электрон и мюон различаются только массой. Все свойства мюона, все его взаимодействия ничем не отличаются от свойств электрона - только один тяжелее другого. Почему он тяжелее, какая ему от этого польза, мы не знаем. Кроме них, есть еще нейтральный лептой - нейтрино, с массой нуль. Более того, сейчас известно, что есть два сорта нейтрино: одни, связанные с электронами, а другие - с мюонами.

И наконец, существуют еще две частицы, тоже с ядрами не взаимодействующие. Одну мы знаем уже - это фотон; а если поле тяготения также обладает квантовомеханическими свойствами (хотя пока квантовая теория тяготения не разработана), то, возможно, существует и частица гравитон с массой нуль.

Что такое «масса нуль»? Массы, которые мы приводили, это массы покоящихся частиц. Если у частицы масса нуль, то это значит, что она не смеет покоиться. Фотон никогда не стоит на месте, скорость его равна всегда 300 000 км/сек. Мы с вами еще разберемся в теории относительности и попытаемся глубже вникнуть в смысл понятия массы.

Итак, мы встретились с целым строем частиц, которые все вместе, по-видимому, являются очень фундаментальной частью вещества. К счастью, эти частицы не все отличаются по своему взаимодействию друг от друга. Видимо, есть только четыре типа взаимодействий между ними. Перечислим их в порядке убывающей силы: ядерные силы, электрические взаимодействия, (β-распадное взаимодействие и тяготение. Фотон взаимодействует со всеми заряженными частицами с силой, характеризуе¬мой некоторым постоянным числом 1/137. Детальный закон этой связи известен - это квантовая электродинамика. Тяготение взаимодействует со всякой энергией, но чрезвычайно слабо, куда слабее, чем электричество. И этот закон известен. Потом идут так называемые слабые распады: β-распад, из-за которого нейтрон распадается довольно медленно на протон, электрон и нейтрино. Тут закон выяснен лишь частично. А так называемое сильное взаимодействие (связь мезона с барионом) обладает по этой шкале силой, равной единице, а закон его совершенно темен, хоть и известны кое-какие правила, вроде того, что количество барионов ни в одной реакции не меняется.

Положение, в котором находится современная физика, следует считать ужасным. Я бы подытожил его такими словами: вне ядра мы, видимо, знаем все; внутри него справедлива квантовая механика, нарушений ее принципов там не найдено.

Сцена, на которой действуют все наши знания,- это релятивистское пространство-время; не исключено, что с ним связано и тяготение. Мы не знаем, как началась Вселенная, и мы ни разу не ставили опытов с целью точной проверки наших представлений о пространстве-времени на малых расстояниях, мы только знаем, что вне этих расстояний наши воззрения безошибочны. Можно было бы еще добавить, что правила игры - это принципы квантовой механики; и к новым частицам они, насколько нам известно, приложимы не хуже, чем к старым. Поиски происхождения ядерных сил приводят нас к новым частицам; но все эти открытия вызывают только замешательство. У нас нет полного понимания их взаимных отношений, хотя в некоторых поразительных связях между ними мы уже убедились. Мы, видимо, постепенно приближаемся к пониманию мира заатомных частиц, но неизвестно, насколько далеко мы ушли по этому пути.

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9 10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Альфа(а)-лучи - положительно заряженные ионы гелия (Не++), вылетающие из атомных ядер со скоростью 14 000-20 000 км/час. Энергия частиц составляет 4-9 MeV. а-излучение наблюдается, как правило, у тяжелых и преимущественно естественных радиоактивных элементов (радий, торий и др.). Величина пробега а-частицы в воздухе возрастает с увеличением энергии а-излучения.

Так, например, а-частицы тория (Th232), имеющие энергию 3,9в MeV, в воздухе пробегают 2,6 см, а а-частицы радия С с энергией 7,68 MeV имеют пробег 6,97 см. Минимальная толщина поглотителя, необходимая для полного поглощения частиц, называется пробегом этих частиц в данном веществе. Пробеги а-частиц в воде и ткани составляют величины 0,02-0,06 мм.

