Хромосомы. Число и морфология хромосом

Хромосомные патологии – это дефекты в генах плода, обусловленные нарушениями структуры или числа хромосом. Причиной их могут быть как мутации в клетках матери или отца (наследственные патологии), так и спонтанно появившиеся в отдельных половых клетках нарушения строения ДНК. Эти врожденные изменения касаются всех клеток организма, поэтому не поддаются никакому лечению. Часто патологии бывают настолько серьезными, что приводят к выкидышу на ранних сроках, собственно считается, что 50% всех выкидышей происходят именно из-за этого. Но не всегда, часть детей рождается с хромосомными нарушениями, такими как синдром Дауна или Эдвардса.

Однако, хромосомные патологии можно выявить на небольших сроках беременности с помощью некоторых характерных признаков, которые видны на УЗИ плода. Эти признаки называются маркерами хромосомных патологий плода.

Основные маркеры патологий – это:

  • Маленькая длина носовой кости
  • Утолщение воротникового пространства
  • Деформации лицевых костей
  • Увеличение почечных лоханок и мочевого пузыря
  • Гиперэхогенный кишечник
  • Аномалии в сердечно-сосудистой системе, такие как пороки сердца
  • Многоводие или маловодие
  • Гипоплазия или преждевременное старение плаценты
  • Отклонения в активности плода (как гиперактивность, так и редкие шевеления)
  • Гипоксия

Главным и самым достоверным из вышеперечисленных маркеров является толщина воротникового пространства. Если на 12 неделе она превышает 3 мм – независимо от наличия других маркеров назначаются дополнительные обследования.

Кроме УЗИ-маркеров существуют и другие, например нарушения уровня гормонов беременности (РАРР-А, АФП и ХГЧ), а также отклонения в картине допплерометрии.

Каждый из этих маркеров сам по себе может ничего не означать, но все же стоит провести дополнительное обследование, если выявлены сразу несколько маркеров, или если беременная входит в группу риска, то есть при следующих условиях: возраст обоих родителей старше 35 лет, в семье случались хромосомные нарушения, проживание в экологически неблагополучном районе или патогенная среда на работе. Эти обстоятельства повышают риск развития хромосомных аномалий у ребенка.

Все перечисленные выше маркеры являются условными, ни один из них не может дать стопроцентного ответа, есть ли у плода хромосомная аномалия. Для уточнения диагноза применяются следующие методы: биопсия хориона, анализ пуповинной крови и амниотической жидкости. Эти исследования позволяют точно определить хромосомный набор (кариотип) плода, что позволяет установить наличие или отсутствие в нем нарушений. Недостатком инвазивных методов является то, что происходит прокол плодного пузыря, что в 2% случаев может вызвать выкидыш преждевременные роды. Поэтому надо точно оценивать риски. Исходя из результатов УЗИ и анализов крови врачи могут рассчитать вероятность рождения ребенка с хромосомной патологией. Если полученная вероятность больше чем 1 к 1000 – назначаются инвазивные исследования.

При выявлении хромосомных патологий показано искусственное прерывание беременности, хотя решение всегда остается за родителями. Прежде чем что-то предпринимать, нужно точно выяснить у врача, какая именно патология диагностирована, какие она имеет симптомы и прогнозы. Ведь генетических аномалий существует очень много, и не все они одинаково бесперспективны.

Анализ крови на хромосомные патологии

Есть мнение, что хромосомные перестройки в генетическом коде ребёнка возникают только на фоне «плохой» наследственности. Однако научно доказано, что риск мертворождения, самоабортирования, рождения малыша с физическими и умственными отклонениями есть и у здоровых пациенток. Поэтому приказом № 572 МЗ РФ от «01» ноября 2012 г. прохождение анализов на хромосомные мутации рекомендовано всем беременным женщинам.

Стоимость диагностики патологий хромосом

  • 600 Р Альфа-фетопротеин (АФП) крови
  • 700 Р Клинический анализ крови
  • 800 Р Клинический анализ крови CITO
  • 600 Р Β-ХГЧ
  • 800 Р В-ХГЧ сito
  • 600 Р РАРР-А
  • 300 Р Забор крови

Расчет стоимости лечения Все цены

Зачем сдавать анализ на хромосомные патологии плода

Анализ позволяет распознать генные мутации до того момента, когда можно будет прервать беременность без вреда для здоровья женщины. Механизм, который запускает хромосомные перестройки и приводит к аномалиям типа синдром Дауна, Патау, Тёрнера, Эдвардса, до конца не изучен. Поэтому предпосылки к аномалиям развития плода должны быть выявлены как можно раньше.

В нашем центре в рамках пренатального скрининга помимо биохимического анализа крови может быть сделан неинвазивный тест (НИПТ), Natera (USA), информативный уже на 9 неделе беременности.

Отказ от обследования или несвоевременно проведённый генетический анализ не позволят предупредить рождение неполноценного ребёнка.

Специалисты

акушер-гинеколог, гемостазиолог, профессор, доктор медицинских наук, член-корреспондент РАН, вице-президент Российского общества акушеров-гинекологов, почетный профессор Венского университета

акушер-гинеколог высшей категории, кандидат медицинских наук

Подготовка и проведение

Оптимальный срок сдачи анализа на хромосомные патологии – 12 неделя, так как в это время наиболее выраженно проявляются признаки генетических аномалий. Кровь исследуется только после получения результатов УЗИ, в противном случае трактовка результатов будет ошибочной.

Анализ венозной крови (материал забирают на голодный желудок) покажет уровень АФП, ХГЧ, РАРР- А – веществ, которые продуцируются плодом и плацентой. По маркерам крови оценивается картина развития эмбриона, исследуется морфология (строение) ДНК, выявляются лишние или повреждённые хромосомы.

Расшифровка и расчет рисков

По результатам УЗИ расчёт рисков осуществляется, исходя из количества маркеров, обнаруженных одновременно. При обнаружении 1 маркера, например, недоразвития носовых костей, прогноз риска хромосомной патологии составляет 2%, а при сочетании 8 и более маркеров – 92%.

При расшифровке маркеров крови любые отклонения от нормативных показателей трактуются как признаки генных мутаций. На сроке 12 недель они должны быть следующими:

Недостаток белка АФП указывает на развитие аутоиммунной реакции – организм матери отвергает плод. Такое состояние чревато выкидышем и гибелью плода.

Пониженный уровень ХГЧ свидетельствует о задержке развития плода, плацентарной недостаточности. Повышение показателей позволяет предположить риск синдрома Дауна, хориокарциномы, пузырного заноса.

Низкий уровень РАРР- А говорит о недоразвитии плаценты, больших размерах плода.

Как правило, все показатели изучаются в совокупности, со «ссылкой» на результаты УЗИ.

Куда обратиться в Москве

Медицинский женский центр – единственная клиника в Москве, где работает уникальная лаборатория крови. У нас проводятся не только общеклинические исследования, но и все возможные анализы на патологии гемостаза и хромосомной структуры.

