Какая сила действует на проводник с током. Силы, действующие на проводник

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

  • Сила Ампера - это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F :

Пропорционален длине проводника l , находящегося в магнитном поле; пропорционален модулю индукции магнитного поля B ; пропорционален силу тока в проводнике I ; зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля \(~\vec B\).

модуль силы Ампера равен произведению модуля индукции магнитного поля B , в котором находится проводник с током, длины этого проводника l , силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля

\(~F_A = I \cdot B \cdot l \cdot \sin \alpha\) ,

  • Этой формулой можно пользоваться: если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой; если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки : если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направление тока (I ), тогда отогнутый на 90° большой палец укажет направление силы Ампера (\(~\vec F_A\)) (рис. 1, а, б).

Рис. 1

Поскольку величина B ∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной проводнику с током, \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой - перпендикулярная составляющая к поверхности проводника должна входить в открытую ладонь левой руки.

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, устройства для записи звука в магнитофонах, телефоны и микрофоны - во всех этих и во множестве других приборов и устройств используется взаимодействие токов, токов и магнитов и т.д.

Сила Лоренца

Выражение для силы, с которой магнитное поле действует на движущийся заряд, впервые получил голландский физик Хендрик Антон Лоренц (1895 г.). В его честь эта сила называется силой Лоренца.

  • Сила Лоренца - это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу.

Модуль силы Лоренца равен произведению модуля индукции магнитного поля \(~\vec B\), в котором находится заряженная частица, модуля заряда q этой частицы, ее скорости υ и синуса угла между направлениями скорости и вектора индукции магнитного поля

\(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\).

Для определения направления силы Лоренца применяют правило левой руки : если левую руку расположить так, чтобы вектор индукции магнитного поля (\(~\vec B\)) входил в ладонь, четыре вытянутых пальца указывали направления скорости движения положительно заряженной частицы (\(~\vec \upsilon\)), тогда отогнутый на 90° большой палец укажет направление силы Лоренца (\(~\vec F_L\)) (рис. 3, а). Для отрицательной частицы четыре вытянутых пальца направляют против скорости движения частицы (рис. 3, б).

Рис. 3

Поскольку величина B ∙sin α представляет собой модуль компоненты вектора индукции, перпендикулярной скорости заряженной частицы, \(~\vec B_{\perp}\), то ориентацию ладони можно определять именно этой компонентой - перпендикулярная составляющая к скорости заряженной частицы должна входить в открытую ладонь левой руки.

Так как сила Лоренца перпендикулярна вектору скорости частицы, то она не может изменить значение скорости, а изменяет только ее направление и, следовательно, не совершает работы.

Движение заряженной частицы в магнитном поле

1. Если скорость υ заряженной частицы массой m направлена вдоль вектора индукции магнитного поля, то частица будет двигаться по прямой с постоянной скоростью (сила Лоренца F L = 0, т.к. α = 0°) (рис. 4, а).

Рис. 4

2. Если скорость υ заряженной частицы массой m перпендикулярна вектору индукции магнитного поля, то частица будет двигаться по окружности радиуса R , плоскость которой перпендикулярна линиям индукции (рис. 4, б). Тогда 2-ой закон Ньютона можно записать в следующем виде:

\(~m \cdot a_c = F_L\) ,

где \(~a_c = \dfrac{\upsilon^2}{R}\) , \(~F_L = q \cdot B \cdot \upsilon \cdot \sin \alpha\) , α = 90°, т.к. скорость частицы перпендикулярна вектору магнитной индукции.

\(~\dfrac{m \cdot \upsilon^2}{R} = q \cdot B \cdot \upsilon\) .

3. Если скорость υ заряженной частицы массой m направлена под углом α (0 < α < 90°) к вектору индукции магнитного поля, то частица будет двигаться по спирали радиуса R и шагом h (рис. 4, в).