а-частицы поглощаются полностью листком папиросной бумаги или тонким слоем алюминия. Одним из важнейших свойств а-излучения является сильное ионизирующее действие. На пути движения а-частица в газах образует огромное количество ионов. Например, в воздухе при 15° и 750 мм давления одна а-частица дает 150 000-250000 пар ионов в зависимости от ее энергии.

Так, например,удельная ионизация в воздухе а-частиц от радона , имеющих энергию 5,49 MeV, составляет 2500 пар ионов на 1 мм пути. Плотность ионизации в конце пробега а-частиц возрастает, поэтому поражаемость клеток в конце пробега примерно в 2 раза больше, чем в начале пробега.

Физические свойства а-частиц определяют особенности их биологического действия на организм и способы защиты от этого вида излучения. Внешнее облучение а-лучами не представляет опасности, так как достаточно удалиться от источника на несколько (10-20) сантиметров или установить простейший экран из бумаги, ткани, алюминия и других обычных материалов, чтобы излучение было полностью поглощено.

Наибольшую опасность а-лучи представляют при попадании и отложении внутри радиоактивных а-излучающих элементов. В этих случаях происходит непосредственное облучение а-лучами клеток и тканей организма.

Бета(b)-лучи - поток электронов, выбрасываемых из атомных ядер со скоростью приблизительно 100 000-300 000 км/сек. Максимальная энергия р-частиц находится в пределах от 0,01 до 10 MeV. Заряд b-частицы по знаку и величине равен заряду электрона. Радиоактивные превращения типа b-распада широко распространены среди естественных и искусственных радиоактивных элементов.

b-лучи обладают значительно большей проникающей способностью Но сравнению с а-лучами. В зависимости от энергии b-лучей их пробег в воздухе составляет от долей миллиметра до нескольких метров. Так, пробег b-частиц с энергией 2-3 MeV в воздухе составляет 10-15 м, а в воде и ткани измеряется миллиметрами. Например, пробег b-частиц, Испускаемых радиоактивным фосфором (Р32) с максимальной энергией 1,7 MeV, в ткани равен 8 мм.

b-частица с энергией , равной 1 MeV, может образовать на своем пути в воздухе около 30 000 пар ионов. Ионизирующая способность b-частиц в несколько раз меньше, чем таковая а-частиц той же энергии.

Воздействие b-лучей на организм может проявляться как при внешнем, так и при внутреннем облучении, в случае попадания в организм активных веществ, излучающих b-частицы. Для защиты от b-лучей при внешнем облучении необходимо применение экранов из материалов (стекло, алюминий, свинец и др.). Интенсивность излучения можно снизить увеличением расстояния от источника.

Естественный радиоактивный b-распад заключается в самопроизвольном распаде ядер с испусканием b-частиц - электронов. Правило смещения для

естественного (электронного) b-распада описывается выражением:

Z X A ® Z + 1 Y A + - 1 e 0 . (264)

Исследование энергетического спектра b - частиц показало, что, в отличие от спектра a-частиц, b-частицы имеют непрерывный спектр от 0 до Е max . При открытии b-распада необходимо было объяснить следующее:

1) почему материнское ядро всегда теряет энергию Е max , а энергия b-частиц может быть меньше Е max ;

2) как образуется -1 e 0 при b-распаде?, ведь в состав ядра электрон не входит;

3) если при b-распаде вылетает - 1 e 0 , то нарушается закон сохранения момента импульса: число нуклонов (А ) не изменяется, но электрон обладает спином ½ħ, следовательно, в правой части соотношения (264) спин отличается от спина левой части соотношения на ½ ħ.

