Теория хаоса. Chaos Theory (Теория хаоса) (Lorenz Poincaré) Теория хаоса суть

Психология. Теория хаоса

Фундаментальная природа вселенной всегда казалась человеку чрезвычайно сложной и немыслимо беспорядочной. Эту таинственную и непостижимую бездну назвали Хаосом. Вечная философия хаоса

Поэтичные индусы считали вселенную призрачной дымкой иллюзии, или майей. Парадоксальные буддисты говорили о пустоте слишком сложно, возможно, в триллионы раз сложнее, чем могла ухватить человеческая система обработки символьной информации (разум).

Китайский поэт и философ Лао-цзы уклончиво намекал, что ДАО - это вечно изменяющаяся и ускользающая со скоростью света тьма вещей, - хаос, бесформенность. Хаос и до сих пор остается неуловимым для кончиков наших пальцев, прилежно печатающих текстовые файлы на буквенно-цифровых клавиатурах, и непонятным для разума наших мыслящих операционных систем.

Сократ, этот гордый и самоуверенный демократ, случайно выболтал ужасный секрет, когда его угораздило заявить: . Именно тогда был выброшен революционный флаг, которым гуманисты размахивали на протяжении многих столетий, и сформулирован самый спорный лозунг, ставший визитной карточкой их нервных систем.

Самостоятельное индивидуальное мышление - вот первородный грех в иудейской, христианской и исламской религия х. Оно саботирует попытки властей упорядочить и структурировать хаос.

Главная задача любой системы правопорядка сводится к выхолащиванию и демонизации таких опасных понятий, как, и. Человек, который мыслит самостоятельно и творчески, автоматически переводится в разряд еретиков, изменников и богохульников. Самостоятельно и творчески мыслил один лишь Сагана. Любая конструктивная мысль, высказанная во всеуслышание, становится особо тяжкий преступлением. Сначала католики, убавлявшие департаментом контроля над хаосом во времена инквизиции римского папства, методично уничтожали протестантских раскольников, а потом уж протестанты, возглавив этот же департамент, начали сжигать на кострах ведьм.

Контролеры из департамента правопорядка рассуждали очень просто. Есть бессмертные Боги и Богини, прожигающие жизнь на вершине Олимпа, и есть чернь, бестолковые смертные, работающие до изнеможения внизу, на равнинах.

Представление о человеке, обладающем свободой выбора и индивидуальной самобытностью, казалось полным безумием и кошмаром, причем не только для авторитарных бюрократов, но и для здравомыслящих либералов. Хаос должен быть подконтрольным!

Существует стандартный способ упростить и умерить невероятную сложность окружающего нас мира. Для этого надо изобрести несколько Богов, причем, чем инфантильнее, тем лучше, и ввести несколько детских заповедей: почитай отца и мать, не убий и пр. Эти правила просты и логичны. Ты пассивно им следуешь. Ты молишься. Ты жертвуешь. Ты работаешь. Ты веришь.

И тогда, хвала скучающим, не появятся терзающие душу фантазии о людях, которые блуждают по этой бессмысленной беспорядочной вселенной, пытаясь познать самих себя.

Инженерия хаоса

Вероятно, первыми инженерами хаоса были индусские мудрецы, создавшие метод отключения сознания, или йогу. Буддисты написали одно из величайших практических руководств по управлению мозгом: . Китайские даосы разработали учение об изменении и эволюции, о, о непривязанностн к идеям и структурам. Они посылали нам сигнал: Расслабьтесь. Не паникуйте. Хаос дарует нам бездонный океан возможностей.

Сумасшедшая идея Сократа о самопознании (формулируемая как) положила начало современной демократии. Это была практичная и разумная афинская версия йогических учений, разработанных индусами, буддистами и даосами.

Самым опасным словом в этой бредовой мегаломаниакальной идее Сократа был глагол ПОЗНАЙ, который превращает человека из раба в мыслителя. Какая возмутительная дерзость! Раба призывают стать философом! Раба побуждают быть психологом! Потенциальным йогическим мудрецом!

Эта ересь объясняет, почему впоследствии такие атеис­тически настроенные эволюционисты, как Линней и Дарвин, характеризовали наш вид сверх шимпанзе как Femina Homo sapiens.

Хаос снаружи

Долгие столетия научное познание находилось под фанатичным запретом. Почему? Из страха перед хаосом. Представления о нашем (явно) малозаметном месте в галактическом танце весьма оскорбляют гордыню фанатичных контролеров, которые во все времена пытаются держать хаос под контролем. Поэтому контролеры пресекают любые наши попытки выглянуть наружу и встретиться с великим хаосом.

Было время, когда существовал запрет на использование таких устройств, как микроскоп и телескоп, потому что они изменяли сознание людей. По этим же причинам в более поздние времена власти ввели запрет на употребление психоделических растений. Все дело в том, что эти средства позволяют нам всмат­риваться в биты, зоны и фракталы хаоса.

Галилея сломили, а Джордано Бруно отправили на ватиканский костер за то, что эти ученые осмелились утверждать, будто Солнце не вращается вокруг Земли. Все религиозные и политические хаосоненавистники хотят жить в четко структурированной, чистенькой и уютной вселенной.

За последние столетия ученые и инженеры создали множество технических приборов, расширивших возможности человеческих органов чувств. Эти приборы вскрыли поистине ужасающую сложность мира, в котором мы живем.

Звездная астрономия поведала нам о фантастической вселенной хаоса: сто миллиардов крошечных звездных систем в нашей; крошечной галактике, сто миллиардов галактик в нашей крошечной вселенной...

Хаос внутри

В последние десятилетия двадцатого века ученые приступили к изучению человеческого мозга. И опять мы столкнулись с хаосом!

Оказалось, что мозг - это галактическая система, содержащая сотни миллиардов нейронов. Каждый нейрон представляет, собой такой же сложный информационный организм, как компьютер. Каждый нейрон связан синоптическими соединениями с десятками тысяч других нейронов. У каждого человека есть личная нейрологическая вселенная такой сложности, которая непостижима для его буквенно-цифрового ума.

Зная о могуществе нашего мозга, мы смиренно признаем ту степень невежества, на которой в настоящее время находимся, и в то же время понимаем, что у нас есть завораживающие перспективы превратиться в богов, если мы научимся управлять нашим мозгом.

Гуманизм: навигационный план игры

Теория хаоса позволяет нам понять значение нашей миссии, которая состоит в познании поразительного устройства вселенной и совершенно сумасшедших парадоксов, возникающих внутри наших мозгов, и в наслаждении игрой жизни.

Активизация так называемого правого полушария мозга устраняет один из последних запретов на познание хаоса и становится научно-практической основой для развития философии гуманизма, побуждающей людей объединяться для создания разных (персональных) версий о природе хаоса.

В последние месяцы я неотступно думаю о грандиозной сложности мироздания. Мы не знаем, кто мы, зачем мы пришли, почему мы здесь, куда мы идем, где было начало, когда наступит конец. Какой позор! Невежественные, разобщенные агенты, которых отправили выполнять миссию без предварительного инструктажа.

Мой интерес к Великому Беспорядку (хаосу), конечно же, вызван неожиданным приходом старости, о которой я узнал по трем признакам: потере кратковременной навели, приобретении долговременной памяти и желании написать книгу.

1 Потеря кратковременной, или оперативной, памяти означает, что ты совершенно забываешь, что происходит и почему ты здесь.

2. Приобретение долговременной памяти открывает перед тобой туманные перспективы познания Тайны, которую безуспешно пытались разгадать многие культуры.

3. Желание написать книгу связано с появлением мыслей о том, как реконструировать хаос и создать персональный беспорядок..

Употребляя информационные химических вещества хаоса на экране компьютера, при помощи кибернетических устройств, с точки зрения контркультуры, в качестве партизанствующего творца, который исследует альтернативы визуализации и реанимации, стремясь хотя бы мельком увидеть, как раздвигаются горизонты потрясающего, немыслимого, и невероятно безумного мира грядущего тысячелетия.

