Боковой поверхностью призмы называется. Прямая призма — Гипермаркет знаний

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

«Урок теорема Пифагора» - Теорема Пифагора. Определить вид четырехугольника KMNP. Разминка. Знакомства с теоремой. Определить вид треугольника: План урока: Исторический экскурс. Решение простейших задач. И обрете лестницу долготою 125стоп. Вычислите высоту CF трапеции ABCD. Доказательство. Показ картинок. Доказательство теоремы.

«Объём призмы» - Понятие призмы. Прямая призма. Объем исходной призмы равен произведению S · h. Как найти объем прямой призмы? Призму можно разбить на прямые треугольные призмы с высотой h. Проведение высоты треугольника ABC. Решение задачи. Цели урока. Основные шаги при доказательстве теоремы прямой призмы? Изучение теоремы об объеме призмы.

«Многогранники призма» - Дайте определение многогранника. DABC – тетраэдр, выпуклый многогранник. Применение призм. Где применяются призмы? ABCDMP – октаэдр, составлен из восьми треугольников. ABCDA1B1C1D1 – параллелепипед, выпуклый многогранник. Выпуклый многогранник. Понятие многогранника. Многогранник А1А2..АnB1B2..Bn- призма.

«Призма 10 класс» - Призмой называется многогранник у которого грани находятся в параллельных плоскостях. Применение призмы в быту. Sбок.= Pоснован. + h Для прямой призмы: Sп.п = Pоснов. h + 2Sоснов. Наклонная. Правильная. Прямая. Призма. Формулы нахождения площади. Применение призмы в архитектуре. Sп.п = Sбок.+2Sоснован.

«Доказательство теоремы Пифагора» - Геометрическое доказательство. Значение теоремы Пифагора. Теорема Пифагора. Доказательство Евклида. «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов». Доказательства теоремы. Значение теоремы состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Общие сведения о прямой призме

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S = a 1 l + a 2 l + ... + a n l = pl,

где a 1 ,а n - длины ребер основания, р - периметр основания призмы, а I - длина боковых ребер. Теорема доказана.

Практическое задание

Задача (22) . В наклонной призме проведено сечение , перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 411). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Обобщение пройденной темы

А теперь давайте попробуем с вами подвести итоги пройденной темы о призме и вспомним, какими свойствами обладает призма.


Свойства призмы

Во-первых, у призмы все ее основания являются равными многоугольниками;
Во-вторых, у призмы все ее боковые грани являются параллелограммами;
В-третьих, у такой многогранной фигуры, как призма, все боковые ребра равны;

Также, следует вспомнить, что такие многогранники, как призмы могут быть прямыми и наклонными.

Какая призма называется прямой?

Если же у призмы боковое ребро расположено перпендикулярно плоскости ее основания, то такая призма носит название прямой.

Не будет лишним напомнить, что боковые грани прямой призмы являются прямоугольниками.

Какую призму называют наклонной?

А вот если же у призмы боковое ребро не расположено перпендикулярно плоскости ее основания, то можно смело утверждать, что это наклонная призма.

Какую призму называют правильной?



Если у основания прямой призмы лежит правильный многоугольник, то такая призма является правильной.

Теперь вспомним свойства, которыми обладает правильная призма.

Свойства правильной призмы

Во-первых, всегда основаниями правильной призмы служат правильные многоугольники;
Во-вторых, если рассматривать у правильной призмы боковые грани, то они всегда бывают равными прямоугольниками;
В-третьих, если сравнивать размеры боковых ребер, то в правильной призме они всегда равны.
В-четвертых, правильная призма всегда прямая;
В-пятых, если же в правильной призмы боковые грани имеют форму квадратов, то такую фигуру, как правило, называют полуправильным многоугольником.

Сечение призмы

А теперь давайте рассмотрим сечение призмы:



Домашнее задание

А теперь давайте попробуем закрепить изученную тему с помощью решения задач.

Давайте нарисуем наклонную треугольную призму, у которой расстояние между ее ребрами будет равно: 3 см, 4 см и 5 см, а боковая поверхность этой призмы будет равна 60 см2. Имея такие параметры, найдите боковое ребро данной призмы.

А вы знаете, что геометрические фигуры постоянно окружают нас не только на уроках геометрии, но и в повседневной жизни встречаются предметы, которые напоминают ту или иную геометрическую фигуру.



У каждого дома, в школе или на работе имеется компьютер, системный блок которого имеет форму прямой призмы.

Если вы возьмете в руки простой карандаш, то вы увидите, что основной частью карандаша, является призма.

Идя по центральной улице города, мы видим, что у нас под ногами лежит плитка, которая имеет форму шестиугольной призмы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .