Виды радиационного излучения. Что такое радиоактивность? Что такое "черные пески" и какую опасность они представляют

Это самый широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение образуется при энергетических переходах внутри атомных ядер, более жесткое - при ядерных реакциях. Гамма-кванты легко разрушают молекулы, в том числе биологические, но, к счастью, не проходят через атмосферу. Наблюдать их можно только из космоса.

Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают специальными телескопами на Земле.

При энергии свыше 10 14 эВ лавины частиц прорываются до поверхности Земли. Их регистрируют сцинтилляционными датчиками. Где и как образуются гамма-лучи ультравысоких энергий, пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные кванты - 10 20 –10 21 эВ , приходят из космоса крайне редко - примерно один квант в 100 лет на квадратный километр.

Источники

Изображение получено в 2005 году гамма-телескопом HESS . Оно стало подтверждением того, что остатки сверхновых служат источниками космических лучей - энергичных заряженных частиц, которые, взаимодействуя с веществом, порождают гамма-излучение (см. ). Ускорение частиц, по всей видимости, обеспечивается мощным электромагнитным полем компактного объекта - нейтронной звезды, которая образуется на месте взорвавшейся сверхновой.

Столкновения энергичных заряженных частиц космических лучей с ядрами атомов межзвездной среды порождают каскады других частиц, а также гамма-квантов. Этот процесс аналогичен каскадам частиц в земной атмосфере, которые возникают под воздействием космических лучей (см. ). Происхождение космических лучей с самыми высокими энергиями еще изучается, но уже есть данные, что они могут генерироваться в остатках сверхновых звезд .

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника )

В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру.

При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне.

Часть вещества при аккреции может выбрасываться в виде струй (джетов) вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше.

Приемники

Расположен в Намибии, состоит из 4 параболических тарелок диаметром 12 метров, размещенных на площадке размером 250 метров. На каждой из них закреплено 382 круглых зеркала диаметром 60 см , которые концентрируют тормозное излучение, возникающее при движении энергичных частиц в атмосфере (см. схему телескопа).

Телескоп начал работать в 2002 году. Он в равной мере может использоваться для регистрации энергичных гамма-квантов и заряженных частиц - космических лучей. Одним из главных его результатов стало прямое подтверждение давнего предположения о том, что остатки вспышек сверхновых звезд являются источниками космических лучей.

Когда энергичный гамма-квант входит в атмосферу, он сталкивается с ядром одного из атомов и разрушает его. При этом порождается несколько обломков атомного ядра и гамма-квантов меньшей энергии, которые по закону сохранения импульса движутся почти в том же направлении, что и исходный гамма-квант. Эти обломки и кванты вскоре сталкиваются с другими ядрами, образуя в атмосфере лавину частиц.

Большинство этих частиц имеет скорость, превышающую скорость света в воздухе. Вследствие этого частицы испускают тормозное излучение , которое достигает поверхности Земли и может регистрироваться оптическими и ультрафиолетовыми телескопами. Фактически сама земная атмосфера служит элементом гамма-телескопа. Для гамма-квантов сверхвысоких энергий расходимость пучка, достигающего поверхности Земли, составляет около 1 градуса. Этим определяется разрешающая способность телескопа.

При еще более высокой энергии гамма-квантов до поверхности доходит сама лавина частиц - широкий атмосферный ливень (ШАЛ). Их регистрируют сцинтилляционными датчиками. В Аргентине сейчас строится обсерватория имени Пьера Оже (в честь первооткрывателя ШАЛ) для наблюдения гамма-излучения и космических лучей ультравысоких энергий. Он будет включать несколько тысяч цистерн с дистиллированной водой. Установленные в них ФЭУ будут следить за вспышками, происходящими в воде под воздействием энергичных частиц ШАЛ.