Маркеры хромосомной патологии плода расшифровка

Kecя79 тебе же гентик сказал хотя то что нашли встречается и у здоровых малышей,.Ну так и успокойся.

Подожди месяц,пройдёт всё-значит хорошо.Не пройдёт-тогда и будешь думать.
А анализ этот одинаково делается-через прокол брюшной стенки.
Моей подруге делали и то и другое сразу.И воды на анализ брали и биопсию из пуповины и из плаценты.Никаких генетических отклонений не нашли,у неё была двойня,у одного была расширена воротниковая зона.Вот тебе и УЗИ маркёры.

Моя знакомая сдала АФП и ХГЧ. ХГЧ завышен (очень). Истерики, пережевания. Бессоные ночи. Пока записывалась к генетику, выяснилось, что сдавала на 15 неделе (ровно). А в этот срок самый большой уровень ХГЧ. Но к генетику все равно пойдет. Если будет информация для вас отпишусь.

Желаю, что бы все было хорошо, и не нервничайте. Ведь малыш — это такое чудо, ради которого можно сделасть невозможное.

Попробую объяснить про эти тесты.

АФП и ХГЧ — косвенные маркеры. Т.е. известно, что у большинства зародышей с нормальными хромосомами (но не у всех!) АФП и ХГЧ находятся в таких-то пределах, а при некоторых аномалиях (но не всегда!), он повышен/ понижен. Тесты на АФП и ХГЧ — статистические, т.е. на континууме возможных результатов (распределенных по колоколообразной кривой, гауссиане) , устанавливаются некие вехи, соответстующие разным ВЕРОЯТНОСТЯМ хромосомных нарушений. И потом медики садятся и думают, где же, на какой вероятности установить «линии отреза», т.е. при каких именно величинах показателей рекомендовать дальнейшие обследования.

В статистике нельзя сделать так чтобы были и волки сыты, и овцы целы, т.е. минимизировать и «фальшивые негативы, и «фальшивые позитивы».

«Фальшивый негатив» — это когда результат нормальный, но есть патология.

«Фальшивый позитив» — это когда результат ненормальный, но патологии нет.

Для медиков гораздо важнее не упустить патологию, т.е. они стараются установить линию отреза, чтобы минимизировать «фальшивые негативы».

Т.е. получается, что ВСЕГДА при этом будет очень много фальшивых позитивов — т.е. часто обследования будут рекомендоваться людям, у котрорых никакой патологии нет.

Аналогия: представьте себе, что у вас есть сто маленьких шариков, из которых 10 — черные, а остальные белые. Они все перемешаны и Вам необходимо, вслепую, постараться выгрести черные шарики одним движением руки. Очевидно, что вы поймаете больше черных шариков, если вы схватите побольше, т.е. в вашу руку попадет и много белых шариков — это фальшивые позитивы. При этом, как бы ВЫ не старались, вы упустите хотя бы один черный шарик — это фальшивый негатив.

Я к тому, что основной побочный эффект у тестов АФП и ХГЧ — это нервотрепка родителям.

У меня с обоими детьми были и эти дурацкие маркеры, и АФП, делала пункцию, перенервничала жутко, все нормально. Думаю, что если у меня будет третий ребенок, от тестов вообще откажусь. И тогда надо было отказаться. Ведь что бы не случилось, прерывание беременности я все равно не рассматривала. Хромосомные нарушения, о которых как правило идет речь, были бы очевидны при рождении ребенка, но зная заранее все равно я бы не смогла адекватно подготовиться. Так что эти дорогостоящие тесты для меня лично все равно никакой пользы не несли.

У Вас ситуация усугубляетя тем, что в протекании беременности уже есть сложные моменты.

Пункция несет в себе риск прерывания беременности как правило 1/200, иногда меньше (в центре, где я делала, мне дали их статистику 1 /600 — это было за рубежом) — при проблемах в беременности вероятность проблем больше.

ПО результатам АФП Вам должны предоставить полученную при тесте вероятность хромосомных нарушений. Для синдрома Дауна (АФП высокий, по-моему, но может я ошибаюсь уже) рекомендуют пункцию когда вероятность по маркерам выше «линии отреза» в 1/100 (одна сотая это ВСЕ равно ОЧЕНЬ маленькая вероятность), но некоторые врачи рекомендуют и если это выше 1/ 200.

Имеет смысл сопоставить Ваш результат с шансом проблем при пункции, и посмотреть, оправдан ли риск возможных последствий. И спокойно подумать над всеми вариантами.

Прошедши это дважды, знаю, что это ОЧЕНЬ тяжелое время, поэтому всячески Вас поддерживаю. И хочу еще раз сказать, что людей, прошедших пункцию по показателям АФП и узнавших, что все нормально, в десятки раз больше, чем тех случаев, когда подозрения полтверждаются. Белых шариков, которых загребли руки АФП, гораздо больше, чем черных:):).

Хромосомные аномалии у плода: факторы риска и диагностика

Аномалии плода хромосомного типа представляют собой появление дополнительной (лишней) хромосомы или же нарушение в структуре одной из хромосом. Происходит это ещё во время внутриутробного развития.

Так, каждый знает про синдром Дауна. Это заболевание, которое развивается внутриутробно. Связано оно с появлением лишней хромосомы непосредственно в 21 паре. Благодаря диагностике, а также внешним проявлениям течения беременности, можно выявить такую патологию ещё на ранних этапах развития плода.

Причины хромосомных аномалий

Хромосомные пороки могут развиться по разным причинам. Часто это проблемы со здоровьем у матери:

  • инфекции,
  • проблемы с эндокринной системы,
  • заболевания любых внутренних органов,
  • токсикоз при беременности,
  • прежние аборты,
  • угроза выкидыша.

Большую роль играют экология, которая постоянно действует на организм женщины, а также особенности окружающей среды:

Немаловажен наследственный фактор. Мутации генов, аберрации хромосом – частые причины развития аномалий.

Уже при планировании беременности нужно задуматься о сбалансированном питании:

  1. Все основные ингредиенты должны обязательно в достаточном количестве присутствовать в меню (витамины, жиры, минералы, углеводы и белки).
  2. Нужно позаботиться о наличии в меню продуктов с микронутриентами (полиненасыщенные жирные кислоты, важные для организма микроэлементы). Так, дефицит такого элемента, как йод в организме может привести к нарушению развития мозга будущего ребёнка.

Факторы риска

Существует множество факторов риска для развития хромосомных аномалий. Со стороны матери это такие проблемы, как:

Есть риски и со стороны плода:

  • Задержка развития.
  • Многоплодная беременность.
  • Аномалии в предлежании.

Лекарства, беременность и хромосомные патологии

На плод влияют многие лекарственные препараты, которые принимает женщина во время беременности:

  • аминогликозиды токсически влияют на развитие уха и почек,
  • алоэ способствует усилению перистальтике кишечника,
  • антигистаминные средства могут вызвать тремор и заметно снижают давление,
  • андрогены – причина развития пороков плода,
  • антикоагулянты могут вызвать проблемы с костеобразованием, а также энцефалопатию,
  • атропин – причина мозговой дисфункции,
  • белладонна вызывает у плода тахикардию,
  • средства для снижения давления значительно снижают кровоток плаценте,
  • диазепам может навредить внешности будущего ребёнка,
  • кортикостероиды угнетают функциональное предназначение надпочечников, ведут к энцефалопатии,
  • кофеин поражает печень плода,
  • литий развивает пороки сердца,
  • опиаты влияют на мозговую деятельность,
  • противосудорожные средства заметно задерживают внутриутробное развитие малыша,
  • тетрациклины приводят к аномалиям скелета.

Процесс развития аномалий во внутриутробном состоянии сегодня изучен недостаточно. Именно поэтому признаки аномалий считаются условными. Среди них:

Все эти признаки могут быть и нормой развития плода, при условии подобной особенности организма ребёнка или же матери. Максимально точно убедиться в том, что присутствуют хромосомные аномалии, помогут анализы кров, инвазивные методики и УЗИ.

Диагностика

Главная задача диагностических мероприятий, которые назначаются во время беременности – выявление пороков развития плода. Сегодня есть огромное количество методов, позволяющих точно поставить диагноз или исключить наличие аномалий.

  • УЗИ назначается за всю беременность 3 раза (до 12 недель, на 20-22 неделе и 30-32 неделе).
  • Определение биохимических маркеров в сыворотке крови. ХГЧ, протеин А – отклонения от нормы могут свидетельствовать о внематочной беременности или развитии хромосомных нарушений. Альфа-фетопротеин – пониженный уровень говорит о наличии риск развития синдрома Дауна, а повышенный уровень расскажет о возможном пороке ЦНС. Эстриол – в норме должен постепенно нарастать с увеличением срока беременности.

Уже после рождения ребёнка для определения аномалий могут быть использованы любые методики из арсенала современной медицины:

  • лучевые методы (КТ, КТГ, Рентген, УЗИ),
  • эндоскопические,
  • исследования биологических материалов,
  • пробы функциональные.

Возможные патологии

Развитие многих аномалий наблюдается в конкретные периоды беременности:

  • 3 недели – эктопия сердца, отсутствие конечностей, а также сращение стоп,
  • 4 недели – отсутствие стоп, гемивертебра,
  • 5 недель – расщепление костей лица, а также такие страшные проблемы, как отсутствие кистей, стоп,
  • 6 недель – полное отсутствие нижней челюсти, а также порок сердца, хрусталиковая катаракта,
  • 7 недель – абсолютное отсутствие пальцев, развитие круглой головы, неисправимое расщепление нёба сверху, а также эпикантус,
  • 8 недель – отсутствие носовой кости, укорочение пальцев.

Последствия развития проблем хромосомного характера – самые разнообразные. Это могут быть не только внешние уродства, но и поражения, нарушения работы ЦНС. Возникшие патологии зависят от того, какая именно аномалия хромосом произошла:

  1. Если нарушено количественная характеристика хромосом, может возникнуть синдром Дауна (в 21 паре – одна лишняя хромосома), синдром Патау (тяжелейшая патология с многочисленными пороками), синдром Эдвардса (часто появляется у детей пожилых мам).
  2. Нарушение количества половых хромосом. Тогда вероятно развитие синдрома Шерешевского-Тёрнера (развитие половых желёз по неверному типу), полисомии характеризуются разными проблемами, синдрома Клайнфельтера (нарушения именно у мальчиков по X-хромосоме).
  3. Полиплоидия обычно заканчивается смертью ещё в утробе матери.

Генные мутации до конца ещё не изучены учёными. Причины их развития до сих пор исследуются специалистами. Но уже у 5% всех беременных в мире выявляют генетические аномалии плода.

Морфология хромосом

Хромосомы – структуры ядра клетки, являющиеся носителями генов и определяющие наследственные свойства организма. Поэтому ядро является информационной системой клетки. Термин «Хромосома» предложен в

1888 г. немецким ученым В. Вальдейером.

В хромосомах сконцентрировано 99 % ДНК клетки. Основу хромосомы составляет ДНК (40 %), связанная с основными белками – гистонами (40 %) в нуклеопротеид. Хромосомы формируются в результате спирализации (укорочения, утолщения) нитей хроматина. Их химическая структура аналогична хроматину. Хроматин представляет собой комплекс ДНК и белков-гистонов.В составе хроматина имеются также негистоновые белки (белки кислые), РНК, липиды, ионы кальция и магния.Хромосомыформируются в результате спирализации хроматина. Благодаря спирализации хромосомной ДНК и упаковке ее белками, длинная молекула ДНК на стадии метафазы митоза максимально укорачивается, и хромосома различима в световой микроскоп как двойная структура. При этом нуклеопротеидные нити хроматина укорачиваются, уплотняются, превращаясь в компактные структуры – хромосомы.

На вид хромосомы представляют собой удлиненные палочковидные структуры, имеющие два плеча , разделенные первичной перетяжкой (центромерой). Центромера – область хромосомы, к которой прикрепляются нити веретена деления. В соматических клетках (клетках тела) содержатся гомологичные хромосомы, всего 23 пары. Каждая пара хромосом состоит из одной «материнской» (из яйцеклетки) и одной «отцовской» (из сперматозоида). Обе они гомологичны, т. е. одинаковы по размеру, форме, набору генов. Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух хромосом.

У человека около 100 000 генов, расположенных во всех хромосомах, по несколько тысяч в каждой.

Строение хромосомы (рис. 25):

1) плечи хромосомы;

2) первичная перетяжка центромера , которая представляет собой утонченный неспирализованный участок хромосомы, делящий хромосому на 2 части (плечи хромосомы);

3) кинетохор , расположенный в области центромеры – сократительные (фибриллярные) нити, регулирующие движение хромосом во время деления клетки. К кинетохору присоединяются нити веретена деления, которые разводят хромосомы к полюсам клетки;

4) у некоторых хромосом встречается вторичная перетяжка (ядрышковый организатор хромосом ) – участок хромосомы, который отвечает за синтез ядрышек и состоит из РНК и белка.

Рис . 25. Форма и структура хромосом. Форма хромосом : а – одноплечая (акроцентрическая); б – неравноплечая (субметацентрическая); в – равноплечая (метацентрическая).

Структура хромосомы : 1 –центромера (первичная перетяжка); 2 – вторичная перетяжка; 3 – хромонема; 4 – полухроматиды; 5– хромомера; 6– матрикс; 7– спутник; 8 – вторичная перетяжка (участок хромосомы, отвечающий за синтез ядрышек); 9– эухроматиновый участок; 10 – гетерохроматиновый участок; 11– кинетохор.

Структурной основой хромосомы являются спирально закрученные нити ДНК – хромонемы (рис. 25). Основное вещество хромосомы, в которое погружены хромонемы – матрикс. Гетерохроматиновые участки находятся в сильно спирализованном состоянии (состоянии конденсированного хроматина). Они представляют собой уплотненные участки хромосом, напоминающие бусины и называются хромомерами . Имеются также эухроматиновые участки – участки деспирализующегося хроматина. Некоторые хромосомы имеют спутник – округлое или палочковидное тело, который с хромосомой соединяется тонкой хроматиновой нитью.

