Появление физики. История возникновения физики





















1 из 20

Презентация на тему: Из истории развития науки “Физика”

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Физика (от др..греч. «природа») - область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, В XVI века физика выделилась в отдельное научное направление.В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым,

№ слайда 3

Описание слайда:

История развития науки физика начинается с работ Великих ученых философов Древнего мира и продолжается до наших дней.1. Ранняя физика 1.1 Античная физика 1.2 Средневековая Европа 2 Зарождение теоретической физики2.1 XVII век. Метафизика Декарта и механика Ньютона. 2.2 XVIII век. Механика, теплород, электричество. 3 XIX век 3.1 Волновая теория света 3.2 Возникновение электродинамики 3.3 Теория электромагнитного поля 3.4 Термодинамика, газы, молекулярная теория 3.5 Открытие электрона, радиоактивность 4 XX век 4.1 Теория относительности 4.2 Первые теории строения атома 4.3 Квантовая теория 5 Начало XXI века

№ слайда 4

Описание слайда:

Великие ученые философы Древнего мира Сократ 469 г. до н. 399 г. до н. э., Древнегреческий философ. Проповедовал на улицах и площадях, ставя оей целью борьбу с софистами и воспитание молодежи. Был казнен (принял яд) за введение новых божеств и за развращение молодежи в новом духе. Сократ не оставил после себя сочинений. Важнейшими источниками сведений о его жизни и учении являются сочинения в трудах его учеников Ксенофонта и Платона. Платон 428(427)-348(347) до н.э.Древнегреческий философ. Родился в аристократической семье в АфинахВ 407 году познакомился с Сократом и стал одним из восторженных его учеников. После смерти его уехал в Южную Италию и Сицилию, где общался с пифагорейцами. В Афинах Платон основал свою школу - Академию платоновскую. Автор знаменитого сочинения “Апология Сократа” Аристотель Стагирит 384-322 до н.э. Величайший философ Древней Греции. Учился у Платона в Афинах, но не стал его последователем. Был учителем Александра Македонского. Создал понятийный аппарат, который до сих пор пронизывает философский лексикон и самый стиль научного мышления

№ слайда 5

Описание слайда:

Античная физика Демокрит Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.Позже аналогичный тезис высказывали Демокрит, Аристотель и другие.Физика - наука о движении, которое возможно благодаря онтологическому различию между силой и энергией. АристотельТермин «Физика» возник как название одного из сочинений Аристотеля. Предметом этой науки, по мнению автора, было выяснение первопричин явлений

№ слайда 6

Описание слайда:

Аристотель (384-322 до н. э.) Древнегреческий философ и учёный. Ученик Платона. основатель Перипатетической школы. С 343 до н. э. - воспитатель Александра Македонского. этика, политика, метафизика науки о жизни, логика, экономика. Физика - наука о движении, которое возможно благодаря онтологическому различию между силой и энергией.

№ слайда 7

Описание слайда:

Архимед Архимед прославился многими механическими конструкциями. Рычаг был известен и до Архимеда, но лишь Архимед изложил его полную теорию и успешно её применял на практике. Плутарх сообщает, что Архимед построил в порту Сиракуз немало блочно-рычажных механизмов для облегчения подъёма и транспортировки тяжёлых грузов. Изобретённый им архимедов винт (шнек) для вычерпывания воды до сих пор применяется в Египте.

№ слайда 8

Описание слайда:

Средневековая ЕвропаВ XVI века физика выделилась в отдельное научное направление.В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым.XVI век: Николай Коперник предложил гелиоцентрическую систему мира,Сомон Стевин в книгах «Десятая» (1585), «Начала статики» и другихввёл в обиход десятичные дроби, сформулировал (независимо от Галилея) закон давления на наклонную плоскость, правило параллелограмма сил, продвинул гидростатикуи навигацию. Любопытно, что формулу равновесия на наклонной плоскости он вывел из невозможности вечного движения (которое считал аксиомой).

№ слайда 9

Описание слайда:

В « Естественной и моральной Истории Индий » (1590) Хосе де Авоста впервые появилась теория о четырёх линиях без магнитного склонения.Он описал использование компаса, угол отклонения, различия между Магнитным и Северным полюсом; хотя отклонения были известны ещё в 15 веке, он описал колебание отклонений от одной точки до другой; он идентифицировал места с нулевым отклонением: например, на Азорских островах. После открытия Ньютоном отливов и приливов, Акоста объяснил их природу, периодичность и взаимосвязь с фазами Луны.

№ слайда 10

Описание слайда:

Галилео ГАЛИЛЕЙ Итальянский ученыйВ Падуе Галилей опубликовал только описание пропорционального циркуля, позволяющего быстро производить различные расчёты и построения.В 1608 году в Голландии изобретена зрительная труба. В 1609 году, на основании дошедших до него сведений об изобретённой в Голландии зрительной трубе, Галилей строит свой первый телескоп, дающий приблизительно трехкратное увеличение. Работа телескопа демонстрировалась с башни св. Марка в Венеции и произвела громадное впечатление. Вскоре Галилей построил телескоп с 32-кратным увеличением.