Орбитальная обсерватория, работающая в диапазоне от жесткого рентгена до мягкого гамма-излучения (от 15 кэВ до 10 МэВ ), была выведена на орбиту с космодрома Байконур в 2002 году. Обсерватория построена Европейским космическим агентством (ESA) при участии России и США. В конструкции станции использована такая же платформа, как и в ранее запущенной (1999) европейской рентгеновской обсерватории XMM-Newton.

Электронное устройство для измерения слабых потоков видимого и ультрафиолетового излучения. ФЭУ представляет собой электронную лампу с фотокатодом и набором электродов, к которым приложено последовательно возрастающее напряжение с суммарным перепадом до нескольких киловольт.

Кванты излучения падают на фотокатод и выбивают из него электроны, которые движутся к первому электроду, образуя слабый фотоэлектрический ток. Однако по пути электроны ускоряются приложенным напряжением и выбивают из электрода значительно большее число электронов. Так повторяется несколько раз - по числу электродов. В итоге поток электронов, пришедший от последнего электрода к аноду, увеличивается на несколько порядков по сравнению с первоначальным фотоэлектрическим током. Это позволяет регистрировать очень слабые световые потоки, вплоть до отдельных квантов.

Важная особенность ФЭУ - быстрота срабатывания. Это позволяет использовать их для регистрации скоротечных явлений, таких как вспышки, возникающие в сцинтилляторе при поглощении энергичной заряженной частицы или кванта.

Ответ от Ёветлана Земцова [новичек]
Протонное излучение - излучение, состоящее из потока протонов (см. Атом). Протонное излучение - основная составная часть космического излучения (см.). В земных условиях в ускорителях заряженных частиц (см.) получают протоны различных энергий. Будучи положительно заряженными частицами, протоны при прохождении через вещество взаимодействуют с отрицательно заряженными электронами атомов и вырывают их с электронных оболочек. В результате этого происходит ионизация (см. Излучения ионизирующие) атомов вещества. Плотность ионизации протонами резко возрастает в конце пробега частиц. Благодаря этому свойству протоны удобно использовать в лучевой терапии (см. Протонная терапия) для избирательного облучения глубоко залегающих опухолей (например, гипофиза). Протоны высоких энергий имеют малый угол рассеяния, что также способствует локализации дозы в одном месте. Протоны высоких энергий, преодолевающие кулоновское отталкивание, попадают в ядро и вызывают различные ядерные реакции, в результате которых образуются вторичные излучения - нейтронное, гамма-излучение и др. В связи с этим при облучении вещества протонами высоких энергий ионизация среды происходит не только за счет первичных протонов; но и за счет вторичных излучений. Это обстоятельство необходимо учитывать при расчете доз, создаваемых протонным излучением.
Протонное излучение - поток положительно заряженных ядерных частиц - протонов. Впервые протонное излучение обнаружено в 1886 г. в виде так называемых каналовых лучей в разрядных трубках.
Источниками интенсивного протонного излучения являются ускорители заряженных частиц (см.). При помощи ускорителей получены пучки П. и. с энергией в десятки миллиардов электрон-вольт. Еще большие энергии П. и. встречаются в космическом пространстве. П. и. является основной компонентой галактического и солнечного космических излучений. Интенсивные потоки П. и. обнаружены в околоземном пространстве - в так называемых радиационных поясах Земли.
Способность П. и. проникать через слои вещества зависит от энергии пучка протонов (см.) и свойств вещества. П. и. с энергией 10 Мэв способно пройти слой воздуха (при нормальной температуре и давлении) около 1 м. При увеличении энергии П. и. до 1000 Мэв толщина слоя возрастает почти до 3 км.
В тяжелых веществах П. п. задерживается более тонкими слоями. Так, в свинце П. и. с энергией 10 Мэв проходит около 1/3 мм, а с энергией 1000 Мэв - несколько менее 60 см. Протонное излучение с энергией выше 100 Мэв способно проникать в тело на глубину до 10 см и более. Биологическое действие протонного излучения с энергией в сотни мегаэлектрон-вольт при остром облучении в общем аналогично действию рентгеновского и гамма-излучений.
Вместе с тем биологическое действие протонов таких энергий имеет некоторые особенности по сравнению с рентгеновским и гамма-излучением (менее отчетливая реакция со стороны органов кроветворения в ранние сроки, большая выраженность геморрагического синдрома и др.). При сравнительно небольших энергиях биологическая эффективность П. и. выше, чем рентгеновского и гамма-излучений. Это связано с более высокой ионизирующей способностью таких протонов. В отличие от рентгеновского и гамма-излучений, протоны, проходя через биологическую ткань, способны производить ядерные реакции. В результате ядерных реакций образуются вторичные частицы, обладающие высокой ионизирующей способностью, что приводит к поглощению в малом объеме ткани относительно большого количества энергии и к соответствующим локальным поражениям ткани. Этим обстоятельством может быть обусловлено большее бластомогенное действие П. и. по сравнению с рентгеновскими и гамма-излучениями.
Для защиты от протонного излучения используют вещества, эффективно тормозящие протоны и образующие относительно мало вторичных частиц при ядерных взаимодействиях