В зависимости от расположения центромеры различают следующие морфологические типы хромосом :

1) равноплечие (метацентрические – центромера расположена по середине хромосомы, и поэтому по длине плечи одинаковые);

2) неравноплечие (субметацентрические – центромера смещена к одному из краев, и поэтому по длине плечи разные);

3) одноплечие (акроцентрические – центромера расположена в теломерном участке хромосомы, и поэтому она имеет одно плечо).

Различают гаплоидный набор хромосом в половых клетках (n) и диплоидный набор хромосом в соматических клетках (2n). Совокупность генов в гаплоидном наборе хромосом называется геномом.

Кариотип – совокупность количественных (число, величина) и качественных признаков (форма) диплоидного набора хромосом в соматической клетке.

Правила хромосом

1. Постоянства числа хромосом – у каждого вида число хромосом постоянно.

2. Парности (гомологичности) – хромосомы образуют пары, которые формируются в зиготе, причем одна из хромосом – материнская, а вторая – отцовская (у человека 23 пары, у дрозофилы – 4 пары).

3. Индивидуальности – каждая пара хромосом в кариотипе отличается от других пар хромосом, характеризуется своими особенностями.

4. Непрерывности – каждая хромосома воспроизводит себе подобную, что обусловлено удвоением хромосом с последующим делением клеток.

В 1972–1973 гг. разработан метод дифференциальной G-окраски хромосом. При окраске основными красителями разные участки хромосом дают разную реакцию. Одни участки интенсивно окрашиваются. Их назвали гетерохроматиновыми. Другие участки слабо окрашиваются. Они названы эухроматиновыми. Под микроскопом каждая окрашенная хромосома имеет характерную для нее последовательность окрашенных и слабо окрашенных полос (сегментов). Это позволяет идентифицировать хромосомы и определять, в каком ее сегменте произошли нарушения.

Морфология хромосом

Световая микроскопия. В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора ) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

· равноплечие, или метацентрические (с центромерой посередине),

· неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов),

· палочковидные, или акроцентрические (с центромерой, расположенной практическина конце хромосомы),

· точковые -очень небольшие, форму которых трудно определить

Совокупность всех структурных и количественных особенностей полного набора хромосом, характерного для клеток конкретного вида живых организмов, называется кариотипом.

Кариотип будущего организма формируется в процессе слияния двух половых клеток (сперматозоида и яйцеклетки). При этом объединяются их хромосомные наборы. Ядро зрелой половой клетки содержит половинный набор хромосом (для человека – 23). Подобный одинарный набор хромосом, аналогичный таковому в половых клетках, называется гаплоидным и обозначается – n. При оплодотворении яйцеклетки сперматозоидом в новом организме воссоздаётся специфический для данного вида кариотип, включающий у человека 46 хромосом. Полный состав хромосом обычной соматической клетки является диплоидным (2n). В диплоидном наборе каждая хромосома имеет аналогичную по размеру и расположению центромеры другую парную хромосому. Такие хромосомы называются гомологичными. Гомологичные хромосомы не только похожи друг на друга, но и содержат гены, отвечающие за одни и те же признаки.

Кариотип женщины в норме содержит две Х-хромосомы, и его можно записать – 46, ХХ. Кариотип мужчины включает Х- и Y-хромосомы (46, ХY). Все остальные 22 пары хромосом получили название аутосомы.
Группы аутосом:

· В группу А входят 3 пары самых длинных хромосом (1, 2, 3-я);

· группа В объединяет 2 пары крупных субметацентрических хромосом (4 и 5-я).

· группа С, включающая 7 пар средних субметацентрических аутосом (с 6-й по 12-ю). По морфологическим особенностям хромосому Х трудно отличить от этой группы.

· Средние акроцентрические хромосомы 13, 14 и 15-й пар входят в группу D.

· Три пары мелких субметацентрических хромосом составляют группу Е (16, 17 и 18-я).

· Самые маленькие метацентрические хромосомы (19 и 20) составляют группу F.

21 и 22-я пары коротких акроцентрических хромосом включены в группу G. Y-хромосома морфологически очень похожа на аутосомы этой группы.

23.Хромосомная теория Т. Моргана.

Хромосомная теория наследственности - теория, согласно которой передача наследственной информации в ряду поколений связана с передачей хромосом, в которых в определённой и линейной последовательности расположены гены.

  1. Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.
  2. Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.
  3. Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.
  4. В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.
  5. Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
  6. На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

Работы Т. Моргана и его сотрудников не только подтвердили значение

хромосом как основных носителей наследственного материала представленного отдельными генами, но и установили линейность расположения их по длине хромосомы.

Доказательством связи материального субстрата наследственности и изменчивости с хромосомами было, с одной стороны, строгое соответствие открытых Г. Менделем закономерностей наследования признаков поведению хромосом в ходе митоза, при мейозе и оплодотворении. С другой стороны, в лаборатории Т. Моргана был обнаружен особый тип наследовани признаков, который хорошо объяснялся связью соответствующих генов с Х хромосомой. Речь идет о сцепленном с полом наследовании окраски глаз у дрозофилы.

Представление о хромосомах как носителях комплексов генов было высказано на основе наблюдения сцепленного наследования ряда родительских признаков друг с другом при передаче их в ряду поколений. Такое сцепление неальтернативных признаков было объяснено размещением соответствующих генов в одной хромосоме, которая представляет собой достаточно устойчивую структуру, сохраняющую состав генов в ряду поколений клеток и организмов.

Согласно хромосомной теории наследственности, совокупность генов,

входящих в состав одной хромосомы, образует группу сцепления. Каждая хромосома уникальна по набору заключенных в ней генов. Число групп сцепления в наследственном материале организмов данного вида определяется, таким образом, количеством хромосом в гаплоидном наборе их половых клеток. При оплодотворении образуется диплоидный набор, в котором каждая группа сцепления представлена двумя вариантами -отцовской и материнской хромосомами, несущими оригинальные наборы аллелей соответствующего комплекса генов.

Представление о линейности расположения генов в каждой хромосоме возникло на основе наблюдения нередко возникающей рекомбинации (взаимообмена) между материнским и отцовским комплексами генов, заключенными в гомологичных хромосомах. Было установлено, что частота

рекомбинации характеризуется определенным постоянством для каждой пары генов в данной группе сцепления и различна для разных пар. Это наблюдение дало возможность высказать предположение о связи частоты рекомбинации с последовательностью расположения генов в хромосоме и процессом кроссинговера, происходящим между гомологами в профазе I мейоза (см. разд. 3.6.2.3).

Представление о линейном распределении генов хорошо объясняло зависимость частоты рекомбинации от расстояния между ними в хромосоме.

Открытие сцепленного наследования неальтернативных признаков легло в основу разработки методики построения генетических карт хромосом с использованием гибридологического метода генетического анализа.



Таким образом, в начале XX в. была неопровержимо доказана роль хромосом как основных носителей наследственного материала в эука-риотической клетке. Подтверждение этому было получено при изучении химического состава хромосом.