№ слайда 11

Описание слайда:

Галилео Галилей, первый проводит исследование небесных объектов. Открывает четыре спутника Юпитера, фазы Венеры, звёзды в составе Млечного пути и многое другое. Решительно поддерживает теорию Коперника, но столь же решительно отвергает теорию Кеплера о движении планет по эллипсам. Галилей Формулирует основы теоретической механики - принцип относительности, закон инерции, квадратичный закон падения, даже принцип виртуальных перемещений, Изобретает термометр (без шкалы).Иоганн Кеплер в 1609 году издал книгу «Новая астрономия» с двумя законами движения планет; третий закон он сформулировал в более поздней в книге «Мировая гармония» (1619). Заодно он формулирует (более чётко, чем Галилей) закон инерции: всякое тело, на которое не действуют иные тела, находится в покое или совершает прямолинейное движение.

№ слайда 12

Описание слайда:

№ слайда 13

Описание слайда:

Ньютон Исаак 4 января 1643 - 31 марта 1727 Английский физик и математик, создатель теоретических основ механики и астрономии. Он открыл закон всемирного тяготения, разработал (наряду с Г. Лейбницем) дифференциальное и интегральное исчисления. был автором важнейших экспериментальных работ по оптике.Аксиоматика Ньютона состояла из трёх законов, 1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. 2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.3. Действию всегда есть равное и противоположное противодействие иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.Ньютона по праву считают создателем "классической физики".

№ слайда 14

Описание слайда:

Во второй половине XVII века интерес к науке в основных странах Европы резко возрос. Возникают первые Академии наук и первые научные журналы 1600: первое экспериментальное исследование электрических и магнитных явлений проводит врач английской королевы Уильям Гильберт. Он выдвигает гипотезу, что Земля является магнитом. Именно он предложил сам термин «электричество». 1637: Рене Декарт издал «Рассуждение о методе» с приложениями «Геометрия», «Диоптрика», «Метеоры». Считал пространство материальным, а причиной движения - вихри материи, возникающие, чтобы заполнить пустоту (которую считал невозможной и поэтому не признавал атомов), или от вращения тел. В «Диоптрике» Декарт впервые дал правильный закон преломления света. Создаёт аналитическую геометрию и вводит почти современную математическую символику.

№ слайда 15

Описание слайда:

XVIII век. Механика, теплород, электричество. В XVIII веке ускоренными темпами развивались механика, небесная механика, учение о теплоте. Начинается исследование электрических и магнитных явлений. Создание аналитической механики (Эйлер, Лагранж) завершило превращение теоретической механики в раздел математического анализа. Утверждается общее мнение, что все физические процессы - проявления механического движения вещества.Ещё Гюйгенс решительно высказывался за необходимость такого представления о природе явлений:“Истинная философия должна видеть в явлениях механических первопричину всех явлений; по моему мнению, иное представление и невозможно, если мы только не желаем потерять надежду что-либо понимать в философии “ («Трактат о свете»).

№ слайда 16

Описание слайда:

Физика - это наука о материи, ее свойствах и движении. Она является одной из наиболее древних научных дисциплин, и первые дошедшие до нас работы восходят к временам Древней Греции. Анри Беккерель 26.2.1786 - 2.10.1853Написал цикл статей о температуре Земли, нетеплового излучения света. Андре-Мари АМПЕР26.2.1786 - 2.10.1853 Амперу принадлежит заслуга введения в науку терминов "электростатика", "электродинамика ", А. ВОЛЬТА 1745- - 1827Исследования в области электричества, Фарадей Майкл1791-1867Английский физик, основоположник учения об эл.-магнитном поле, ЛОРЕНЦ Хендрик Антон- 1928Нидерландский физик, инженер Член Петербургской. АН (1910) и почетный член АН СССР, (1925). Создал классическую электронную теорию, с помощью которой бъяснил многие электрические и оптические явления,

№ слайда 17

Описание слайда:

может собственных ПлатоновИ быстрых разумом НевтоновРоссийская земля рождать Он был естествоиспытателем, философом, поэтом, основоположником русского литературного языка, историком, географом, политическим деятелем. Всем своим самобытным энциклопедизмом,простиравшимся от поэзии и изобразительного искусства до великих физико-химических открытий, М. В. Ломоносов, как никто другой, доказывал единство всех проявлений человеческого духа, искусства и науки, абстрактной мысли иконкретной техники.