Проникающая радиация. Под проникающей радиацией понимают поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва во внешнюю среду

Под проникающей радиацией понимают поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва во внешнюю среду. По своим физическим свойствам эти виды излучения различаются между собой, однако общим для них является способность распространяться в воздухе во все стороны на расстояния до 2,5-3 км. Время действия проникающей радиации 15-20 сек и определяется временем подъема облака взрыва на такую высоту, при которой гамма-излучение полностью поглощается толщей воздуха и не достигает поверхности земли. Необходимо различать проникающую радиацию, действующую всего несколько секунд и радиоактивное заражение местности, поражающее действие которого сохраняется в течение длительного времени. Основным источником гамма-излучения являются осколки деления ядерного горючего, находящиеся в зоне взрыва и радиоактивном облаке нейтроны при ядерном взрыве образуются при реакциях деления (в процессе цепной реакции), при термоядерном синтезе, а также в результате распада осколков деления. Нейтроны, образующиеся при реакциях деления и синтеза испускаются в течение долей микросекунды и называются мгновенными , а нейтроны образующиеся при распаде осколков деления – запаздывающими . Под действием нейтронов некоторые нерадиоактивные вещества становятся радиоактивными. Этот процесс называется наведенной активностью .

Нейтроны и гамма-излучение действуют практически одновременно. Хотя нейтроны испускаются, главным образом, в первые секунды, а гамма-излучение длится еще несколько секунд, этот факт существенного значения не имеет. В связи с чем поражающее действие проникающей радиации определяется суммарной дозой, получаемой от сложения доз гамма-излучения и нейтронов. Так называемые нейтронные боеприпасы , представляют собой ядерные боеприпасы с термоядерным зарядом малой мощности, отличающимся повышенным выходом нейтронного излучения. В нейтронном боеприпасе такие поражающие факторы, как ударная волна, световое излучение, радиоактивное заражение местности имеют второстепенное значение, а основным поражающим фактором взрыва нейтронного боеприпаса является проникающая радиация. В составе проникающей радиации в таком боеприпасе нейтронный поток преобладает над гамма-излучением.

Поражающее действие проникающей радиации на людей зависит от полученной дозы радиации , т.е. от количества поглощенной организмом энергии и связанной с этим степенью ионизации тканей. Результатом воздействия различных доз радиации на человека является острая лучевая болезнь (ОЛБ) .

Для защиты от проникающей радиации используются различные материалы, ослабляющие действие гамма-излучения и нейтронов. Эта способность материалов характеризуется величиной слоя половинного ослабления . Под этим понимают толщину материала, проходя через, которую гамма-излучение и поток нейтронов ослабляется в 2 раза. При этом следует помнить, что гамма-излучение ослабляется тем больше, чем плотнее вещество, например, свинец, бетон, сталь. Нейтронный поток сильнее ослабляется легкими материалами (вода, полиэтилен, парафин, стеклопластик), содержащими ядра легких элементов, таких как водород, углерод и др. Считается, что слой воды, толщина которого 70 см или слой парафина 650 см ослабляет поток нейтронов в 100 раз (Табл. 1).