24. Деление соматических клеток. Хар-ка фаз митоза.

Деление соматической клетки и ее ядра (митоз) сопровождается сложными многофазными трансформациями хромосом: 1) в процессе митоза происходит удвоение каждой хромосомы на основе комплементарной репликации молекулы ДНК с образованием двух сестринских нитевидных копий (хроматид), соединенных в области центромеры; 2) в последующем сестринские хроматиды разъединяются и эквивалентно распределяются по ядрам дочерних клеток.

В результате в делящихся соматических клетках поддерживается идентичность хромосомного набора и генетического материала.

Отдельно следует сказать о нейронах - высокодифференцированных постмитотических клетках, не претерпевающих клеточных делений на протяжении жизни. Компенсаторные возможности нейронов в ответ на действие повреждающих факторов ограничиваются внутриклеточной регенерацией и репарацией ДНК в неделящемся ядре, чем в значительной степени обусловлена специфика нейропатологических процессов наследственной и ненаследственной природы.

Митоз - сложное деление ядра клетки, биологическое значение которого заключается в точном идентичном распределении дочерних хромосом с содержащейся в них генетической информацией между ядрами дочерних клеток, в результате этого деления ядра дочерних клеток имеют набор хромосом, по количеству и качеству идентичный таковому в материнской клетки.

Хромосомы - основной субстрат наследственности, они - та единственная структура, для которой доказана самостоятельная способность к редупликации. Все другие органоиды клетки, способные к редупликации, осуществляют ее под контролем ядра. В связи с этим важно сохранить постоянство числа хромосом и равномерно распределить их между дочерними клетками, что и достигается всем механизмом митоза. Такой способ деления в клетках растений был открыт в 1874 г. русским ботаником И. Д. Чистяковым а в клетках животных - в 1878 г. русским гистологом П. И. Перемежко (1833-1894).

В процессе митоза (рис. 2.15) последовательно протекает пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. Эти фазы, непосредственно следующие друг за другом, связаны незаметными переходами. Каждая предыдущая обусловливает переход к последующей.

В клетке, вступающей в деление, хромосомы приобретают вид клубка из множества тонких, слабо спирализованных нитей. В это время каждая хромосома состоит из двух сестринских хроматид. Образование хроматид происходит по матричному принципу в S-период митотического цикла как следствие репликации ДНК.

В самом начале профазы , а иногда и до ее наступления центриоль делится на две, и они расходятся к полюсам ядра. Одновременно хромосомы претерпевают процесс скручивания (спирализации), вследствие чего значительно укорачиваются и утолщаются. Хроматиды несколько отходят друг от друга, оставаясь связанными лишь центромерами. Между хроматидами появляется щель. К концу профазы в животных клетках вокруг центриолей образуется лучистая фигура. В большинстве растительных клеток центриолей нет.

К концу профазы ядрышки исчезают, ядерная оболочка под действием ферментов из лизосом растворяется, хромосомы оказываются погруженными в цитоплазму. Одновременно появляется ахроматиновая фигура, которая состоит из нитей, тянущихся от полюсов клетки (если есть центриоли, то от них). Ахроматиновые нити прикрепляются к центромерам хромосом. Образуется характерная фигура, напоминающая веретено. Электронно-микроскопические исследования показали, что нити веретена - это трубочки,канальцы.

В прометафазе в центре клетки находится цитоплазма, имеющая незначительную вязкость. Погруженные в нее хромосомы направляются к экватору клетки.

В метафазе хромосомы находятся в упорядоченном состоянии в области экватора. Хорошо видны все хромосомы, благодаря чему изучение кариотипов (подсчет числа, изучение форм хромосом) проводится именно в этой стадии. В это время каждая хромосома состоит из двух хроматид, концы которых разошлись. Поэтому на метафазных пластинках (и идиограммах из метафазных хромосом) хромосомы имеют А-образную форму. Изучение хромосом проводится именно в этой стадии.

В анафазе каждая хромосома продольно расщепляется по всей ее длине, в том числе и в области центромеры, точнее сказать, происходит расхождение хроматид, которые после этого становятся сестринскими, или дочерними, хромосомами. Они имеют палочкообразную форму, изогнутую в области первичной перетяжки. Нити веретена сокращаются, направляются к полюсам, а за ними начинают расходиться к полюсам и дочерние хромосомы. Расхождение их осуществляется быстро и всех одновременно, как «по команде». Это хорошо показывают кинокадры делящихся клеток. Бурные процессы происходят и в цитоплазме, которая на кинопленке напоминает кипящую жидкость.

В телофазе дочерние хромосомы достигают полюсов. После этого хромосомы деспирализуются, теряют ясные очертания, вокруг них формируются ядерные оболочки. Ядро приобретает строение, сходное с интерфазным материнской клетки. Восстанавливается ядрышко.

25. Половые клетки человека, их строение. Типы строения яйцеклеток.

Для участия в половом размножении в родительских организмах вырабатываются гаметы - клетки, специализированные к обеспечению генеративной функции.

Слияние материнской и отцовской гамет приводит к

возникновению зиготы - клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития.

У некоторых организмов зигота образуется в результате объединения гамет, неотличимых по строению. В таких случаях говорят об изогамии.

У большинства видов по структурным и функциональным признакам половые клетки делятся на материнские (яйцеклетки ) и отцовские (сперматозоиды ). Как правило, яйцеклетки и сперматозоиды вырабатываются разными организмами - женскими (самки) и мужскими (самцы). В подразделении гамет на яйцеклетки и сперматозоиды, а особей на самок и самцов заключается явление полового диморфизма (рис. 5.1; 5.2). Наличие его в природе отражает различия в задачах, решаемых в процессе полового размножения мужской или женской гаметой, самцом или самкой.

Мужские половые клетки человека - сперматозоиды , или спермии, длиной около 70 мкм, имеют головку, шейку и хвост.

Сперматозоид покрыт цитолеммой, которая в переднем отделе содержит рецептор -обеспечивающий узнавание рецепторов яйцеклетки.

Головка сперматозоида включает небольшое плотное ядро с гаплоидным набором хромосом. Передняя половина ядра покрыта плоским мешочком, составляющим чехлик сперматозоида. В нем располагается акросома (от греч. асго - верхушка, soma - тело),

состоящая из видоизмененного комплекса Гольджи. Акросома содержит набор ферментов. В ядре сперматозоида человека, занимающего

основную массу головки, содержится 23 хромосомы, одна из которых является половой (X или Y), остальные - аутосомами. Хвостовой отдел сперматозоида состоит из промежуточной, главной и терминальной частей.

При исследовании сперматозоонов под электронным микроскопом обнаружено, что протоплазма головки его имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоонов к неблагоприятным влияниям внешней среды. Например, они в меньшей степени повреждаются ионизирующей радиацией по сравнению с незрелыми половыми клетками.

Все сперматозооны несут одноименный (отрицательный) электрический заряд, что препятствует их склеиванию.