Содержание статьи

ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система . Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.

Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.

Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.

Основные принципы.

Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,..., образующие очевидную закономерную последовательность. Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,..., которая циклически и неограниченно скачет между числами 0 и -1. Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,..., в которой не удается заметить никакой очевидной закономерности.

Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.

Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.

История вопроса.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны , когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.

Исследования хаотических систем время от времени появлялись и в литературе по прикладным вопросам. Наиболее известная из таких моделей была введена метеорологом Э.Лоренцем в 1963. Лоренц построил модель конвекции в атмосфере, создав приближения очень сложных уравнений, описывающих это явление, значительно более простыми уравнениями с тремя неизвестными. Численно решая их на компьютере, он обнаружил, что решения колеблются нерегулярным, почти случайным образом. Лоренц также установил, что если слегка изменять начальные значения переменных, то отклонения будут усиливаться, пока новое решение не окажется совершенно непохожим на исходное. Описание им этого явления в последующих лекциях привело к популярному ныне выражению «эффект бабочки»: взмах крыла бабочки может изменить погоду.

Примеры приложений.

Ранняя работа Э.Лоренца в области метеорологии получила дальнейшее развитие, и теперь известно, что полные уравнения поведения атмосферы, используемые при прогнозировании погоды, могут вести себя хаотически. Это означает, что долгосрочные прогнозы погоды на основе данных о ее прошлом состоянии подвержены «эффекту бабочки», так что погода обычно не может быть предсказана более чем на четыре или пять дней вперед – независимо от мощности используемых компьютеров.

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером, т.е. период обращения каждого астероида составляет некую простую дробь с периодом обращения Юпитера. Например, в резонансе 2:3 период обращения астероида равен 2/3 периода обращения Юпитера. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки). В частности, астероиды в резонансе 1:3 с Юпитером имеют неустойчивые орбиты и могут испытать возмущения, заставляющие их пересечь орбиту Марса, после чего они могут испытать дальнейшие возмущения и пересечь орбиту Земли. В 1995 Ж.Ласкар установил, что на временных масштабах десятков миллионов лет вся Солнечная система хаотична. Однако хаос не делает все черты движения в Солнечной системе непредсказуемыми. Например, форма планетной орбиты может быть предсказуемой, однако точное положение планеты на орбите остается непредсказуемым. Ласкар предсказал вероятное будущее Солнечной системы в целом на следующие несколько миллиардов лет. Согласно его вычислениям, ничего существенного не случится с орбитами внешних планет – Юпитера, Сатурна, Урана, Нептуна и Плутона. Орбиты Земли и Венеры тоже не претерпели бы существенных изменений, если бы не Марс, орбита которого изменится настолько, что он едва не столкнется с Землей. Меркурий тоже приблизится к Венере и будет либо выброшен из Солнечной системы, либо поменяется местами с Венерой.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует. Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Теория хаоса

Диаграмма раздвоения логистической карты, где x → r x (1 - x). Каждый вертикальный сектор показывает аттрактор определённого значения r. Диаграмма отображает удвоение периода когда r увеличивается, что в конечном итоге производит хаос

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос . Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной .

Примерами подобных систем являются атмосфера , турбулентные потоки , биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием , эффект Коновала - распределение частот выпадения положительных результатов, или принятия правильных решений.

Теория хаоса - область исследований, связывающая математику и физику.

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.

Тонкости определения

Пример топологического смешивания, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Хронология

Фрактальный папоротник, созданный благодаря игре хаоса. Природные формы (папоротники, облака, горы и т. д.) могут быть воссозданы через систему повторяющихся функций

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, турбуленция и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбуленцией в жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы. Основным катализатором для развития теории хаоса стала электронно-вычислительная машина . Большая часть математики в теории хаоса выполняет повторную итерацию простых математических формул, которые делать вручную непрактично. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.

Одним из пионеров в теории хаоса был Эдвард Лоренц , интерес которого к хаосу появился случайно, когда он работал над предсказанием погоды в 1961 году. Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз.

