В чем состоит броуновское движение. Физические явления: броуновское движение

Бро́уновское движе́ние - в естествознании, беспорядочное движение микроскопических, видимых, взвешенных в жидкости (или газе) частиц твёрдого вещества, вызываемоетепловым движениемчастиц жидкости (или газа).

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют,более мелкие частицы (менее 3мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Основной физический принцип лежащий в основе броуновского движения состоит в том, что средняя кинетическая энергия движения молекул жидкости (или газа) равна средней кинетической энергии любой частицы, подвешенной в этой среде. Поэтому средняя кинетическая энергия < E > поступательного движения броуновской частицы равна:

< E > =m <v 2 >/ 2 = 3kT /2,

где m - масса броуновской частицы,v - её скорость,k - постоянная Больцмана,T - температура. Мы можем видеть из этой формулы, что средняя кинетическая энергия броуновской частицы, а значит и интенсивность её движения растёт с увеличением температуры.

Броуновская частица будет двигаться по зигзагообразному пути, удаляясь постепенно от начальной точки. Вычисления показывают, что значение среднего квадрата смещения броуновской частицы r 2 =x 2 +y 2 +z 2 описывается формулой:

< r 2 > = 6kTBt

где B - подвижность частицы, которая обратно пропорциональна вязкости среды и размеру частицы. Эта формула, называемая формулой Эйнштейна, была со всей возможной тщательностью подтверждена экспериментально французским физиком Жаном Перреном (1870-1942). На основе измерения параметров движения броуновской частицы Перрен получил значения постоянной Больцмана и число Авогадро, хорошо согласующиеся в пределах ошибок измерений со значениям, полученными другими методами.

15.Первое начало термодинамики. Работа, теплота,внутренняя энергия.

Формулировка: количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.

Первый закон (первое начало) термодинамики можно сформулировать так: «Изменение полной энергии системы в квазистатическом процессеравно количеству теплоты Q, сообщенного системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале , и работы A", совершённой над системой внешними силами и полями, за вычетом работы А, совершённой самой системой против внешних сил» :.

Для элементарного количества теплоты , элементарной работыи малого приращения (полного дифференциала)внутренней энергии первый закон термодинамики имеет вид:

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая – работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Вну́тренняя эне́ргия тела - полная энергия этого тела за вычетомкинетической энергиитела как целого ипотенциальной энергиитела во внешнем поле сил. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:, где- подведённая к телутеплота, измеренная в джоулях, -работа, совершаемая телом против внешних сил, измеренная в джоулях

Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:

Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия U тела зависит наряду с температурой T также и от объема V: U = U (T, V).

Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). Например, если газ подвергается сжатию в цилиндре под поршнем, то внешние силы совершают над газом некоторую положительную работу A". В то же время силы давления, действующие со стороны газа на поршень, совершают работу A = –A". Если объем газа изменился на малую величину ΔV, то газ совершает работу pSΔx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение (рис. 3.8.1). При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна. В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

или в пределе при ΔV i → 0:

Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 3.8.2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.

Процессы, изображенные на рис. 3.8.2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный. Процессы такого рода, которые можно проводить в обоих направлениях, называются обратимыми В отличие от газа, жидкости и твердые тела мало изменяют свой объем, так что во многих случаях работой, совершаемой при расширении или сжатии, можно пренебречь. Однако, внутренняя энергия жидких и твердых тел также может изменяться в результате совершения работы. При механической обработке деталей (например, при сверлении) они нагреваются. Это означает, что изменяется их внутренняя энергия. Другим примером может служить опыт Джоуля (1843 г.) по определению механического эквивалента теплоты При вращении вертушки, погруженной в жидкость, внешние силы совершают положительную работу (A" > 0); при этом жидкость из-за наличия сил внутреннего трения нагревается, т. е. увеличивается ее внутренняя энергия. В этих двух примерах процессы не могут быть проведены в противоположном направлении. Такие процессы называются необратимыми.

Что такое Броуновское движение

Это движение характеризуется следующими чертами:

  • продолжается неограниченно долго без каких бы то ни было видимых изменений,
  • интенсивность движения броуновских частиц зависит от их размеров, но не зависит от их природы,
  • интенсивность возрастает с ростом температуры,
  • интенсивность возрастает с уменьшением вязкости жидкости или газа.