Для выхода из затруднения в 1931г. Паули предположил, что кроме - 1 e 0 при b-распаде вылетает ещё одна частица – нейтрино (о о), масса которой много меньше массы электрона, заряд равен 0 и спин s = ½ ħ. Эта частица уносит энергию Е max - Е β и обеспечивает выполнение законов сохранения энергии и импульса. Экспериментально о о было обнаружено в 1956 году. Трудности обнаружения о о связаны с его малой массой и нейтральностью. В связи с этим о о может проходить огромные расстояния до поглощения веществом. В воздухе один акт ионизации под действием нейтрино происходит на расстоянии около 500 км. Пробег о о с энергией 1 МэВ в свинце ~10 18 м. о о можно обнаружить косвенным путём с использованием закона сохранения импульса при b-распаде: сумма векторов импульсов - 1 e 0 , о о и ядра отдачи должна быть равна 0. Опыты подтвердили это ожидание.

Так как при b-распаде число нуклонов не изменяется, а заряд увеличивается на 1, единственное объяснение b-распада может быть следующее: один из o n 1 ядра превращается в 1 р 1 с испусканием - 1 e 0 и нейтрино:

o n 1 → 1 р 1 + - 1 e 0 + о о (265)

Установлено, что при естественном b-распаде испускается электронное антинейтрино - о о. Энергетически реакция (265) выгодна, так как масса покоя o n 1 больше массы покоя 1 р 1 . Следовало ожидать, что и свободный o n 1 радиоактивен. Это явление действительно было обнаружено в 1950 году в потоках нейтронов больших энергий, возникающих в ядерных реакторах, и служит подтверждением механизма b-распада по схеме (262).

Рассмотренный b-распад называется электронным. В 1934 г. Фредерик и Жолио-Кюри обнаружили искусственный позитронный b-распад, при котором из ядра вылетает античастица электрона – позитрон и нейтрино (см. реакцию (263)). В этом случае один из протонов ядра превращается в нейтрон:


1 р 1 → o n 1 + + 1 e 0 + о о (266)

Для свободного протона такой процесс невозможен, по энергетическим соображениям, т.к. масса протона меньше массы нейтрона. Однако в ядре протон может заимствовать требуемую энергию от других нуклонов ядра. Таким образом реакция (344) может протекать как внутри ядра, так и для свободного нейтрона, а реакция (345) происходит только внутри ядра.

Третий вид b-распада – К-захват. В этом случае ядро спонтанно захватывает один из электронов К-оболочки атома. При этом один из протонов ядра превращается в нейтрон по схеме:

1 р 1 + - 1 e 0 → o n 1 + о о (267)

При этом виде b-распада из ядра вылетает только одна частица - о о. К-захват сопровождается характеристическим рентгеновским излучением.

Таким образом при всех видах b-распада, протекающим по схемам (265) – (267), выполняются все законы сохранения: энергии, массы, заряда, импульса, момента импульса.

Превращения нейтрона в протон и электрон и протона в нейтрон и позитрон обусловлены не внутриядерными силами, а силами, действующими внутри самих нуклонов. Связанные с этими силами взаимодействия называются слабыми. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного. О силе взаимодействия можно судить по скорости протекания процессов, которые оно вызывает при энергиях ~1 ГэВ, характерных для физики элементарных частиц. При таких энергиях процессы, обусловленные сильным взаимодействием, происходят за время ~10 -24 с, электромагнитный процесс за время ~10 -21 с, а время, характерное для процессов, происходящих за счёт слабого взаимодействия, гораздо больше: ~10 -10 с, так что в мире элементарных частиц слабые процессы протекают чрезвычайно медленно.