К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, рассчитанной прежде. Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта. Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели. Годом ранее, Бенуа Мандельброт нашёл повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: «эффект Ноя », который возникает, когда происходят внезапные прерывистые изменения, например, изменение цен после плохих новостей, и «эффект Иосифа » в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу «Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях» доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Он утверждал, что клубок бечевки кажется точкой, если его рассматривать издалека (0-мерное пространство), он же будет клубком или шаром, если его рассматривать достаточно близко (3-мерное пространство) или может выглядеть замкнутой кривой линией сверху (1-мерное пространство). Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения.

Объект, изображения которого являются постоянными в различных масштабах («самоподобие») является фракталом (например кривая Коха или «снежинка»). В 1975 году Мандельброт опубликовал работу «Фрактальная геометрия природы», которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.

Турбулентные потоки воздуха от крыла самолета, образующиеся во время его посадки. Изучение критической точки, после которой система создает турбулентность, были важны для развития теории Хаоса. Например, советский физик Лев Ландау разработал Ландау-Хопф теорию турбулентности. Позже, Дэвид Руелл и Флорис Тейкнс предсказали, вопреки Ландау, что турбулентность в жидкости могла развиться через странный аттрактор, то есть основную концепцию теории хаоса

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года. В декабре 1977 Нью-Йоркская академия наук организовала первый симпозиум о теории хаоса, который посетили Дэвид Руелл, Роберт Мей, Джеймс А. Иорк, Роберт Шоу , Й. Даян Фермер, Норман Пакард и метеоролог Эдвард Лоренц . В следующем году, Митчелл Феидженбом издал статью «Количественная универсальность для нелинейных преобразований», где он описал логистические отображения. М. Феидженбом применил рекурсивную геометрию к изучению естественных форм, таких как береговые линии. Особенность его работы в том, что он установил универсальность в хаосе и применял теорию хаоса ко многим явлениям. В 1979 Альберт Дж. Либчейбр на симпозиуме в Осине, представил свои экспериментальные наблюдения каскада раздвоения, который ведет к хаосу. Его наградили премией Вольфа в физике вместе с Митчеллом Дж. Фейгенбаумом в 1986 «за блестящую экспериментальную демонстрацию переходов к хаосу в динамических системах ». Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов . В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию . Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т.д.).

Применение

Теория хаоса применяется во многих научных дисциплинах: математика, биология, информатика, экономика, инженерия, финансы, философия, физика, политика, психология и робототехника. В лаборатории хаотическое поведение можно наблюдать в разных системах, например электрические схемы , лазеры, химические реакции, динамика жидкостей и магнитно-механических устройств. В природе хаотическое поведение наблюдается в движении спутников солнечной системы , эволюции магнитного поля астрономических тел, приросте населения в экологии, динамике потенциалов в нейронах и молекулярных колебаниях . Есть сомнения о существовании динамики хаоса в тектонике плит и в экономике.

Одно из самых успешных применений теории хаоса было в экологии, когда динамические системы похожие на модель Рикера использовались, чтобы показать зависимость прироста населения от его плотности. В настоящее время теория хаоса также применяется в медицине при изучении эпилепсии для предсказаний приступов, учитывая первоначальное состояние организма. Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей. Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. выбрать тестируемое состояние;
  2. найти несколько подобных или почти подобных состояний; и
  3. сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т.д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