Действие силы Лоренца широко используют в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и мониторов;
  2. ускорителях заряженных частиц;
  3. экспериментальных установках для осуществления управляемой термоядерной;
  4. МГД-генераторах

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 321-322, 324-327.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. - 2-е изд., исправленное. - Минск: Нар. асвета, 2008. - С. 157-164.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника - в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) - разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп - магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Один из самых важных разделов современной физики - это и все связанные с ними определения. Именно этим взаимодействием объясняются все электрические явления. Теория электричества охватывает многие другие разделы, включая и оптику, поскольку свет представляет собой электромагнитное излучение. В этой статье мы попытаемся объяснить суть электрического тока и силы магнитной на доступном, понятном языке.

Магнитизм - основа основ

В детстве взрослые показывали нам различные фокусы с использованием магнитов. Эти удивительные фигурки, которые притягиваются к друг другу и могут притягивать к себе мелкие игрушки, всегда радовали детский глаз. Что же такое магниты и каким образом магнитная сила действует на железные детали?

Объясняя научным языком, придется обратиться к одному из основных законов физики. Согласно закону Кулона и специальной теории относительности, на заряд действует определенная сила, которая прямо пропорционально зависит от скорости самого заряда (v). Именно это взаимодействие и называется силой магнитной.

Физические особенности

Вообще следует понимать, что любые возникают только при движении зарядов внутри проводника или при наличии в них токов. При изучении магнитов и самого определения магнитизма следует понимать, что они тесно взаимосвязаны с явлением электрического тока. Поэтому давайте разберемся в сути электрического тока.

Электрическая сила - это та сила, которая действует между электроном и протоном. Она численно намного больше значения гравитационной силы. Она порождается электрическим зарядом, а точнее, ее движением внутри проводника. Заряды же, в свою очередь, бывают двух видов: положительные и отрицательные. Как известно, положительно заряженные частицы притягиваются к отрицательно заряженным. Однако одинаковые по знаку заряды имеют свойство отталкиваться.

Так вот, когда в проводнике начинают двигаться эти самые заряды, в нем возникает электрический ток, который объясняется как отношение количества заряда, протекающего через проводник в 1 секунду. Сила, действующая на проводник с током в магнитном поле, называется силой Ампера и находится по правилу "левой руки".

Эмпирические данные

Столкнуться с магнитным взаимодействием можно в повседневной жизни, когда имеешь дело с постоянными магнитами, катушками индуктивности, реле или электрическими моторами. У каждого из них присутствует магнитное поле, которое невидимо для глаз. Проследить за ним можно только по его действию, которое оно оказывает на движущиеся частицы и на намагниченные тела.

Сила, действующая на проводник с током в магнитном поле, была изучена и описана французским физиком Ампером. В честь него названа не только эта сила, но еще и величина силы тока. В школе законы Ампера определяются как правила "левой" и "правой" руки.

Характеристики магнитного поля

Следует понимать, что магнитное поле всегда возникает не только вокруг источников электрического тока, но и вокруг магнитов. Его обычно изображают с помощью магнитных силовых линий. Графически это выглядит, как если бы на магнит положили лист бумаги, а сверху насыпали опилок железа. Они примут точно такой же вид, как на картинке снизу.

Во многих популярных книгах по физике сила магнитная вводится как результат экспериментальных наблюдений. Она считается отдельной фундаментальной силой природы. Такое представление ошибочно, на самом деле существование магнитной силы следует из принципа относительности. Ее отсутствие привело бы к нарушению этого принципа.

В магнитной силе нет ничего фундаментального - она представляет собой просто релятивисткое следствие закона Кулона.

Применение магнитов

Если верить легенде, в первом веке нашей эры на острове Магнесия древними греками были обнаружены необычные камни, которые обладали удивительными свойствами. Они притягивали к себе любые вещи, сделанные из железа или стали. Греки стали вывозить их с острова и изучать их свойства. А когда камни попали в руки уличных фокусников, то они стали незаменимыми помощниками во всех их выступлениях. Используя силы магнитных камешков, им удавалось создавать целое фантастическое шоу, которое привлекало множество зрителей.

По мере того как камни распространялись по всем частям света, о них стали ходить легенды и различные мифы. Однажды камни оказались в Китае, где их назвали в честь острова, на котором они были найдены. Магниты стали предметом изучения всех великих ученых того времени. Было замечено, что если положить магнитный железняк на деревянный поплавок, зафиксировать, а затем повернуть его, то он попытается вернуться в исходное положение. Проще говоря, магнитная сила, действующая на него, будет поворачивать железняк определенным образом.