Броуновское движение не является молекулярным движением, но служит непосредственным доказательством существования молекул и хаотического характера их теплового движения.

Сущность Броуновского движения

Сущность этого движения в следующем. Частица вместе с молекулами жидкости или газа образуют одну статистическую систему. В соответствии с теоремой о равномерном распределении энергии по степени свободы на каждую степень свободы приходится 1/2kT энергии. Энергия 2/3kT, приходящаяся на три поступательные степени свободы частицы, приводит к движению ее центра масс, которое наблюдается под микроскопом в виде дрожания частицы. Если броуновская частица достаточно жесткая, то еще 3/2kT энергии приходится на ее вращательные степени свободы. Поэтому при своем дрожании она испытывает еще и постоянные изменения ориентировки в пространстве.

Можно объяснить броуновское движение и так: причиной Броуновского движения являются флуктуации давления, которое оказывается на поверхность малой частицы со стороны молекул среды. Сила и давление изменяется по модулю и направлению, в результате чего частица находится в беспорядочном движении.

Движение броуновской частицы является случайным процессом. Вероятность (dw) того, что броуновская частица, находившаяся в однородной изотропной среде в начальный момент времени (t=0) в начале координат, сместится вдоль произвольно направленной (при t$>$0) оси Ox так, что ее координата будет лежать в интервале от x до x+dx, равна:

где $\triangle x$- малое изменение координаты частицы, вследствие флуктуации.

Рассмотрим положение Броуновской частицы через некоторые фиксированные промежутки времени. Начало координат поместим в точку, в которой частица находилась при t=0. Обозначим $\overrightarrow{q_i}$ -- вектор , который характеризует перемещение частицы между (i-1) и i наблюдениями. По истечении n наблюдений частица сместится из нулевого положения в точку с радиус-вектором $\overrightarrow{r_n}$. При этом:

\[\overrightarrow{r_n}=\sum\limits^n_{i=1}{\overrightarrow{q_i}}\left(2\right).\]

Перемещения частицы происходит по сложной ломаной линии все время наблюдений.

Найдем средний квадрат удаления частицы от начала после n шагов в большой серии опытов:

\[\left\langle r^2_n\right\rangle =\left\langle \sum\limits^n_{i,j=1}{q_iq_j}\right\rangle =\sum\limits^n_{i=1}{\left\langle {q_i}^2\right\rangle }+\sum\limits^n_{i\ne j}{\left\langle q_iq_j\right\rangle }\left(3\right)\]

где $\left\langle q^2_i\right\rangle $- средний квадрат смещения частицы на i- м шаге в серии опытов (он для всех шагов одинаков и равен какой-то положительной величине a2), $\left\langle q_iq_j\right\rangle $- является средней величиной скалярного произведения при i-м шаге на перемещение при j-м шаге в различных опытах. Эти величины независимы друг от друга, одинаково часто встречаются как положительные значения скалярного произведения, так и отрицательные. Поэтому, считаем, что $\left\langle q_iq_j\right\rangle $=0 при$\ i\ne j$. Тогда имеем из (3):

\[\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle \left(4\right),\]

где $\triangle t$- промежуток времени между наблюдениями; t=$\triangle tn$ - время, в течение которого средний квадрат удаления частицы стал равен $\left\langle r^2\right\rangle .$ Получаем, что частица удаляется от начала. Существенно то, что средний квадрат удаления растет пропорционально первой степени времени. $\alpha \ $- можно найти экспериментально, а можно теоретически, как будет показано в примере 1.

Броуновская частица движется не только поступательно, но и вращаясь. Среднее значение угла поворота $\triangle \varphi $ броуновской частицы за время t равно:

\[{\triangle \varphi }^2=2D_{vr}t(5),\]

где $D_{vr}$ -- коэффициент вращательной диффузии. Для сферической броуновской частицы радиуса - а $D_{vr}\ $ равен:

где $\eta $ - коэффициент вязкости среды.

Броуновское движение ограничивает точность измерительных приборов. Предел точности зеркального гальванометра определяется дрожание зеркальца, подобно броуновской частице, которая подвергается ударам молекул воздуха. Случайное движение электронов вызывает шумы в электрических сетях.