№ слайда 18

Описание слайда:

ЛЕБЕДЕВ Петр Николаевич (24.02.1866-1.03.1912) Выдающийся русский ученый, основатель первой в России научной школы физиков. Впервые получил и исследовал миллиметровые электромагнитные волны (1895). Открыл и исследовал давление света на твердые тела (1899) и газы (1907), количественно подтвердив электромагнитную теорию света. Идеи П.Н. Лебедева нашли свое развитие в трудах его многочисленных учеников.Петр Николаевич Лебедев родился 8 марта 1866 года в Москве, в купеческой семье. С сентября 1884 по март 1887 года Лебедев посещал Московское высшее техническое училище, однако деятельность инженера его не привлекала. Он отправился в 1887 году в Страсбург, в одну из лучших физических школ Европы, школу Августа Кундта.

№ слайда 19

Описание слайда:

А.С. Попов1859 – 1905 грусский ученый-физик и электротехник А.Н. Лодыгин.(1847-1923) русский электротехник Л.Б.Ландау 22.01. 19081.04. 1968Исследования магнитных свойств свободных электронов Черенков Павел Алексеевич 28 июля 1904 г. – 6 января 1990 г. выдающийся русский ученый, первый отечественный физик, награжденный Нобелевской премией.

№ слайда 20

Описание слайда:

Реферат на тему: «История физики»

Развитие физики

Физика относится к числу естественных наук, задачей которых является изучение природы в целях её подчинения человеку.

В древности слово «фи ика») означало природоведение. Впо­следствии природоведение расчленилось на ряд наук: физику, химию, астрономию, геологию, биологию, ботанику и т. д.

Среди этих наук физика занимает в известной мере особое поло­жение, так как предметом её изучения служат все основные, наиболее общие, простейшие формы движения материи.

Накопление знаний о явлениях природы происходило уже в глу­бокой древности. Даже первобытные люди, замечая черты сходства и различия в явлениях окружающего мира, приобретали из своей практики некоторые знания о природе. В дальнейшем систематизиро­вание накопленных знаний привело к возникновению науки.

Расширение и уточнение знаний о явлениях природы производи­лось людьми вследствие практических потребностей посредством на­блюдений, а на более высокой стадии развития науки - посредством экспериментов (наблюдение - это изучение явления в естественной обстановке, эксперимент - воспроизведение явления в искусственной обстановке в целях обнаружения особенностей данного явления в за­висимости от созданных условий).

Для объяснения явлений создавались гипотезы. Выводы из на­блюдений, экспериментов и гипотез проверялись при многообразном взаимодействии науки и практики; практика указывала способы уточ­нения научного опыта (наблюдений и экспериментов), исправляла гипотезы, обогащала науку. Наука в свою очередь обогащала прак­тику.

По мере того как расширялось применение научных знаний к пра­ктике, возникала потребность в использовании этих знаний для пред­сказания явлений, для расчёта следствий того или иного действия. Это привело к необходимости взамен разрозненных гипотез создать обобщающие и обоснованные теории.

Впервые потребность в теории возникла при возведении построек и сооружений и привела к развитию механики, в первую очередь учения о равновесии. В древнем Египте и Греции разрабатывались статика твёрдых тел и гидростатика. Потребность в определении времени для земледельческих работ и необходимость определения направления при мореходстве дали толчок к развитию астрономии. Целый ряд отделов знания был обоснован и систематизирован древ­негреческим мыслителем Аристотелем. Его «Физика» (в 8 книгах) на долгое время определила общее физическое мировоззрение.

Знания о природе по мере их накопления использовались господ­ствующими классами в своих интересах; в глубокой древности наука находилась в руках служителей культа (жрецов) и была тесно свя­зана с религией. Лишь в древней Греции наукой начали заниматься представители других привилегированных слоев общества. Лучшие представители античной натурфилософии, т. е. философии природы (Левкипп, Демокрит, Лукреций), положили начало материалистиче­скому пониманию природы и, несмотря на крайнюю недостаточность фактического материала, пришли к представлению об атомном строе­нии материи.

Распад античного общества временно приостановил развитие науки. В эпоху средних веков христианская церковь, опиравшаяся на господствующие классы феодального строя, чрезвычайными жестокостями, инквизицией, казнями подчинила философию целям богословия. Физика Аристотеля догматической трактовкой её, исключавшей воз­можность прогресса, была приспособлена церковью для укрепления авторитета священного писания. В это время, главным образом у ара­бов, создавших обширные государства и ведших оживлённую тор­говлю с отдалёнными странами, сохранились и получили некоторое развитие элементы наук, воспринятые от греков и римлян, в особен­ности по механике, астрономии, математике, географии.

В XV-XVI вв. на основе развёртывания европейской торговли и промышленности начались быстрый рост и оформление сначала меха­ники и астрономии, а в дальнейшем и наук, составляющих основу промышленной техники, - физики и химии. Работы Коперника, Кеп­лера, Галилея и их последователей сделали науку мощным орудием борьбы буржуазии с оплотом отживавшего феодального строя - ре­лигией. В борьбе с церковью был выдвинут научный принцип: вся­кое подлинное знание основано на опыте (на совокупности наблюде­ний и экспериментов), а не на авторитете того или иного учения.

В XVII в. крупная буржуазия стремилась к компромиссу с остат­ками господствующих классов феодального строя. Соответственно представители науки были вынуждены изыскивать компромисс с ре­лигией. Ньютон наряду с гениальными научными работами написал толкование на церковную книгу - апокалипсис. Декарт в своих фило­софских произведениях старался доказать бытие бога. Учёные поддерживали ложную идею о первом толчке, в котором якобы нужда­лась вселенная, чтобы придти в движение.

Развитие механики наложило свой отпечаток на научную теорию того времени. Учёные пытались рассматривать мир как механизм и стремились объяснить все явления путём сведения их к механическим перемещениям.

В этот период развития естествознания огромное применение по­лучило понятие силы. При каждом вновь открытом явлении приду­мывалась сила, которая объявлялась причиной явления. До сих пор в физике сохранились следы этого в обозначениях: живая сила, сила тока, электродвижущая сила и т. д.

Научные теории этого периода, рассматривавшие мир как неиз­менно движущуюся машину, отрицали развитие материи, переходы движения из одной формы в другую. Несмотря на успехи в расши­рении экспериментального материала, наука оставалась на позиции механистического мировоззрения.

В XVIII в. Ломонос ов правильно предугадал картину молекулярно-кинетического строения тел и высказал впервые единый закон веч­ности материи и её движения словами: «... все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого... Так как это всеобщий закон природы, то он распространяется и на правила дви­жения: тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения, сколько сообщает другому, им двинутому».

В те же годы теория Канта и Лапласа о развитии солнечной системы из туманности устранила идею о необходимости первого толчка.

В XIX в. на основе колоссального роста производительных сил в период расцвета промышленного капитализма прогресс науки чрез­вычайно ускорился. Потребность в мощном и универсальном двига­теле для индустрии и транспорта вызвала изобретение паровой ма­шины, а её появление побудило учёных к изучению тепловых про­цессов, что привело к развитию термодинамики и молекулярно-кинетической теории. В свою очередь на основе термодинамики оказалось возможным конструировать более мощные и экономичные типы дви­гателей (паровые турбины, двигатели внутреннего сгорания). Мы видим на этом примере, как практика побуждает к развитию научную теорию, а теория в дальнейшем занимает ведущую роль по отно­шению к практике.

Другим примером сложного взаимодействия теории и практики является развитие теории электричества и электротехники. Отрывоч­ные сведения об электрических явлениях имелись уже давно. Но только после того, как была открыта электрическая природа молнии, а затем был открыт гальванический ток, физика концентрирует своё внимание на изучении электричества. Фарадей, Максвелл, Ленц и др. разработали физические основы современной электротехники. Про­мышленность быстро использовала научные открытия и широким раз­витием техники открыла небывалые возможности для научного экспе­римента. Исследование молекулярного строения тел вскрыло электри­ческую природу молекулярных и атомных взаимодействий, что в свою очередь привело в наши дни к открытию атомной формы движения материи, раскрывающей необозримые перспективы для новой тех­ники.

Ряд открытий - закон сохранения и превращения энергии, теория электромагнитных волн, открытие электронов и радиоактивности - окончательно ниспроверг учение о неизменности природы. Механицизм потерпел крушение.

Правильно оценить, понять суть новых научных открытий оказалось возможным только с позиций созданной Марксом и Энгель­сом философии диалектич еского материализма.

«Диалектический материализм есть мировоззрение марксистско-ленинской партии. Оно называется диалектическим материализмом потому, что его подход к явлениям природы, его метод изучения явлений природы, его метод познания этих явлений является диале­ктическим, а его истолкование явлений природы, его понимание явлений природы, его теория-материалистической».

Явления природы при диалектическом подходе к ним нужно рас­сматривать в их взаимосвязи, взаимообусловленности, взаимозависи­мости и в их развитии, учитывая при этом, что количественные изме­нения приводят к коренным качественным превращениям, что разви­тие явлений порождается борьбой скрытых в них противоречий.

Диалектический подход к явлениям природы обеспечивает неиска­жённое, правильное отражение действительности в нашем сознании. Это решающее, абсолютное преимущество диалектического метода над всеми другими подходами к изучению явлений природы объ­ясняется тем, что основные черты, характеризующие диалектический метод, не придуманы произвольно, не навязывают нашему познанию искусственных, не свойственных ему мёртвых схем, но, напротив, точно воспроизводят самые общие, не имеющие исключений законы диалектики природы.