Файл установки «Гамма-Поток. Гидравлический расчет» возможно получить по запросу.

В ПО встроено лицензионное соглашение.

В версии 1.1.0.1 программного комплекса «Гамма-Поток» внесены следующие изменения и дополнения:

1. Раздел « Расчет массы газа»:

1.1 Расширена номенклатура модулей:

  • Добавлен модуль объемом 160л. на давление 60 бар.
  • Добавлены модули объемом 80л. и 100л. на давление 150 бар с диаметром ЗПУ 40мм для Хладона 23.
  • Введена линейка модулей типа МПУ для СО2 с диаметром ЗПУ 12мм.

1.2. Для ГОТВ Хладон ФК-5-1-12 введены два значения нормативной концентрации:

  • нормативная концентрация Сн 4.2% в соответствии с действующей редакцией СП5.13130-2009 (изм. №1)
  • нормативная концентрация Сн 5.4% в соответствии с проектом новой редакции СП5.13130 в ред. 2015г.

1.3. Исправлено отображение остатка ГОТВ в трубной разводке

2. Раздел «Гидравлический расчет»:

2.1. Введены специальные насадки для ГОТВ Хладон ФК-5-1-12

2.2.Уточнены коэффициенты гидравлических сопротивлений элементов трубопровода (поворот, тройник)

2.3. Уточнены дополнительные потери на вертикальных участках трубопровода.

Программное обеспечение «Гамма-Поток» возможно использовать в течение 10 дней с момента установки в тестовом режиме без ограничения функционала. Далее следует пройти регистрацию для получения Регистрационного ключа.

Алгоритм регистрации:

  1. В окне «Регистрационная информация» нажать на кнопку «Получить регистрационный ключ».
  2. В открывшемся окне «Регистрация пользователя программы Гамма-Поток» заполнить поля данных.

Нажимая кнопку «ОК» Вы подтверждаете достоверность указанных данных и соглашаетесь на хранение и обработку данных компанией ООО «НПО Пожарная автоматика сервис».
Далее, Программа сформирует регистрационный файл и предложит его сохранить на Ваш компьютер.
Для получения регистрационного ключа необходимо переслать данный файл в наш адрес. В ответном письме мы вышлем ключ к программе.

Использование собранной информации.

Мы не распространяем полученную информацию ни для каких целей, в том числе не передаем ее третьей стороне. Полученная от Вас информация может быть раскрыта только в случаях, оговоренных законодательством РФ или по Вашей письменной просьбе.

Часто задаваемые вопросы

Проанализировав часто задаваемые вопросы проектировщиков, нашими специалистами были разработаны:

  • файл расчета максимального рабочего давления для труб с разной толщиной стенки (xls, ~21Кб) ;
  • файл расчета площади проема для сброса избыточного давления (xls, ~62Кб) .

1. Вопрос : почему в программе используются трубы и фитинги, которые невозможно купить на рынке.
Ответ :