Пример 1

Задание: Для того, чтобы математически полно охарактеризовать броуновское движение, надо найти $\alpha $ в формуле $\left\langle r^2_n\right\rangle =\alpha t$. Считать коэффициент вязкости жидкости известным и равным b, температура жидкости T.

Запишем уравнение движения броуновской частицы в проекции на ось Ox:

где m -- масса частицы, $F_x$ -- случайная сила, действующая на частицу, $b\dot{x}$- член уравнения, характеризующий силу трения, действующая на частицу в жидкости.

Аналогичный вид имеют уравнения для величин, относящиеся к другим координатным осям.

Умножим обе части уравнения (1.1) на x, а члены $\ddot{x}x\ и\ \dot{x}x$ преобразуем:

\[\ddot{x}x=\ddot{\left(\frac{x^2}{2}\right)}-(\dot{x})^2,\dot{x}x=(\frac{x^2}{2}\)(1.2)\]

Тогда уравнение (1.1) приведем к виду:

\[\frac{m}{2}(\ddot{x^2})-m(\dot{x})^2=-\frac{b}{2}\left(\dot{x^2}\right)+F_xx\ (1.3)\]

Усредним обе части этого уравнения по ансамблю броуновских частиц, учитывая при этом, что средняя от производной по времени равна производной от средней величины, так как это усреднение по ансамблю частиц, и, значит, переставим операцией дифференцирования по времени. В результате усреднения (1.3) получаем:

\[\frac{m}{2}\left(\left\langle \ddot{x^2}\right\rangle \right)-\left\langle m(\dot{x})^2\right\rangle =-\frac{b}{2}\left(\dot{\left\langle x^2\right\rangle }\right)+\left\langle F_xx\right\rangle \ \left(1.4\right).\]

Так как отклонения броуновской частицы в любом направлении равновероятны, то:

\[\left\langle x^2\right\rangle =\left\langle y^2\right\rangle =\left\langle z^2\right\rangle =\frac{\left\langle r^2\right\rangle }{3}\left(1.5\right)\]

Используем $\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle $, получаем $\left\langle x^2\right\rangle =\frac{\alpha t}{3}$, следовательно: $\dot{\left\langle x^2\right\rangle }=\frac{\alpha }{3}$, $\left\langle \ddot{x^2}\right\rangle =0$

Из-за случайного характера силы $F_x$ и координаты частицы x и их независимости друг от друга должно выполняться равенство $\left\langle F_xx\right\rangle =0$, тогда (1.5) сводится к равенству:

\[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =\frac{\alpha b}{6}\left(1.6\right).\]

По теореме о равномерном распределении энергии по степеням свободы:

\[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =kT\left(1.7\right).\] \[\frac{\alpha b}{6}=kT\to \alpha =\frac{6kT}{b}.\]

Таким образом, получим формулу для решения задачи о Броуновском движении:

\[\left\langle r^2\right\rangle =\frac{6kT}{b}t\]

Ответ: Формула $\left\langle r^2\right\rangle =\frac{6kT}{b}t$ решает задачу о броуновском движении взвешенных частиц.

Пример 2

Задание: Частицы гуммигута сферической формы радиуса r участвуют в броуновском движении в газе. Плотность гуммигута $\rho $. Найти среднеквадратичную скорость частиц гуммигута при температуре T.

Среднеквадратичная скорость молекул равна:

\[\left\langle v^2\right\rangle =\sqrt{\frac{3kT}{m_0}}\left(2.1\right)\]

Броуновская частица находится в равновесии с веществом, в котором она находится, и мы можем рассчитать ее среднеквадратичную скорость, используя формулу для скорости молекул газа, которые, в свою очередь, двигаясь, заставляют перемещаться броуновскую частицу. Для начала найдем массу частицы:

\[\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}\]

Ответ: Скорость частицы гуммигута взвешенного в газе можно найти как $\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}$.

Одним из наиболее убедительных доказательств реальности движения молекул служит явление так называемого броуновского движения, открытого в 1827 г. английским ботаником Броуном при изучении взвешенных в воде мельчайших спор. Он обнаружил, при рассмотрении под микроскопом с большим увеличением, что эти споры находятся в непрерывном беспорядочном движении, как бы исполняя дикий фантастический танец.