Человек выделяет около 200 млн. сперматозоидов

Яйцеклетки, или овоциты (от лат. ovum - яйцо), созревают в неизмеримо меньшем количестве, чем сперматозоиды. У женщины в течение полового цикла 24-28 дней) созревает, как правило, одна яйцеклетка. Таким образом, за детородный период образуются около 400 зрелых яйцеклеток.

Выход овоцита из яичника называется овуляцией . Вышедший из яичника овоцит окружен венцом фолликулярных клеток, число которых достигает 3-4 тыс. Он подхватывается бахромками маточной трубы (яйцевода) и продвигается по ней. Здесь заканчивается созревание половой клетки. Яйцеклетка имеет шаровидную форму, больший, чем у спермия, объем цитоплазмы, не обладает способностью самостоятельно передвигаться.

Строение. Яйцеклетка человека имеет диаметр около 130 мкм. К цитолемме прилежат блестящая, или прозрачная, зона и далее слой фолликулярных клеток. Ядро женской половой клетки имеет гаплоидный набор хромосом с X-половой хромосомой, хорошо выраженное ядрышко, в кариолемме много поровых комплексов. В период роста ооцита в ядре происходят интенсивные процессы синтеза иРНК, рРНК.

В цитоплазме развиты аппарат синтеза белка (эндоплазматическая сеть, рибосомы) и аппарат Гольджи. Количество митохондрий умеренно, они расположены около желточного ядра, где идет интенсивный синтез желтка, клеточный центр отсутствует. Аппарат Гольджи на ранних стадиях развития располагается около ядра, а в процессе созревания яйцеклетки смещается на периферию цитоплазмы.

Яйцеклетки покрыты которые выполняют защитную функцию, обеспечивают необходимый тип обмена веществ, у плацентарных млекопитающих служат для внедрения зародыша в стенку матки, а также выполняют и другие функции.

Цитолемма яйцеклетки имеет микроворсинки, располагающиеся между отростками фолликулярных клеток. Фолликулярные клетки выполняют трофическую и защитную функции.

Яйцеклетки значительно крупнее, чем соматические клетки. Внутриклеточная структура цитоплазмы в них специфична для каждого вида животных, чем обеспечиваются видовые (а нередко, и индивидуальные) особенности развития. В яйцеклетках содержится ряд веществ, необходимых для развития зародыша. К их числу относится питательный материал (желток).

Классификация яйцеклеток основывается на признаках наличия, количества и распределения желтка (lecithos), представляющего собой белково-липидное включение в цитоплазме, используемое для питания зародыша.

Различают безжелтковые (алецитальные), маложелтковые (олиголецитальные), среднежелтковые (мезолецитальные), многожелтковые (полилецитальные) яйцеклетки.

У человека наличие малого количества желтка в яйцеклетке обусловлено развитием зародыша в организме матери.

Полярность яйцеклеток. При малом количестве желтка в яйцеклетке он обычно распределен в цитоплазме равномерно и ядро располагается примерно в центре. Такие яйцеклетки называют изолецитальными (от греч. изос - равный). У большинства позвоночных желтка много, и он распределен в цитоплазме яйцеклетки неравномерно. Это анизолециталъные клетки. Основная масса желтка скапливается у одного из полюсов клетки - вегетативного полюса. Такие яйцеклетки называют телолецйтальными (от греч. телос - конец). Противоположный полюс, к которому оттесняется свободная от желтка активная цитоплазма, называют анималъным. Если желток все же погружен в цитоплазму и не обособлен от нее в виде отдельной фракции, как у осетровых и земноводных, яйцеклетки называют умеренно телолецитальными. Если желток полностью отделен от цитоплазмы, как у амниот, то это резко телолецитальные яйцеклетки.

26.Репродукция живого. Классификация способов размножения.

Размножение, или репродукция,- одно из основных свойств, характеризующих жизнь. Под размножением понимается способность организмов производить себе подобных. Явление размножения тесно связано с одной из черт, характеризующих жизнь,- дискретностью. Как известно, целостный организм состоит из дискретных единиц - клеток. Жизнь почти всех клеток короче жизни особи, поэтому существование каждой особи поддерживается размножением клеток. Каждый вид организмов также дискретен, т. е. состоит из отдельных особей. Каждая из них смертна. Существование вида поддерживается размножением (репродукцией) особей. Следовательно, размножение - необходимое условие существования вида и преемственности последовательных генераций внутри вида. В основе классификации форм размножения лежит тип деления клеток: митотический (бесполое) и мейотический (половое). Формы размножения можно представить в виде следующей схемы

Бесполое размножение. У одноклеточных эукариот это - деление, в основе которого лежит митоз, у прокариот - разделение нуклеоида, а у многоклеточных организмов - вегетативное (лат. vegetatio - расти) размножение, т. е. частями тела или группой соматических клеток.

Бесполое размножение одноклеточных организмов. У одноклеточных растений и животных различают следующие формы бесполого размножения: деление, эндогония, множественное деление (шизогония) и почкование.

Деление характерно для одноклеточных (амебы, жгутиковые, инфузории). Сначала происходит митоти-ческое деление ядра, а затем в цитоплазме возникает все углубляющаяся перетяжка. При этом дочерние клетки получают равное количество информации. Органоиды обычно распределяются равномерно. В ряде случаев обнаружено, что делению предшествует их удвоение. После деления дочерние особи растут и, достигнув величины материнского организма, переходят к новому делению.

Эндогония - внутреннее почкование. При образовании двух дочерних особей - эндодиогонии - материнская дает лишь двух потомков (так происходит размножение токсоплаз-мы), но может быть множественное внутреннее почкование, что приведет к шизогонии.

Шизогония , или множественное деление,- форма размножения, развившаяся из предыдущей. Она тоже встречается у одноклеточных организмов, например у возбудителя малярии - малярийного плазмодия. При шизогонии происходит многократное деление ядра без цитокинеза, а затем и вся цитоплазма разделяется на частички, обособляющиеся вокруг ядер. Из одной клетки образуется много дочерних. Эта форма размножения обычно чередуется с половой.

Почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро, или нуклеоид. Почка растет, достигает размеров материнской особи и затем отделяется от нее. Эта форма размножения наблюдается у бактерий, дрожжевых грибов, а из одноклеточных животных - у сосущих инфузорий.

Спорообразование встречается у животных, относящихся к типу простейших, классу споровиков. Спора - одна из стадий жизненного цикла, служащая для размножения, она состоит из клетки, покрытой оболочкой, защищающей от неблагоприятных условий внешней среды. Некоторые бактерии после полового процесса способны образовывать споры. Споры бактерий служат не для размножения, а для переживания неблагоприятных условий и по своему биологическому значению отличаются от спор простейших и многоклеточных растений.

Вегетативное размножение многоклеточных ж-ных При вегетативном размножении у многоклеточных животных новый организм образуется из группы клеток, отделяющейся от материнского организма. Вегетативное размножение встречается лишь у наиболее примитивных из многоклеточных животных: губок, некоторых кишечнополостных, плоских и кольчатых червей.