Все науки, в частности физика, наглядно, каждым фактом под­тверждают, что:

во-первых, любое явление происходит в органической, неразрыв­ной связи с окружающими явлениями; желая обособить явление, разорвать его связь с окружающими явлениями, мы неизбежно иска­жаем явление;

во-вторых, всё существующее подвержено закономерному и неис­черпаемому изменению, развитию, присущему самой природе вещей;

Всю историю развития физики, как и естествознания, можно условно разделить на три этапа - доклассический, классический и современный.

Этап доклассической физики иногда называют донаучным. Однако такое название нельзя считать обоснованным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности. Этот этап - самый длительный: он охватывает период от времени Аристотеля (IV в. до н.э.) до конца XVI в.

Начало этапа классической физики связывают с работами итальянского ученого Галилео Галилея, одного из основателей точного естествознания, и трудами английского математика, механика, астронома и физика Исаака Ньютона, основоположника классической физики. Второй этап длился около трех веков до конца XIX в.

К началу XX в. были получены экспериментальные результаты, трудно объяснимые в рамках классических знаний. Поэтому был предложен совершенно новый подход - квантовый, основанный на дискретной концепции. Квантовую гипотезу впервые ввел в 1900 г. немецкий физик Макс Планк, вошедший в историю развития физики как один из основоположников квантовой теории. С введением квантовой концепции начинается третий этап развития физики - этап современной физики , включающий не только квантовые, но и классические представления.

Этап доклассической физики открывает геоцентрическая система мировых сфер Аристотеля, которая родилась на подготовленной его предшественниками идейной почве. Переход от эгоцентризма - отношения к миру, характеризующегося сосредоточенностью на своем индивидуальном «я», к геоцентризму - первый и, пожалуй, самый трудный шаг на пути зарождения естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, дополнилась аналогичной невидимой полусферой до полной небесной сферы. Мир стал более завершенным, но оставался ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов - обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтвердились гораздо позднее - в эпоху первых кругосветных путешествий и великих географических открытий на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел, доживало свои последние годы.

Почти полторы тысячи лет отделяет завершенную геоцентрическую систему древнегреческого астронома Клавдия Птолемея (ок. 90-ок. 160) от достаточно совершенной гелиоцентрической системы польского математика и астронома Николая Коперника. В центре гелиоцентрической системы находится не Земля, а Солнце. Вершина гелиоцентрической системы - законы движения планет, открытые немецким астрономом Иоганном Кеплером, одним из творцов естествознания Нового времени.

Астрономические открытия Галилео Галилея, его физические эксперименты и фундаментальные законы механики, сформулированные Исааком Ньютоном, положили начало этапу классической физики, который нельзя отделить четкой границей от первого этапа. Для физики и естествознания в целом характерно поступательное развитие: законы Кеплера - венец гелиоцентрической системы с весьма длительной, начавшейся еще в древние времена историей; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики. Механика Аристотеля разделялась на земную и небесную, т.е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной. Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил представление Аристотеля об инерции, характеризующее равномерное движение небесных тел вокруг Земли, применять для земных тел при их свободном движении в горизонтальном направлении.

Кеплер и Галилей пришли к своим кинематическим законам, предопределившим принципиально единую для земных и небесных тел механику Ньютона. Законы Кеплера и закон всемирного тяготения Ньютона послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, открытой в 1781 г. английским астрономом Уильямом Гершелем (1738-1822), английский астроном и математик Джон Адаме (1819-1892) и французский астроном

бен Леверье (1811-1877) независимо друг от друга и почти одновременно теоретически предсказали существование заурановой планеты, которую обнаружил в 1846 г. немецкий астроном Иоганн Галле (1812-1910). Она называется Нептун. В 1915 г. американский астроном Персиваль Ловелл (1855-1916) рассчитал и организовал поиск еще одной планеты. Ее обнаружил в 1930 г. молодой американский любитель астрономии Клайд Томбо. Эта планета получила название Плутон.

Этап классической физики характеризуется крупными достижениями не только в классической механике, но и в других отраслях: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т.п. Назовем важнейшие из них:

  • * установлены опытные газовые законы;
  • * предложено уравнение кинетической теории газов;
  • * сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики;
  • * открыты законы Кулона, Ома и электромагнитной индукции;
  • * разработана электромагнитная теория;
  • * явления интерференции, дифракции и поляризации света получили волновое истолкование;
  • * сформулированы законы поглощения и рассеивания света.

Конечно, можно назвать и другие не менее важные естественно-научные достижения. Особое место в физике занимает электромагнитная теория, разработанная выдающимся английским физиком Дж.К. Максвеллом, создателем теории классической электродинамики, одним из основоположников статистической физики. Он установил, кроме того, статистическое распределение молекул по скоростям, названное его именем. Теория электромагнитного поля (уравнения Максвелла) объяснила многие известные к тому времени явления и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и эта теория оказалась не всесильной.