Дальнейшие опыты показали, что эти движения не связаны с биологическим происхождением частиц или с какими-либо движениями жидкости. Подобные движения совершают любые малые частицы, взвешенные в жидкости или газе. Такого рода беспорядочные движения совершают, например, частицы дыма в неподвижном воздухе. Такое беспорядочное движение частиц, взвешенных в жидкости или газе, и получило название броуновского движения.

Специальные исследования показали, что характер броуновского движения зависит от свойств жидкости или газа, в которых взвешены частицы, но не зависит от свойств вещества самих частиц. Скорость движения броуновских частиц возрастает с повышением температуры и с уменьшением размеров частиц.

Все эти закономерности легко объяснить, если мы примем, что движения взвешенных частиц возникают вследствие ударов, испытываемых ими со стороны движущихся молекул жидкости или газа, в которых они находятся.

Конечно, каждая броуновская частица подвергается таким ударам со всех сторон. При полной беспорядочности молекулярных движений можно, казалось бы, ожидать, что число ударов, обрушивающихся на частицу с какого-нибудь направления, должно быть в точности равно числу ударов с противоположного направления,

так что все эти толчки должны полностью компенсировать друг друга и частицы должны оставаться неподвижными.

Так именно и происходит, если частицы не слишком малы. Но когда мы имеем дело с микроскопическими частицами см), дело обстоит иначе. Ведь из того факта, что молекулярные движения хаотичны, следует лишь, что в среднем число ударов разных направлений одинаково. Но в такой статистической системе, как жидкость или газ, неизбежны и отклонения от средних значений. Такие отклонения от средних значений тех или иных величин, которые происходят в малом объеме или в течение малых промежутков времени, называются флуктуациями. Если в жидкости или газе находится тело обычных размеров, то число толчков, которое оно испытывает со стороны молекул, так велико, что нельзя заметить ни отдельных толчков, ни случайного преобладания толчков одного направления над толчками других направлений. Для малых же частиц общее число испытываемых ими толчков сравнительно невелико, так что преобладание числа ударов то одного, то другого направления становится заметным, и именно благодаря таким флуктуациям числа ударов и возникают те характерные, как бы судорожные движения взвешенных частиц, которые и называются броуновским движением.

Ясно, что движения броуновских частиц - это не молекулярные движения: мы видим не результат удара одной молекулы, а результат преобладания числа ударов одного направления над числом ударов в противоположном направлении. Броуновское движение лишь очень ясно обнаруживает само существование беспорядочных молекулярных движений.

Таким образом, броуновское движение объясняется тем, что благодаря случайной неодинаковости чисел ударов молекул о частицу с разных направлений возникает некоторая равнодействующая сила определенного направления. Так как флуктуации обычно бывают кратковременными, то через короткий промежуток времени направление равнодействующей изменится, а вместе с ней изменится и направление перемещения частицы. Отсюда наблюдающаяся хаотичность броуновских движений, отражающая хаотичность молекулярного движения.

Приведенное качественное объяснение броуновского движения мы теперь дополним количественным рассмотрением этого явления. Количественная теория его была впервые дана Эйнштейном и, независимо, Смолуховским (1905 г.). Мы приведем здесь более простой, чем у этих авторов, вывод основного соотношения этой теории.

Вследствие неполной компенсации ударов молекул на броуновскую частицу действует, как мы видели, некоторая результирующая сила под действием которой частица и движется. Кроме этой силы на частицу действует сила трения вызванная вязкостью среды и направленная против силы

Для простоты предположим, что частица имеет форму сферы радиуса а. Тогда сила трения может быть выражена формулой Стокса:

где коэффициент внутреннего трения жидкости (или газа), скорость движения частицы. Уравнение движения частицы (второй закон Ньютона) имеет поэтому вид:

Здесь масса частицы, ее радиус-вектор относительно произвольной системы координат, скорость частицы и равнодействующая сил, вызванных ударами молекул.