Используя это ученые придумали компас. На круглую форму, изготовленную из дерева или пробки, были начерчены два основных полюса и установлена маленькая магнитная стрелка. Эту конструкцию опускали в небольшую посуду, наполненную водой. С течением времени модели компаса усовершенствовались и становились более точными. Ими пользуются не только мореплаватели, но и обычные туристы, которые любят изучать пустынные и горные местности.

Ученый Ханс Эрстед практически всю свою жизнь посвятил электричеству и магнитам. Однажды во время лекции в университете он показал своим студентам следущий опыт. Через обычный медный проводник он пропустил ток, через некоторое время проводник нагрелся и начал гнуться. Это было явлением теплового свойства электрического тока. Студенты продолжили эти опыты, и один из них заметил, что электрический ток обладает еще одним интересным свойством. Когда в проводнике протекал ток, стрелка находящегося рядом компаса начинала понемногу отклоняться. Изучая это явление более подробно, ученый обнаружил так называемую силу, действующую на проводник в магнитном поле.

Токи Ампера в магнитах

Учеными были предприняты попытки найти магнитный заряд, однако изолированный магнитный полюс не удалось обнаружить. Объясняется это тем, что, в отличие от электрических, магнитных зарядов не существует. Ведь иначе можно было бы отделить единичный заряд, просто отломав один из концов магнита. Однако при этом на другом конце образуется новый противоположный полюс.

В действительности любой магнит представляет собой соленоид, по поверхности которого циркулируют внутриатомные токи, они называются токами Ампера. Получается, что магнит можно рассматривать как металлический стержень, по которому циркулирует постоянный ток. Именно по этой причине введение в соленоид железного сердечника значительно увеличивает магнитное поле.

Энергия магнита или ЭДС

Как и любое физическое явление, магнитное поле обладает энергией, которую затрачивает на перемещение заряда. Существует понятие ЭДС (электродвижущая сила), она определяется как работа по перемещению единичного заряда из точки А 0 в точку А 1 .

Описывается ЭДС законами Фарадея, которые применяются в трех различных физических ситуациях:

  1. Проводимый контур движется в создаваемом однородном магнитном поле. В этом случае говорят о магнитной ЭДС.
  2. Контур покоится, но движется сам источник магнитного поля. Это уже явление электрического ЭДС.
  3. И, наконец, контур и источник магнитного поля неподвижны, но меняется ток, который создает магнитное поле.

Численно ЭДС по формуле Фарадея равно: ЭДС = W/q.

Следовательно, электродвижущая сила не является силой в буквальном смысле, так как она измеряется в Джоулях на Кулон или в Вольтах. Получается, что она представляет собой энергию, которая сообщается электрону проводимости при обходе цепи. Каждый раз, совершая очередной обход вращающейся рамки генератора, электрон приобретает энергию, численно равную ЭДС. Эта дополнительная энергия может не только передаваться при столкновениях атомов внешней цепи, но и выделяться в виде Джоулева тепла.

Сила Лоренца и магниты

Сила, действующая на ток в магнитном поле, определяется по следующей формуле: q*|v|*|B|*sin a (произведение заряда магнитного поля, модули скорости этой же частицы, вектора индукции поля и синуса угла между их направлениями). Силу, которая действует на движущийся единичный заряд в магнитном поле, принято называть силой Лоренца. Интересен тот факт, что для этой силы недействителен 3-й закон Ньютона. Она подчиняется лишь именно поэтому все задачи по нахождению силы Лоренца следует решать, исходя из него. Давайте разберемся, как можно определить силу магнитного поля.

Задачи и примеры решений

Для нахождения силы, которая возникает вокруг проводника с током, необходимо знать несколько величин: заряд, его скорость и значение индукции возникающего магнитного поля. Следующая задача поможет понять, как вычислять силу Лоренца.