У губок и гидры за счет размножения группы клеток на теле образуются выпячивания (почки). В почку входят клетки экто- и энтодермы. У гидры почка постепенно увеличивается, на ней формируются щупальца, и, наконец, она отделяется от материнской особи. Ресничные и кольчатые черви делятся перетяжками на несколько частей; в каждой из них восстанавливаются недостающие органы. Так может образоваться цепочка особей. У некоторых кишечнополостных встречается размножение стробиляцией, заключающейся в том, что полиплоидный организм довольно интенсивно растет и по достижении известных размеров начинает поперечными перетяжками делиться на дочерние особи. В это время полип напоминает стопку тарелок. Образовавшиеся особи - медузы отрываются и начинают самостоятельную жизнь. У многих видов (например, кишечнополостных) вегетативная форма размножения чередуется с половой.

Половое размножение

Половой процесс. Половое размножение отличается наличием полового процесса, который обеспечивает обмен наследственной информацией и создает условия для возникновения наследственной изменчивости. В нем, как правило, участвуют две особи - женская и мужская, которые образуют гаплоидные женские и мужские половые клетки - гаметы. В результате оплодотворения, т. е. слияния женской и мужской гамет, образуется диплоидная зигота с новой комбинацией наследственных признаков, которая и становится родоначальницей нового организма.

Половое размножение по сравнению с бесполым обеспечивает появление наследственно более разнообразного потомства. Формами полового процесса являются конъюгация и копуляция.

Конъюгация - своеобразная форма полового процесса, при которой оплодотворение происходит путем взаимного обмена мигрирующими ядрами, перемещающимися из одной клетки в другую по цитоплазматическому мостику, образуемому двумя особями. При конъюгации обычно не происходит увеличения количества особей, но происходит обмен генетическим материалом между клетками, что обеспечивает перекомбинацию наследственных свойств. Конъюгация типична для ресничных простейших (например, инфузорий), некоторых водорослей (спирогиры).

Копуляция (гаметогамия) - форма полового процесса, при которой две различающиеся по полу клетки - гаметы - сливаются и образуют зиготу. При этом ядра гамет образуют одно ядро зиготы.

Различают следующие основные формы гаметогамии: изогамия, анизогамия и оогамия.

При изогамии образуются подвижные, морфологически одинаковые гаметы, однако физиологически они различаются на «мужскую» и «женскую». Изогамия встречается у многих водорослей.

При анизогамии (гетерогамии) формируются подвижные, различающиеся морфологически и физиологически гаметы. Такой тип полового процесса характерен для многих водорослей.

В случае оогамии гаметы сильно отличаются друг от друга. Женская гамета - крупная неподвижная яйцеклетка, содержащая большой запас питательных веществ. Мужские гаметы - сперматозоиды - мелкие, чаще всего подвижные клетки, которые перемещаются с помощью одного или нескольких жгутиков. У семенных растений мужские гаметы - спермии - не имеют жгутиков и доставляются к яйцеклетке с помощью пыльцевой трубки. Оогамия характерна для животных, высших растений и многих грибов.

27. Овогенез и сперматогенез.

Сперматогенез. Семенник состоит из многочисленных канальцев. На поперечном разрезе через каналец видно, что в нем име­ется несколько слоев клеток. Они пред­ ставляют собой последовательные стадии развития сперматозоонов.

Наружный слой (зона размножения) составляют сперматогонии - клетки округлой формы; у них относительно большое ядро и значительное количество цитоплазмы. В период эмбрионального развития и после рождения до полового созревания сперматогонии делятся путем митоза, благодаря чему увеличиваются число этих клеток и сам семенник. Период интенсивного деления называется периодом размножения

После наступления половой зрелости часть сперматогониев также продолжает делиться митотически и образовывать такие же клетки, но некоторые из них перемещаются в следующую зону роста , расположенную ближе к просвету канальца. Здесь происходит значительное возрастание размеров клеток за счет увеличения количества цитоплазмы. В этой стадии они называются первичными сперматоцитами .

Третий период развития мужских гамет называется периодом созревания . В этот период происходят два быстро наступающих одно вслед за другим деления. Из каждого первичного сперматоцита сначала образуются два вторичных сперматоцита , а затем четыре сперматиды , имеющие овальную форму и значительно меньшие размеры. Деление клеток во время периода созревания сопровождается перестройкой хромосомного аппарата (происходит мейоз; см. ниже). Сперматиды перемещаются в зону, ближайшую к просвету канальцев, где из них формируются сперматозооны.

У большинства диких животных сперматогенез происходит лишь в определенные периоды года. В промежутках между ними в канальцах семенни­ ков содержатся лишь сперматогонии. Но у человека и большинства домашних животных сперматогенез происхо­ дит в течение всего года.

Овогенез . Фазы овогенеза сопостави­мы с таковыми при сперматогенезе. В этом процессе также имеется период размножения , когда интенсивно делятся овогонии - мелкие клетки с относи­тельно крупным ядром и небольшим количеством цитоплазмы. У млеко­ питающих и человека этот период заканчивается еще до рождения. Сформировавшиеся к этому времени первичные овоциты сохраняются далее без изменений многие годы. С наступлением половой зрелости периодически отдельные овоциты вступают в период роста клетки, увеличиваются, в них накапливаются желток, жир, пигменты.

В цитоплазме клетки, ее органоидах и мембранах происходят сложные морфологические и биохимические преобразования. Каждый овоцит окружается мелкими фоликулярными клетками, обеспечивающими его питание.

Далее наступает период созревания . в процессе которого происходят два последовательных деления, связанных с преобразованием хромосомного аппарата (мейоз). Кроме того, эти деления сопровождаются неравномерным разделением цитоплазмы между дочерними клетками. При делении первичного овоцита образуется одна круп­ ная клетка - вторичный овоцит , содержащая почти вся цитоплазму, и маленькая клетка, получившая название первичного полоцита . При втором делении созревания цитоплазма снова распределяется неравномерно. Образуется один крупный вторичный овоцит и вторичный полоцит. В это время первичный полоцит также может разделиться на две клет­ ки. Таким образом, из одного первичного овоцита образуются один вторичный овоцит и три полоцита (редукционные тельца). Далее из вторичного овоцита формируется яйцеклетка, а полоциты рассасываются или сохраняются на поверхности яйца, но не принимают участия в дальнейшем развитии. Неравномерное распределе­ ние цитоплазмы обеспечивает яйце­ клетке получение значительного коли­ чества цитоплазмы и питательных веществ, которые потребуются в будущем для развития зародыша.

У млекопитающих и человека периоды размножения и роста яйцеклеток проходят в фолликулах (рис. 3.5). Зрелый фолликул заполнен жидкостью, внутри него находится яйце­ клетка. Во время овуляции стенка фолликула лопается, яйцеклетка попадает в брюшную полость, а затем, как правило, в маточные трубы. Период созревания яйцеклеток протекает в трубах, здесь же происходит оплодотворение.