При прохождении b-частиц через вещество они теряют свою энергию. Скорость b-электронов, возникающих при b-распаде, может быть очень велика – сравнима со скоростью света. Их энергетические потери в веществе происходят за счёт ионизации и тормозного излучения. Тормозное излучение является основным источником потерь энергии для быстрых электронов , в то время как для протонов и более тяжёлых заряженных ядер тормозные потери несущественны. При малых энергиях электронов основным источником потерь энергии являются ионизационные потери. Существует некоторая критическая энергия электронов, при которой тормозные потери становятся равными ионизационным. Для воды она равна около 100 МэВ, для свинца – около 10 МэВ, для воздуха – несколько десятков МэВ. Поглощение потока b-частиц с одинаковыми скоростями в однородном веществе подчиняется экспоненциальному закону N = N 0 e - m x , где N 0 и N – число b-частиц на входе и выходе слоя вещества толщиной х , m - коэффициент поглощения. b _ излучение сильно рассеивается в веществе, поэтому m зависит не только от вещества, но и от размеров и формы тел, на которые падает b _ излучение. Ионизационная способность b-лучей невелика, примерно в 100 раз меньше чем у a-частиц. Поэтому и проникающая способность b-частиц намного больше, чем у a-частиц. В воздухе пробег b-частиц может достигать 200 м, в свинце до 3 мм. Так как b-частицы обладают очень малой массой и единичным зарядом, то их траектория движения в среде – ломаная линия.

12.4.6 γ - лучи

Как отмечалось в п.12.4.1, γ - лучи представляют собой жёсткое электромагнитное излучение с ярко выраженными корпускулярными свойствами. Понятия γ-распад не существует. γ - лучи сопровождают a- и b-распад всегда, когда дочернее ядро оказывается в возбуждённом состоянии. Для каждого сорта атомных ядер имеется дискретный набор частот g-излучений, определяемый совокупностью энергетических уровней в атомном ядре. Итак, a- и g-частицы имеют дискретные спектры излучения, а

b-частицы - сплошные спектры. Наличие линейчатого спектра γ- и a- лучей имеет принципиальное значение и является доказательством того, что атомные ядра могут находиться в определённых дискретных состояниях.

Поглощение γ - лучей веществом происходит по закону:

I = I 0 e - m x , (268)

где I и I 0 - интенсивности γ - лучей до и после прохождения через слой вещества толщиной х ; μ – коэффициент линейного поглощения. Поглощение γ - лучей веществом происходит, в основном, за счёт трёх процессов: фотоэффекта, комптоновского эффекта и образования электронно-позитронных (e + e - ) пар. Поэтому μ можно представить в виде суммы:

μ = μ ф + μ к + μ п. (269)

При поглощении γ – кванта электронной оболочкой атомов происходит фотоэффект, в результате которого электроны вырываются из внутренних слоёв электронной оболочки. Этот процесс называется фотоэлектрическим поглощением γ - лучей. Расчёты показывают, он существенен при энергиях γ - квантов ≤ 0,5 МэВ. Коэффициент поглощения μ ф зависит от атомного номера Z вещества и длины волны γ - лучей. По мере всё большего увеличения энергии γ - квантов по сравнению с энергией связи электронов в атомах, в молекулах или в кристаллической решётке вещества взаимодействие γ - фотонов с электронами всё более приближается по своему характеру к взаимодействию со свободными электронами. В этом случае происходит комптоновское рассеяние γ - лучей на электронах, характеризуемое коэффициентом рассеяния μ к.

При увеличении энергии γ - квантов до значений, превышающих удвоенную энергию покоя электрона 2m o c 2 (1,022 МэВ), возникает аномально большое поглощение γ - лучей, связанное с образованием электронно-позитронных пар, особенно в тяжёлых веществах. Этот процесс характеризуется коэффициентом поглощения μ п .

Само γ-излучение обладает относительно слабой ионизирующей способностью. Ионизацию среды производят, в основном, вторичные электроны, появляющиеся при всех трёх процессах. γ - лучи - одно из наиболее проникающих излучений. Например, для более жёстких γ - лучей толщина слоя половинного поглощения равна в свинце 1,6 см, в железе – 2,4 см, в алюминии – 12 см, в земле – 15 см.