Определить силу, действующую на протон, который движется со скоростью 10 мм/с в магнитном поле индукцией 0,2 Кл (угол между ними 90 о, так как заряженная частица движется перпендикулярно линиям индукции). Решение сводится к нахождению заряда. Заглянув в таблицу заядов, мы обнаружим, что протон обладает зарядом в 1,6*10 -19 Кл. Далее вычисляем силу по формуле: 1,6*10 -19 * 10 * 0,2 * 1 (синус прямого угла равен 1) = 3,2*10 -19 Ньютонов.

Силы, действующие на проводник.

В электрическом поле на поверхность проводника, а именно здесь расположены электрические заряды, действуют со стороны поля определённые силы. Поскольку напряжённость электростатического поля на поверхности проводника имеет только нормальную составляющую, сила, действующая на элемент площади поверхности проводника, является перпендикулярной этому элементу поверхности. Выражение для рассматриваемой силы, отнесённой к величине площади элемента поверхности проводника, имеет вид:

(1)

где - внешняя нормаль к поверхности проводника, - поверхностная плотность электрического заряда на поверхности проводника. Для заряженной тонкой сферической оболочки растягивающие усилия могут вызвать напряжения в материале оболочки, превышающие предел прочности.

Интересно, что подобные соотношения были предметом исследований таких классиков науки как Пуассон и Лаплас в самом начале XIX века. В соотношении (1) недоумение вызывает множитель 2 в знаменателе. Действительно, а почему правильный результат получается делением пополам выражения ? Рассмотрим один частный случай (рис.1): пусть проводящий шар радиуса содержит на своей боковой поверхности электрический заряд . Поверхностную плотность электрического заряда рассчитать легко: Введём сферическую систему координат (), элемент боковой поверхности шара определим как . Заряд элемента поверхности можно вычислить по зависимости: . Суммарный электрический заряд кольца радиуса и шириной определяется выражением: . Расстояние от плоскости рассматриваемого кольца до полюса сферы (боковая поверхность шара) равно . Известно решение задачи об определении составляющей вектора напряжённости электростатического поля на оси кольца (принцип суперпозиции) в точке наблюдения, отстоящей от плоскости кольца на расстояние :

Вычислим суммарное значение напряжённости электростатического поля, создаваемого поверхностными зарядами, исключая элементарный заряд в окрестности полюса сферы:

Вспомним, что около заряженной проводящей сферы напряжённость внешнего электростатического поля равна

Оказывается, сила, действующая на заряд элемента поверхности заряженного проводящего шара, в 2 раза меньше, чем сила, действующая на такой же заряд, расположенный вблизи боковой поверхности шара, но вне его.

Суммарная сила, действующая на проводник, равна

(5)

Помимо силы со стороны электростатического поля, проводник подвергается действию момента сил

(6)

где - радиус-вектор элемента поверхности dS проводника.

На практике часто оказывается более удобным силовое воздействие электростатического поля на проводник рассчитывать путем дифференцирования электрической энергии системы W. Сила, действующая на проводник, в соответствии с определением потенциальной энергии, равна

а величина проекции вектора момента сил на некоторую ось равна

где - угол поворота тела как целого вокруг рассматриваемой оси. Заметим, что приведенные выше формулы справедливы, если электрическая энергия W выражена через заряды проводников (источники поля!), а вычисление производных производится при постоянных значениях электрических зарядов.

В электрическом поле на поверхность проводника действуют со стороны поля определенные силы. Их легко вычислить следующим образом.

Плотность потока импульса в электрическом поле в пустоте определяется известным максвелловским тензором напряжений:

Сила же, действующая на элемент поверхности тела, есть не что иное, как поток «втекающего» в него извне импульса, т. е. равна (знак изменен в связи с тем, что вектор нормали направлен наружу от тела, а не внутрь него). Величина есть, следовательно, сила отнесенная к 1 см2 площади поверхности. Учитывая, что у поверхности металла напряженность Е имеет только нормальную составляющую, получим

или, вводя поверхностную плотность зарядов ,

Таким образом, на поверхности проводника действуют силы «отрицательного давления», направленного по внешней нормали к поверхности и по величине равного плотности энергии поля.