В конце XIX в. при экспериментальном изучении спектра излучения абсолютно черного тела была установлена закономерность распределения энергии. Полученные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. Такие результаты эксперимента не удалось объяснить в рамках классической электродинамики Максвелла. Эта проблема была названа «ультрафиолетовой катастрофой».

Согласующееся с экспериментом объяснение предложил в 1900 г. Макс Планк. Для чего ему пришлось отказаться от общепринятого положения классической физики о том, что энергия любой системы изменяется только непрерывно, т.е. принимает любые сколь угодно близкие значения. В соответствии с выдвинутой Планком квантовой гипотезой атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами, причем энергия кванта пропорциональна частоте.

Характерная особенность этапа современной физики заключается в том, что наряду с классическими развиваются квантовые представления. На основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц - появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

В одной из своих статей М. Планк писал о том, как во времена его молодости (примерно в 1880 г.) один уважаемый профессор не советовал заниматься физикой, полагая, что в физике осталось только стирать пыль с существующих физических приборов, так как главное уже сделано. Сейчас очевидно: профессор в своих прогнозах ошибался - XX столетие принесло немало великих открытий в физике, определивших многие перспективные направления развития разных отраслей естествознания.

В формировании квантово-механических представлений важную роль сыграла квантовая теория фотоэффекта, предложенная А. Эйнштейном в 1905 г. Именно за эту работу и вклад в теоретическую физику, а не за теорию относительности, ему в 1921 г. была присуждена Нобелевская премия по физике.

В развитие современной физики существенный вклад внесли выдающиеся ученые, среди которых следует назвать датского физика Нильса Бора (1885-1962), создавшего квантовую теорию атома, немецкого физика-теоретика Вернера Гейзенберга (1901-1976), сформулировавшего принцип неопределенности и предложившего матричный вариант квантовой механики, финского физика-теоретика Эрвина Шредингера (1887-1961), разработавшего волновую механику и предложившего ее основное уравнение (уравнение Шредингера), английского физика Поля Дирака, разработавшего релятивистскую теорию движения электрона и на ее основании предсказавшего существование позитрона, английского физика Эрнеста Резерфорда (1871-1937), создавшего учение о радиоактивности и строении атома, и многих других.

В первые десятилетия XX в. исследовалась радиоактивность и выдвигались идеи о строении атомного ядра. В 1938 г. сделано важное открытие: немецкие радиохимики О. Ган и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики.

В исследовании ядерных процессов важную роль играют детекторы частиц, в том числе и черенковский счетчик, принцип действия которого основан на Черенкова - Вавилова излучении света, которое возникает при движении в веществе заряженных частиц со скоростью, превосходящей фазовую скорость света в нем. Это излучение было обнаружено в 1934 г. нашим соотечественником, физиком П.А. Черенковым (1904-1990), лауреатом Нобелевской премии 1958 г., под руководством академика СИ. Вавилова (1891-1951), основателя научной школы физической оптики.

Одно из крупнейших достижений физики XX в. - это, безусловно, создание в 1947 г. транзистора выдающимися американскими физиками Д. Бардиным, У. Браттейном и У. Шокли, удостоенными в 1956 г. Нобелевской премии по физике. С развитием физики полупроводников и созданием транзистора зарождалась новая технология - полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания - микроэлектроника. В 1958 г. собрана первая интегральная схема в виде пластины из монокристалла кремния площадью несколько квадратных сантиметров, на которой располагались два транзистора и RC-цепи. Современный микропроцессор размером 1,8 см содержит около 8 млн транзисторов. Если размеры элементов первых транзисторов составляли доли миллиметра, то сегодня они равны 0,35 мкм. Это современный технологический уровень. В последнее время разрабатывается технология формирования элементов нанометровых размеров.

Создание квантовых генераторов на основе вынужденного излучения атомов и молекул - еще одно важнейшее достижение физики XX в. Первый квантовый генератор на молекулах аммиака - источник электромагнитного излучения в СВЧ-диапазоне (мазер) - разработан в 1954 г. российскими физиками Н.Г. Басовым, A.M. Прохоровым и американским ученым Ч. Таунсом. В 1964 г. за эту работу им присуждена Нобелевская премия по физике. К настоящему времени разработано много модификаций квантовых генераторов, в том числе и оптических квантовых генераторов, называемых лазерами, получивших широкое практическое применение. Появились уникальные лазеры - химические, атомные и другие, которые открывают перспективные направления лазерных технологий.

Высокотемпературная сверхпроводимость, открытая в 1986 г. немецким физиком Г. Беднорцем и швейцарским ученым А. Мюллером, удостоенными Нобелевской премии 1987 г., - вне всякого сомнения выдающееся достижение современного естествознания. Созданию единой теории фундаментальных взаимодействий, управлению термоядерным синтезом - этим и многим другим проблемам современной физики уделяется большое внимание, и в их решении принимают участие ученые многих стран.