Рассмотрим проекцию радиуса-вектора на одну из координатных осей, например на ось Для этой составляющей уравнение (7,1) перепишется в виде:

где составляющая результирующей силы по оси

Наша задача состоит в том, чтобы найти смещение х броуновской частицы, которое она получает под действием ударов молекул. Каждая из частиц все время подвергается соударениям с молекулами, после чего она меняет направление своего движения. Различные частицы получают смещения, отличающиеся как по величине, так и по направлению. Вероятное значение суммы смещений всех частиц равно нулю, так как смещения с равной вероятностью могут иметь и положительный, и отрицательный знак. Среднее значение проекции смещения частиц х будет поэтому равно нулю. Не будет, однако, равно нулю среднее значение квадрата смещения, т. е. величина хтак как не изменяет своего знака при изменении знака х. Преобразуем поэтому уравнение (7.2) так, чтобы в него входила величина Для этого умножим обе части этого уравнения на

Используем очевидные тождества:

Подставив эти выражения в (7.3), получим:

Это равенство справедливо для любой частицы и поэтому оно справедливо также и для средних значений входящих в него величин,

если усреднение вести по достаточно большому числу частиц. Поэтому можно написать:

где среднее значение квадрата перемещения частицы, среднее значение квадрата ее скорости. Что касается среднего значения величины входящей в равенство, то оно равно нулю, так как для большого числа частиц одинаково часто принимают как положительные, так и отрицательные значения. Уравнение (7.2) прикимает поэтому вид:

Величина в этом уравнении представляет собой среднее значение квадрата проекций скорости на ось Так как движения частиц вполне хаотичны, то средние значения квадратов проекций скорости по всем трем координатным осям должны быть равны друг другу, т. е.

Очевидно также, что сумма этих величин должна быть равна среднему значению квадрата скорости частиц

Следовательно,

Таким образом, интересующее нас выражение, входящее в (7.4), равно:

Величина есть средняя кинетическая энергия броуновской частицы. Сталкиваясь с молекулами жидкости или газа, броуновские частицы обмениваются с ними энергией и находятся в тепловом равновесии со средой, в которой они движутся. Поэтому средняя кинетическая энергия поступательного движения броуновской частицы должна быть равна средней кинетической энергии молекул

жидкости (или газа), которая, как мы знаем, равна

и следовательно

То обстоятельство, что средняя кинетическая энергия броуновской частицы равна (как и для газовой молекулы!), имеет принципиальное значение. Действительно, выведенное нами ранее основное уравнение (3.1) справедливо для любых не взаимодействующих друг с другом частиц, совершающих хаотические движения. Будут ли это невидимые глазом молекулы или значительно более крупные броуновские частицы, содержащие миллиарды молекул, - безразлично. С молекулярно-кинетической точки зрения броуновскую частицу можно трактовать как гигантскую молекулу. Поэтому выражение для средней кинетической энергии такой частицы должно быть таким же, как и для молекулы. Скорости же броуновских частиц, конечно, несравненно меньше, соответственно их большей массе.

Вернемся теперь к уравнению (7.4) и, учтя (7.5), перепишем его

Это уравнение легко интегрируется. Обозначив получаем:

и после разделения переменных наше уравнение преобразуется в виде:

Интегрируя левую часть этого уравнения в пределах от 0 до а правую от до получаем:

Величина как легко убедиться, в обычных условиях опыта ничтожно мала. Действительно, размеры броуновских частиц не превышают см, вязкость жидкости обычно близка к вязкости воды, т. е. приблизительно равна (в системе единиц плотность вещества частиц порядка единицы, Имея в виду, что масса частицы равна , мы получим, что показатель степени при таков, что величиной можно пренебречь. Следовательно, если отрезок времени между последовательными наблюдениями за броуновской частицей превышает что, конечно, всегда имеет место, то

Для конечных промежутков времени и соответствующих перемещений уравнение (7.6) можно переписать в виде:

Среднее значение квадрата смещения броуновской частицы за промежуток времени вдоль оси X, или любой другой оси, пропорционально этому промежутку времени.

Формула (7.7) позволяет вычислять среднее значение квадрата перемещений, причем среднее берется по всем частицам, участвующим в явлении. Но эта формула справедлива и для среднего значения квадрата многих последовательных перемещений одной-единственной частицы за равные промежутки времени, С экспериментальной точки зрения удобнее наблюдать именно перемещения одной частицы. Такие наблюдения и были проведены Перреном в 1909 г.