Полная сила F, действующая на проводник, получается интегрированием силы (5,1) по всей его поверхности:

Обычно, однако, более удобно вычислять эту величину, согласно общим правилам механики, путем дифференцирования энергии . Именно, сила, действующая на проводник вдоль координатной оси q, есть , где под производной надо понимать изменение энергии при параллельном смещении данного тела как целого вдоль оси q. При этом энергия должна быть выражена через заряды проводников (источников поля), и дифференцирование производится при постоянных зарядах. Отмечая это обстоятельство индексом , напишем

Аналогично, проекция на какую-либо ось полного действующего на проводник момента сил равна

где - угол поворота тела как целого вокруг данной оси.

Если же энергия выражена как функция потенциалов, а не зарядов проводников, то вопрос о вычислении с ее помощью сил требует особого рассмотрения. Дело в том, что для поддержания у проводника (при его перемещении) постоянного потенциала необходимо прибегнуть к помощи посторонних тел. Можно, например, поддерживать постоянный потенциал проводника путем соединения его с другим проводником, обладающим очень большой емкостью («резервуар зарядов»). Заряжаясь зарядом проводник отнимает его из резервуара, потенциал которого при этом не меняется ввиду его большой емкости. Меняется, однако, энергия резервуара, уменьшаясь на При заряжении всей системы проводников зарядами энергия соединенных с ними резервуаров изменится в сумме на . В величину же входит только энергия рассматриваемых проводников, но не энергия резервуаров. В этом смысле можно сказать, что относится к энергетически незамкнутой системе. Таким образом, для системы проводников, потенциалы которых поддерживаются постоянными, роль механической энергии играет не , а величина

Подставив сюда (2,2), находим, что отличаются только знаком:

Сила получается дифференцированием по q при постоянных потенциалах, т. е.

Таким образом, действующие на проводник силы можно получить дифференцированием как при постоянных зарядах, так и при постоянных потенциалах, с той лишь разницей, что производную надо брать в первом случае со знаком минус, а во втором - со знаком плюс.

Этот же результат можно было бы получить и более формальным путем, исходя из дифференциального тождества

в котором рассматривается как функция зарядов проводников и координаты этим тождеством выражается тот факт, что производные равны Переходя к переменным вместо получим отсюда

откуда и следует (5,7).

В конце § 2 была рассмотрена энергия проводника во внешнем однородном электрическом поле. Полная сила, действующая на незаряженный проводник в однородном поле, равна, разумеется, нулю. Но выражением энергии (2,14) можно воспользоваться для определения силы, действующей на проводник в квазиоднородном поле т. е. в поле, мало меняющемся на протяжении размеров тела. В таком поле в первом приближении все еще можно вычислить энергию по формуле (2,14), а сила F определится как градиент этой энергии:

Что же касается полного момента сил К, то он, вообще говоря, отличен от нуля уже и в однородном внешнем поле. По общим правилам механики К можно определить, рассматривая бесконечно малый виртуальный поворот тела; изменение энергии при таком повороте связано с К посредством , где - угол поворота. Поворот тела на угол в однородном поле эквивалентен повороту поля относительно тела на угол . Изменение поля при этом есть , а изменение энергии

Но , как это видно из сравнения формул (2,13) и (2,14). Поэтому откуда

в соответствии с обычным выражением, известным из теории поля в пустоте.

Если полные сила и момент, действующие на проводник, равны нулю, то проводник в поле остается неподвижным и на первый план выдвигаются эффекты, связанные с деформированием тела (так называемая электрострикция). Силы (5,1), действующие на поверхность проводника, приводят к изменению его формы и объема. При этом, ввиду растягивающего характера сил, объем тела увеличивается. Полное определение деформации требует решения уравнений теории упругости с заданным распределением сил (5,1) на поверхности тела. Если, однако, интересоваться только изменением объема, то задача может быть решена весьма просто.

Для этого надо учесть, что если деформация слаба (как это фактически имеет место при электрострикции), то влияние изменения формы на изменение объема является эффектом второго порядка малости. Поэтому в первом приближении изменение объема можно рассматривать как результат деформирования без изменения формы, т. е. как всестороннее растяжение под влиянием некоторого эффективного избыточного давления , равномерно распределенного по поверхности тела и заменяющего собой точное распределение согласно (5,1). Относительное изменение объема получается умножением АР на коэффициент всестороннего растяжения вещества. Давление