  • Про трубы: в базу ПО «Гамма-Поток» введен сортамент труб согласно ГОСТ 8732 и ГОСТ 8734. В отчете к гидравлическому расчету выдаются РЕКОМЕНДУЕМЫЕ типы труб, выбранные программой. Однако, пользователь программы может самостоятельно создать свой пользовательский список с сортаментом труб, основываясь на возможности приобретения его в своем регионе. Также, при обращении к нам с задачей по выполнению гидравлического расчета, проектировщик может указать нужный для него перечень труб. Для проверки правильности выбора толщины стенки трубы, проектировщик может воспользоваться файлом «Расчета максимального рабочего давления для труб с разной толщиной стенки» выложенным на нашем сайте.
  • Про фитинги: В отчете к гидравлическому расчету выдаются РЕКОМЕНДУЕМЫЕ типы фитингов, выбранные программой. Стандартная номенклатура отводов по ГОСТ 17375 и тройников по ГОСТ 17376 является очень ограниченной и недостаточной для выполнения проектных расчетов. Поэтому, в базу ПО «Гамма-Поток» введен сортамент фитингов, который включает как стандартный сортамент отводов и тройников согласно указанным ГОСТ, так и размерный ряд фитингов (с шагом по внутреннему диаметру 1 мм), который может быть изготовлен индивидуально в соответствии с требованиями указанных ГОСТ специализированными предприятиями. Также, нормами не запрещено применение фитингов, которые могут быть изготовлены монтажными организациями самостоятельно из труб по ГОСТ 8732 и ГОСТ 8734 .

2. Вопрос : почему в ПО «Гамма Поток» не предусмотрен расчет площади проема для сброса избыточного давления в соответствии с СП 5.13130.2009
Ответ :

  • мы не включили указанный расчет в программу гидравлического расчета осознано, т.к. считаем, что он лишь косвенно связан с гидравлическим расчетом и требует отдельного осмысления, сбора исходных данных, связанных со строительными конструкциями.
  • в помощь проектировщику для выполнения этого расчета самостоятельно, нами разработана

Слово радиация, в переводе с английского "radiation" означает излучение и применяется не только в отношении радиоактивности, но целого ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Поэтому в отношении радиоактивности следует применять принятое МКРЗ (Международной комиссией по радиационной защите) и Нормами радиационной безопасности понятие "ионизирующее излучение".

ионизирующее излучение ( ИОНИЗИРУЮЩАЯ РАДИАЦИЯ )?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул. Энергия ионизирующего излучения достаточно велика, чтобы при взаимодействии с веществом, создать пару ионов разных знаков, т.е. ионизировать ту среду в которую попали эти частицы или гамма кванты.

Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны.

Что такое радиоактивность?

Радиоактивность - самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:

  • альфа-распад - радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад - радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер - самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность - радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы - это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые - самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

ПРИБОРЫ ДЛЯ измерения радиации и радиоактивности.

Для измерения уровней радиации и содержания радионуклидов на различных объектах используются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, используются дозиметры различного назначения;
  • для определения вида радионуклида и его содержания в объектах окружающей среды используются спектрометрические тракты, состоящие из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время в магазинах можно купить различные виды измерителей радиации различного типа, назначения, и обладающие широкими возможностями. Для примера приведём несколько моделей приборов, которые наиболее популярные в профессиональной и бытовой деятельности:

Профессиональный дозиметр-радиометр, был разработан для радиационного контроля денежных купюр операционистами банков, в целях исполнения "Инструкция Банка России от 04.12.2007 N 131-И "О порядке выявления, временного хранения, гашения и уничтожения денежных знаков с радиоактивным загрязнением"".

Лучший бытовой дозиметр от ведущего производителя, данный портативный измеритель радиации зарекомендовал себя временем. Благодаря простому использованию, небольшому размеру и низкой цене, пользователи назвали его народным, рекомендуют его друзьям и знакомым, не боясь за рекомендацию.

СРП-88Н (сцинтилляционный радиометр поиска) - профессиональный радиометр предназначен для поиска и обнаружения источников фотонного излучения. Имеет цифровой и стрелочный индикаторы, возможность установки порога срабатывания звукового сигнализатора, что значительно облегчает работу при обследовании территорий, проверки металлолома др. Блок детектирования выносной. В качестве детектора используется сцинтилляционный кристалл NaI. Автономный источник питания 4 элемента Ф-343.

ДБГ-06Т - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения. Источник питания гальванический элемент типа «Корунд».

ДРГ-01Т1 - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения.