Всю историю физики можно условно разделить на три основных этапа:

· древний и средневековый,

· классической физики,

· современной физики .

Первый этап развития физики иногда называют донаучным. Однако такое название нельзя считать полностью оправданным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности. Это самый длительный этап. Он охватывает период от времен Аристотеля до начала XVII в., поэтому и называется древним и средневековым этапом .

Начало второго этапа – этапа классической физики – связывают с одним из основателей точного естествознания – итальянским ученым Галилео Галилеем и основоположником классической физики, английским математиком, механиком, астрономом и физиком Исааком Ньютоном. Второй этап продолжался до конца XIX в.

К началу XX столетия появились экспериментальные результаты, которые трудно было объяснить в рамках классических представлений. В этой связи был предложен совершенно новый подход – квантовый, основанный на дискретной концепции. Квантовый подход впервые ввел в 1900 г. немецкий физик Макс Планк (1858–1947), вошедший в историю развития физики как один из основоположников квантовой теории. Его трудами открывается третий этап развития физики – этап современной физики , включающий не только квантовые, но и классические представления.

Дадим краткую характеристику каждого из этапов. Принято считать, что первый этап открывает геоцентрическая система мировых сфер, разработанная Аристотелем. Учение о геоцентрической системе мира начиналось с геоцентрической системы кольцевых мироустроений еще гораздо раньше – в VI в. до н. э. Ее предложил Анаксимандр (ок. 610 – после 547 до н. э.), древнегреческий философ, представитель Милетской школы. Данное учение было развито Евдоксом Книдским (ок. 406 – ок. 355 до н. э.), древнегреческим математиком и астрономом. Геоцентрическая система Аристотеля родилась, таким образом, на подготовленной его предшественниками идейной почве.

Переход от эгоцентризма – отношения к миру, которое характеризуется сосредоточенностью на своем индивидуальном «я», к геоцентризму – первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, была дополнена аналогичной невидимой полусферой до полной небесной сферы. Мир стал как бы более завершенным – специфическим, но оставаясь ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов – обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтверждались гораздо позднее – в эпоху первых кругосветных путешествий и великих географических открытий, т. е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел уже доживало свои последние годы.

Почти полторы тысячи лет отделяет завершенную геоцентрическую систему греческого астронома Клавдия Птоломея (ок.90 – ок. 160) от достаточно совершенной гелиоцентрической системы (рис. 3.1) польского математика и астронома Николая Коперника (1473–1543). Вершиной гелиоцентрической системы можно считать законы движения планет, открытые немецким астрономом Иоганном Кеплером (1571–1630), одним из творцов астрономии нового времени.

Рис. 3.1. Система мира по Копернику (в центре Солнце)

Астрономические открытия Галилео Галилея и его физические эксперименты, а также общие динамические законы механики вместе с универсальным законом всемирного тяготения, сформулированные Исааком Ньютоном, положили начало классическому этапу развития физики .

Между названными этапами нет четких границ. Для физики и естествознания в целом характерно в большей степени поступательное развитие: законы Кеплера – венец гелиоцентрической системы с весьма длительной историей, начавшейся еще в древние времена; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики.

Механика Аристотеля разделялась на земную и небесную, т. е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов его механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной.

Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил применять закон инерции Аристотеля, характеризующий равномерное движение небесных тел вокруг Земли, для земных тел при их свободном движении в горизонтальном направлении. Мысленно расчленяя всевозможные земные тела на отдельные части, он установил для них закон одинаково быстрого (или одинаково равномерно ускоренного) свободного падения независимо от их массы, когда свободное падение в вертикальном направлении к центру Земли происходит в идеальных условиях, без какого бы то ни было сопротивления, т. е. в пустоте. Этот закон находится в противоречии с канонизированным аристотелевским учением, в соответствии с которым «природа не терпит пустоты», и весомые тела падают в реальных условиях под действием присущей им силы тяжести на самом деле тем быстрее, чем больше их массы.

Кеплер и Галилей, отталкиваясь таким образом от первоначальных представлений, радикально пересмотрели всю механику. В результате перехода от геоцентризма к гелиоцентризму они пришли к своим кинематическим законам, которые предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформулированными им классическими динамическими законами, включая универсальный закон всемирного тяготения. При этом из «Математических начал натуральной философии» – фундаментального труда Исаака Ньютона – можно заключить, что его динамические законы не только следуют из соответствующих кинетических законов Кеплера и Галилея, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

Законы Кеплера послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, сделанных в 1781 г. английским астрономом и оптиком Уильямом Гершелем (1738–1822), английский астроном и математик Джон Кауч Адамс (1819–1892) и французский астроном Урбен Жан Жозеф Леверье (1811–1877) независимо друг от друга и почти одновременно теоретически предсказали существование еще одной – заурановой планеты, которую обнаружил на небе в 1846 г. немецкий астроном Иоганн Галле (1812–1910). Эта планета носит название Нептун. Затем американский астроном Персиваль Ловелл (1855–1916) аналогично предсказал в 1905 г. существование еще одной заурановой планеты и организовал в созданной им обсерватории ее систематические поиски, в результате которых молодой американский любитель астрономии открыл в 1930 г. искомую новую планету – Плутон.

Стремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется также крупными достижениями и в других отраслях физики: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Ограничимся перечислением некоторых наиболее важных достижений. Были установлены опытные газовые законы. Предложено уравнение кинетической теории газов. Сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики. Открыты законы Кулона, Ома и электромагнитной индукции. Явления интерференции, дифракции и поляризации света получили волновое истолкование. Установлены законы поглощения и рассеивания света.

Конечно, можно было бы назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Джеймсом Клерком Максвеллом. Максвелл является не только создателем классической электродинамики, но и одним из основоположников статистической физики. Он установил статистическое распределение молекул по скоростям, названное его именем. Развивая идеи Майкла Фарадея (1791–1867), он создал теорию электромагнитного поля (уравнения Максвелла), которая не только объясняла многие известные к тому времени электромагнитные явления, но и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и теория Максвелла оказалась не всемогущей.

В конце прошлого столетия при изучении спектра излучения абсолютно черного тела была экспериментально установлена закономерность распределения энергии в спектре излучения. Экспериментальные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. В рамках классической электродинамики Максвелла не удалось объяснить закономерность распределения энергии в спектре излучения абсолютно черного тела. Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости абсолютно черного тела было найдено в 1900 г. Максом Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями – квантами, причем энергия кванта пропорциональна частоте колебания.

Характерная особенность третьего этапа развития физики – современного этапа – заключается в том, что наряду с классическими широко внедряются квантовые представления, на основании которых объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц, и в связи с которыми возникли новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

Наука возникла в глубокой древности как попытка осмыслить окружающие явления, взаимосвязь природы и человека. Сначала она не разделялась на отдельные направления, как сейчас, а объединялась в одну общую науку - философию. Астрономия выделилась в отдельную дисциплину раньше физики и является наряду с математикой и механикой одной из древнейших наук. Позже наука о природе так же выделилась в самостоятельную дисциплину. Древнегреческий учёный и философ Аристотель назвал физикой одно из своих сочинений.

Одна из главных задач физики - объяснить строение окружающего нас мира и происходящие в нём процессы, понять природу наблюдаемых явлений. Другая важная задача - выявить и познать законы, которым подчиняется окружающий мир. Познавая мир, люди используют законы природы. Вся современная техника основана на применении законов, открытых учёными.

С изобретением в 1780-х гг. парового двигателя началась промышленная революция. Первый паровой двигатель изобрёл английский учёный Томас Ньюкомен в 1712 г. Паровая машина пригодная для использования в прмышленности, впервые создана в 1766 г. русским изобретателем Иваном Ползуновым (1728-1766).Шотландец Джеймс Уатт усовершенствовал конструкцию. Созданный им в 1782 г. двухтактный паровой двигатель приводил в движение машины и механизмы на фабриках.

Сила пара приводила в движение насосы, поезда, пароходы, прядильные станки и множество других машин. Мощным толчком для развития техники послужило создание английским физиком «гениальным самоучкой» Майклом Фарадеем в 1821 г. первого электродвигателя. Создание в 1876г. немецким инженером Николаусом Отто четырёхтактного двигателя внутреннего сгорания открыло эру автомобилестроения, сделало возможным существование и повсеместное использование автомобилей, тепловозов, судов и других технических объектов.

То, что раньше считалось фантастикой, сейчас становится реальной жизнью, которую мы уже не представляем без аудио- и видеотехники, персонального компьютера, сотового телефона и Интернета. Их возникновение обязано открытиям сделанным в различных областях физики.

Однако и развитие техники способствует прогрессу в науке. Создание электронного микроскопа позволило заглянуть внутрь вещества. Создание точных измерительных приборов сделало возможным более точный анализ результатов экспериментов. Огромный прорыв в области изучения космоса был связан именно с появлением новых современных приборов и технических устройств.


Таким образом, физика как наука играет огромную роль в развитии цивилизации. Она перевернула самые фундаментальные представления людей - представления о пространстве, времени, устройстве Вселенной, позволив человечеству совершить качественный скачок в своём развитии. Успехи физики позволили сделать ряд фундаментальных открытий в других естественных науках, в частности, в биологии. Развитие физики в наибольшей степени обеспечивало бурный прогресс медицины.

С успехами физики связаны и надежды учёных на обеспечение человечества неиссякаемыми альтернативными источниками энергии, использование которых позволит решить многие серьёзные экологические проблемы. Современная физика призвана обеспечить понимание самых глубинных основ мироздания, появления и развития нашей Вселенной, будущего человеческой цивилизации.