ТЕОРИЯ ХАОСА

ТЕОРИЯ ХАОСА , теория, цель которой - описание и объяснение крайне сложного поведения систем; они лишь на первый взгляд кажутся беспорядочными и непредсказуемыми, однако, основаны на определенном порядке. Поведение некоторых физических система невозможно описать с помощью обычных законов физики. Это связано с тем, что математический аппарат, необходимый для описания таких систем, слишком сложен даже для сверхмощных компьютеров. Подобные системы иногда называют нелинейными либо хаотическими; к ним относятся сложные механизмы, электрические цепи, а также такие природные явления, как погода. Упорядоченные системы то же могут стать хаотическими, как, например, равномерный поток воды, когда он ударяется о скалу и становится турбулентным. Отсутствие адекватных описаний означает, что стандартное прогнозирование их поведения также невозможно. Теория хаоса предлагает такие математические методы, которые позволяют описывать хаотические системы и даже делать некоторые обобщенные прогнозы их вероятного поведения. Однако она также показывает, что даже малейшее изменение в исходных условиях системы может привести к огромной разнице спустя некоторое время. Таким образом, из-за невозможности узнать точные начальные условия системы невозможно сделать точный прогноз.

Теория хаоса служит для описания явлений, кажущихся сложными, которые можно смоделировать математически простыми численными формулами, многократно повторяемыми. Некоторые хаотичные системы являются фрактальными, т е. содержат взаимно подобные геометрические структуры или компоненты. Другими словами, небольшая часть такой системы будет напоминать всю систему в целом, и потому возможность дать математическое описание части системы означает возможность описания системы в целом. Примером фрактальной структуры служит «губка» Сер-пинского (1): она состоит из многократно повторенных равносторонних треугольников(2-3). Кажущаяся сложной структура живых организмов, например, цветной капусты,также содержит подобные элементы, и потому отдельное со цветие (4) дает представление обо всей головке (5). Движение дыма от погасшей свечи (6) описывается сложным рисунком, который трудно уловить, но оно моделируется с применением понятий ламинарного и турбулентного течений (7). Климат Земли - чрезвычайно сложное явление, однако в основе его лежаг простые законы (8). Солнечный нагрев вызывает испарение воды (9) с поверхности моря,в результате чего образуются облака (10), отражающие солнечный свет и препятствующие его проникно вению к поверхности моря или суши Температура падает, и может выпасть дождь (11). Если бы мы могли осуществить измерения погодных параметров в достаточно широком масштабе и создать чрезвычайно подробную математическую модель,тогда стало бы возможно безошибочное прогнозирование погоды.


Научно-технический энциклопедический словарь .

Смотреть что такое "ТЕОРИЯ ХАОСА" в других словарях:

    - (chaos theory) Математическая теория, занимающаяся анализом случайных, непредсказуемых последствий отдельных небольших отклонений от состояния равновесия (equilibrium) в сложной системе. На нее часто ссылаются в связи с различными вариантами… … Политология. Словарь.

    У этого термина существуют и другие значения, см. Теория хаоса (значения). Диаграмма раздвоения логистической карт … Википедия

    - … Википедия

    Теория хаоса Chaos Theory Сериал «CSI. Место преступления» Номер серии Сезон 2 Серия № Авторы сценария Джош Берман, Эли Талберт Режиссёр {{{Режиссёр}}} … Википедия

    У этого термина существуют и другие значения, см. Теория хаоса (значения). Теория хаоса Chaos Theory … Википедия

    Теория хаоса: Теория хаоса математический аппарат. Теория хаоса фильм 2007 года. См. также Tom Clancy s Splinter Cell: Chaos Theory компьютерная игра … Википедия

    Может ссылаться на: Изучение сложных систем Теория хаоса Теория сложности вычислений Теоретическое рассмотрение Колмогоровской сложности строки, изучаемое в теории алгоритмов, определяемое по длине кратчайшей двоичной программы, которая может… … Википедия

    - (catastrophe theory) Систематизированная классификация внезапных переходов от одного устойчивого состояния к другому. Применима к таким разным экстремальным явлениям, как замерзание жидкости и падение империи, закаливание металла и тюремный бунт … Политология. Словарь.

    Раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими… … Энциклопедия Кольера

    Теория хаоса математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к… … Википедия

Книги

  • Джек Райан: теория хаоса (DVD) , Брана Кеннет. Продолжение истории культового персонажа Тома Клэнси! Финансовый аналитик ЦРУ Райан (Крис Пайн) приезжает на задание в Москву и оказывается в паутине интриг и заговоров, в которую вовлечены…