Движение частиц Перрен наблюдал через микроскоп, окуляр которого был снабжен сеткой взаимно перпендикулярных линий, служивших координатной системой. Пользуясь сеткой, Перрен отмечал на ней последовательные положения одной облюбованной им частицы через определенные промежутки времени (например, 30 с). Соединив затем точки, отмечающие положения частицы на сетке, он получил картину, подобную той, которая изображена на рис, 7. На этом рисунке показаны как смещения частицы, так и их проекции на ось

Следует иметь в виду, что движения частицы значительно сложнее, чем об этом можно судить по рис. 7, так как здесь отмечены положения через не слишком малые промежутки времени (порядка 30 с). Если уменьшить эти промежутки, то окажется, что каждый прямолинейный отрезок на рисунке развернется в такую же сложную зигзагообразнуютраекторию, как и весь рис. 7.

Так как постоянная может быть определена из уравнения сестояния.

Опыты Перрена имели большое значение для окончательного обоснования молекулярно-кинетической теории.

Тепловое движение

Любое вещество состоит из мельчайших частиц - молекул. Молекула - это наименьшая частица данного вещества, сохраняющая все его химические свойства. Молекулы расположены в пространстве дискретно, т. е. на некоторых расстояниях друг от друга, и находятся в состоянии непрерывного беспорядочного (хаотичного) движения .

Поскольку тела состоят из большого числа молекул и движение молекул беспорядочно, то нельзя точно сказать, сколько ударов будет испытывать та или иная молекула со стороны других. Поэтому говорят, что положение молекулы, её скорость в каждый момент времени случайны. Однако это не означает, что движение молекул не подчиняется определённым законам. В частности, хотя скорости молекул в некоторый момент времени различны, у большинства из них значения скорости близки к некоторому определённому значению. Обычно, говоря о скорости движения молекул, имеют в виду среднюю скорость (v$cp ).

Нельзя выделить какое-то определённое направление, в котором движутся все молекулы. Движение молекул никогда не прекращается. Можно сказать, что оно непрерывно. Такое непрерывное хаотическое движение атомов и молекул называют — . Такое название определяется тем, что скорость движения молекул зависит от температуры тела. Чем больше средняя скорость движения молекул тела, тем выше его температура. И наоборот, чем выше температура тела, тем больше средняя скорость движения молекул.

Движение молекул жидкости было обнаружено при наблюдении броуновского движения - движения взвешенных в ней очень мелких частиц твердого вещества. Каждая частица беспрерывно совершает скачкообразные перемещения в произвольных направлениях, описывая траектории в виде ломаной линии. Такое поведение частиц можно объяснить, считая, что они испытывают удары молекул жидкости одновременно с разных сторон. Различие в числе этих ударов с противоположных направлений приводит к движению частицы, поскольку ее масса соизмерима с массами самих молекул. Движение таких частиц впервые обнаружил в 1827 г. английский ботаник Броун, наблюдая под микроскопом частицы цветочной пыльцы в воде, почему оно и было названо — броуновское движение .

Бро́уновское движе́ние - беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение - наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.

При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времён). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом А в вязкой жидкости. Соотношения для А и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и постоянная Авогадро N А. Кроме поступательного броуновского движения, существует также вращательное броуновского движение - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное броуновское движение.

Энциклопедичный YouTube

  • 1 / 5

    Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело , то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление . Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

    Открытие

    Теория броуновского движения

    Построение классической теории

    D = R T 6 N A π a ξ , {\displaystyle D={\frac {RT}{6N_{A}\pi a\xi }},}

    где D {\displaystyle D} - коэффициент диффузии , R {\displaystyle R} - универсальная газовая постоянная , T {\displaystyle T} - абсолютная температура , N A {\displaystyle N_{A}} - постоянная Авогадро , a {\displaystyle a} - радиус частиц, ξ {\displaystyle \xi } - динамическая вязкость .

    Экспериментальное подтверждение

    Формула Эйнштейна была подтверждена опытами Жана Перрена и его студентов в 1908-1909 гг. В качестве броуновских частиц они использовали зёрнышки смолы мастикового дерева и гуммигута - густого млечного сока деревьев рода гарциния . Справедливость формулы была установлена для различных размеров частиц - от 0,212 мкм до 5,5 мкм, для различных растворов (раствор сахара , глицерин), в которых двигались частицы .

    Броуновское движение как немарковский случайный процесс

    Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. И хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна - Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна - Смолуховского.

    Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов , и для более точного его описания необходимо использование интегральных стохастических уравнений.