У многих животных овогенез и созревание яйцеклеток совершаются лишь в определенные сезоны года. У женщин обычно ежемесячно созре­ вает одна яйцеклетка, а за весь период половой зрелости - около 400. Для человека имеет существенное значение тот факт, что первичные овоциты фор­ мируются еще до рождения и затем сохраняются всю жизнь и лишь по­ степенно некоторые из них начинают переходить к созреванию и дают яйце­ клетки. Это значит, что различные не­ благоприятные факторы, которым под­ вергается в течение жизни женский организм, могут сказаться на их даль­ нейшем развитии; ядовитые вещества (в том числе никотин и алкоголь), попадающие в организм, могут никнуть в овоциты и в дальнейшем зызвать нарушения нормального развития будущего потомства.


28. Митоз, его биологическое значение.

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры ) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые - очень небольшие, форму которых трудно определить (рис.).

Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания.

Рис. 3.52. Формы хромосом:

I - телоцентрическая, II - акроцентрическая, III - субметацентрическая, IV- метацентрическая;

1 - центромера, 2 - спутник, 3 - короткое плечо, 4 - длинное плечо, 5 - хроматиды

Рис. 3.53. Расположение локусов в хромосомах человека

при их дифференциальном окрашивании:

р - короткое плечо, q - длинное плечо; 1-22 - порядковый номер хромосомы; XY - половые хромосомы

На хромосомном уровне организации, который появляется в процессе эволюции у эукариотических клеток, генетический аппарат должен удовлетворять всем требованиям, предъявляемым к субстрату наследственности и изменчивости: обладать способностью к самовоспроизведению, поддержанию постоянства своей организации и приобретению изменений, которые могут передаваться новому поколению клеток.

Несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями. О них – в следующей лекции.

Значение хромосомной организации в функционировании и наследовании генетического аппарата

Хромосомный уровень организации наследственного материала обеспечивает в эукариотической клетке не только определенный характер функционирования отдельных генов, тип их наследования, но и регуляцию их активности.

Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования. Расположение гена в той или иной хромосоме определяет тип наследования соответствующего признака.

Принадлежность генов к одной хромосоме обусловливает сцепленный характер наследования детерминируемых ими признаков, а расстояние между генами влияет на частоту рекомбинации этих признаков в потомстве (правило Т. Моргана). Расположение генов в разных хромосомах служит основой независимого наследования признаков (закон независимого наследования признаков Г. Менделя).

Образуя в хромосоме устойчивый комплекс с гистонами, ДНК эукариотической клетки оказывается недоступной для других белков, осуществляющих транскрипцию (РНК-полимераза) и выполняющих регуляторные функции (см. разд. 3.6.6.4). Таким образом, гистоны, участвующие в пространственной организации ДНК в хромосоме, регулируют генную активность, угнетая ее.

Что такое хромосома? Этот вопрос подробно изучается на уроках биологии в средних классах. Но большинство подростков не интересует состав ДНК. Однако именно хромосомы несут ответственность за внешний вид, физические способности, интеллект человека и даже за высокое или низкое кровяное давление. Все данные об этом заложены в геноме еще до появления человека на свет. И даже минимальный сбой в цепочке ДНК становится причиной развития врожденных заболеваний. О том, что представляет собой хромосома и какой набор этих клеток должен быть - читайте в статье.

Что такое хромосома человека?

Из чего формируется наш организм? Как определяется разрез глаз либо количество пальцев на руках будущего человека, его способность к точным наукам или цвет волос? Генетики доказали, что вся базовая наследственная информация о человеке заложена в закрученной цепочке генов, состоящей из белков, а также дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот.

Длинная молекула ДНК - это 3,1 млрд генов. Но только половина из них хранят в себе информацию о человеке. Оставшиеся гены называют мусорными или пустыми, так как в них нет кодирующих данных.

Именно из цепи ДНК образуется важнейшая составляющая структуры генома - хромосома. Эта клетка, состоящая из белков и нуклеиновых кислот, предназначена для архивирования, реализации и передачи генных сведений.

Само понятие «хромосома» предложил в 1888 году известный немец, изучавшийстроение ДНК - Генрих Готфрид. Переводится слово как ‘окрашенное тело’. Такое название клетка получила за отличную реакцию на различные красители в ходе экспериментов.

Теория о том, что хромосомы человека несут ответственность за наследственность, была выдвинута генетиками еще вначале XX века, когда выявили, что в нуклеопротеидной единице собрано невероятно большое число генов, расставленных в конкретной очередности.

В результате экспериментов ученые определили, что за структуру хромосомы отвечает молекула ДНК, под влиянием которой гены образуют индивидуальный код. Эти закодированные сведения предопределяют все индивидуальные признаки будущего человека еще в процессе формирования плода в утробе матери.

Интересно то, что суммарная длина всех молекул ДНК в одной клетке равняется двум метрам. И это при том, что примерная длина самой клетки значительно меньше. Чтобы уместить ДНК в клетке, природа придумала специальный механизм, называющийся компактизацией. ДНК накручивается на «катушку» из белков-гистонов. После этого «катушки» сближаются и образуют петли. Так общая длина ДНК уменьшается более чем в 10 000 раз.

Сколько хромосом у человека?

Какое же количество хромосом у человека? До 1955 года считалось, что число хромосом у здорового человека равняется 24 парам. Но после ряда экспериментов, проведенных с использованием новейшей техники, выяснилось, что предыдущее мнение было ошибочно. Здоровый человек имеет 23 пары хромосом.

В гоносомах (половых клетках) и соматических клетках состав хромосом отличается. Половые клетки имеют лишь одну пару. Они отвечают за пол человека, так как различаются по составу генов.

Наборы хромосом бывают следующие:

  • ХХ - у женщины;
  • ХY - у мужчины.

При оплодотворении яйцеклетки женский набор на закладывание половых признаков не влияет, так как всегда передает Х-хромосому. Пол ребенка зависит исключительно от того, какие мужские хромосомы будут переданы. Какой именно код будет передан при зачатии, таким и будет пол будущего ребенка.

Остальные 22 хромосомные пары - одинаковые. Их называют аутосомными, они отвечают за определенный набор генов. Хромосомы при делении могут меняться, но набор из 23 пар имеет постоянное значение.

Неправильный набор хромосом - это результат определенных нарушений, наследственности либо негативного влияния экологической среды. В этом случае у человека возникают наследственные болезни.

Аномалии в наборе хромосом могут вызывать полиплоидию, когда клетки удваиваются. Если же клетки утраиваются или представлены четыре и пять раз - это триплоидия, тетраплоидия и пентаплоидия соответственно. При наличии таких отклонений чаще всего человек умирает сразу после рождения.

Примечательно, что в растительном мире полиплоидия представлена широко. Такие генетические сбои наблюдаются и у представителей животного мира - рыб, беспозвоночных. В случае, когда такие аномалии случаются у птиц, они всегда погибают.

В хромосомах природой закодирована вся информация, которая так или иначе влияет на нашу жизнь. А пока геном постоянно исследуется, ученые находят все новую информацию о коде человека. Возможно, в скором времени, наука сможет моделировать набор хромосом при случайных сбоях в ДНК.