ДБГ-01Н - предназначен для обнаружения радиоактивного загрязнения и оценки с помощью звукового сигнализатора уровня мощности эквивалентной дозы фотонного излучения. Источник питания гальванический элемент типа «Корунд». Диапазон измерения от 0.1 мЗв*ч-1 до 999.9 мЗв*ч-1

РКС-20.03 «Припять» - предназначен для контроля радиационной обстановки в местах проживания, пребывания и работы.

Дозиметры позволяют измерять:

  • величину внешнего гамма-фона;
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих)
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей;
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих).

Как выбрать измеритель радиации и другие приборы для измерения радиации вы можете прочитать в статье "Бытовой дозиметр и индикатор радиоактивности. как выбрать? "

Какие виды ионизирующего излучения существуют?

Виды ионизирующего излучения. Основными видами ионизирующего излучения, с которыми нам чаще всего приходится сталкиваться являются:



Конечно существуют и другие виды излучения (нейтронное), но с ними мы сталкиваемся в повседневной жизни значительно реже. Различие этих видов излучения заключается в их физических характеристиках, в происхождении, в свойствах, в радиотоксичности и поражающем действии на биологические ткани.

Источники радиоактивности могут быть природными или искусственными. Природные источники ионизирующего излучения это естественные радиоактивные элементы находящиеся в земной коре и создающие природный радиационный фон, это ионизирующее излучение приходящее к нам из космоса. Чем больше активность источника (т.е. чем больше в нем распадается атомов за единицу времени), тем больше он испускает за единицу времени частиц или фотонов.

Искусственные источники радиоактивности могут содержать радиоактивные вещества полученные в ядерных реакторах специально или являющиеся побочными продуктами ядерных реакций. В качестве искусственных источников ионизирующего излучения могут быть и различные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Основными поставщиками радия-226 в окружающую природную среду являются предприятия занимающиеся добычей и переработкой различных ископаемых материалов:

  • добыча и переработка урановых руд;
  • добыча нефти и газа; угольная промышленность;
  • промышленность строительных материалов;
  • предприятия энергетической промышленности и др.

Радий-226 хорошо поддается выщелачиванию из минералов содержащих уран, этим его свойством объясняется наличие значительных количеств радия в некоторых видах подземных вод (радоновых применяемых в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах колеблется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л. Существенной составляющей природной радиоактивности является продукт распада радия-226- радий-222 (Радон). Радон - инертный, радиоактивный газ, наиболее долгоживущий (период полураспада 3.82 дня) изотоп эманации *, альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому преимущественно накапливается погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д. * - эманирование- свойство веществ содержащих изотопы радия (Ra226, Ra224, Ra223), выделять образующиеся при радиоактивном распаде эманацию(радиоактивные инертные газы).

Считается, что до 70% вредного воздействия на население связано с радоном в жилых зданиях (см. диаграмму). Основным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, глина, шлаки, золошлаки и др.);
  • почва под зданиями.

Распространяется радон в недрах Земли крайне не равномерно. Характерно его накопление в тектонических нарушениях, куда он поступает по системам трещин из пор и микротрещин пород. В поры и трещины он поступает за счет процесса эманирования, образуясь в веществе горных пород при распаде радия-226.

Радоновыделение почвы определяется радиоактивностью горных пород, их эманированием и коллекторными свойствами. Так, сравнительно слаборадиоактивные породы, оснований зданий и сооружений могут, представлять большую опасность, чем более радиоактивные, если они характеризуются высоким эманированием, или рассечены тектоническими нарушениями, накапливающими радон. При своеобразном «дыхании» Земли, радон поступает из горных пород в атмосферу. Причем в наибольших количествах - из участков на которых имеются коллекторы радона (сдвиги, трещины, разломы и др.), т.е. геологические нарушения. Собственные наблюдения за радиационной обстановкой в угольных шахтах Донбасса показали, что в шахтах, характеризующихся сложными горно-геологическими условиями (наличие множественных разломов и трещин в угле вмещающих породах, высокая обводненность и др.) как правило, концентрация радона в воздухе горных выработок значительно превышает установленные нормативы.

Возведение жилых и общественно-хозяйственных сооружений непосредственно над разломами и трещинами горных пород, без предварительного определения радоновыделения из почвы, приводит к тому, что в них из недр Земли поступает грунтовый воздух, содержащий высокие концентрации радона, который накапливается в воздухе помещений и создает радиационную опасность.

Техногенная радиоактивность возникает в результате деятельности человека в процессе которой происходит перераспределение и концентрирование радионуклидов. К техногенной радиоактивности относится добыча и переработка полезных ископаемых, сжигание каменного угля и углеводородов, накопление промышленных отходов и многое другое. Уровни воздействия на человека различных техногенных факторов иллюстрирует представленная диаграмма 2 (А.Г. Зеленков "Сравнительное воздействие на человека различных источников радиации", 1990 г.)

Что такое "черные пески" и какую опасность они представляют?

Черные пески представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO4, которые замещаются торием. Монацит содержит до 50-60% окисей редкоземельных элементов: окиси иттрия Y2O3 до 5%, окиси тория ThO2 до 5-10%, иногда до 28%. Удельный вес монацита составляет 4.9-5.5. С повышением содержания тория уд. вес возрастает. Встречается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород включающих монацит, он накапливается в россыпях, которые представляют собой крупные месторождения.

Такие месторождения наблюдаются и на юге Донецкой области.

Россыпи монацитовых песков находящиеся на суше, как правило не вносят существенного изменения в сложившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области) создают ряд проблем особенно с наступлением купального сезона.

Дело в том, что в результате морского прибоя за осенне-весенний период на побережье, в результате естественной флотации, скапливается значительное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк*кг-1 и более), который создает на локальных участках уровни гамма-излучения порядка 300 и более мкР*час-1. Естественно, отдыхать на таких участках рискованно, поэтому, ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются отдельные участки побережья. Но все это не позволяет предотвратить нового накопления "черного песка".

Позволю высказать по этому поводу личную точку зрения. Причиной, способствующей выносу "черного песка" на побережье, возможно является тот факт, что на фарватере Мариупольского морского порта постоянно работают земснаряды по расчистке судоходного канала. Грунт, поднятый со дна канала, сваливается западнее судоходного канала, в 1-3 км от побережья (см. карту размещения мест свалки грунта), и при сильном волнении моря, с накатом на прибрежную полосу, грунт содержащий монацитовый песок выносится на побережье, где обогащается и накапливается. Однако все это требует тщательной проверки и изучения. И если это как, то снизить накопление "черного песка" на побережье, возможно, удалось бы просто переносом места свалки грунта в другое место.

Основные правила выполнения дозиметрических измерений.

При проведении дозиметрических измерений, прежде всего, необходимо строго придерживаться рекомендаций изложенных в технической документации на прибор.

При измерении мощности экспозиционной дозы гамма-излучения или эквивалентной дозы гамма-излучения необходимо соблюдать следующие правила:

  • при проведении любых дозиметрических измерений, если предполагается их постоянное проведения с целью наблюдения за радиационной обстановкой, необходимо строго соблюдать геометрию измерения;
  • для повышения достоверности результатов дозиметрического контроля проводится несколько измерений (но не менее 3-х), и вычисляется среднее арифметическое;
  • при выполнении измерений на территории выбирают участки вдали от зданий и сооружений (2-3 высоты); -измерения на территории проводят на двух уровнях, на высоте 0.1 и 1.0 м от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в центре помещения на высоте 1.0 м от пола.

При измерении уровней загрязнения радионуклидами различных поверхностей необходимо выносной датчик или прибор в целом, если выносного датчика нет, поместить в полиэтиленовый пакет (для предотвращения возможного загрязнения), и проводить измерение на максимально возможно близком расстоянии от измеряемой поверхности.