Доклад: Оптические атмосферные явления. Конспект открытого урока "Оптические явления в атмосфере."

Подготовила ученица 11 «Б» класса

Лукьяненко Анастасия

Оптические явления в атмосфере

Миражи

Существует три класса миражей. Первый класс это нижние миражи. При таком виде миража, нижняя часть пустыни, т.е. небольшая полоска песка оптически превращается в некий водоём. Это можно увидеть, если находится на уровень выше этой полосы. Такие миражи самые распространённые. Второй вид миражей – верхние миражи. Это более редкое явление, к тому же менее живописные. Верхние миражи появляются на больших расстояниях и на большой высоте над уровнем горизонта. Третий класс миражей не поддаётся никакому объяснению, и уже многие годы учёные ломают голову над разгадкой этой тайны.

В чём же причина появления таких удивительных явлений? Это происходит благодаря удивительным играм света и воздуха. Вот как это понимать. Когда температура воздуха довольно высока, и она выше у поверхности земли, нежели в более высоких слоях, создаются благоприятные условия для возникновения миражей. Плотность воздуха уменьшается при повышении его температуры, и напротив. А, как известно, чем плотнее воздух, тем лучше он преломляет свет. Лучи, падающие с неба, имеют синий спектр, и часть из них преломляется, а другая достигает человеческого зрения и формирует общую картину видимого неба. Та часть лучей, которая преломилась, достигает земли впереди человека, и, преломляясь о её поверхность, также попадают в поле зрения человека. Эти лучи мы видим в голубом спектре, именно поэтому создаётся впечатление, что впереди нас синий водоём. Усиливает такое впечатление колеблющийся впереди нас нагретый воздух.

Если мираж возникает над поверхностью моря, то всё происходит с точностью до наоборот. Внизу, над гладью воды температура воздуха ниже, а с высотой – более высокая. При таком стечении обстоятельств возникают верхние миражи, при которых мы наблюдаем изображение того или иного предмета в небе.

Радуга.

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще очень мало знали об окружающем их мире, радугу считали «небесным знамением». Так, древние греки думали, сто радуга – это улыбка богини Ириды. Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км., иногда ее можно наблюдать на расстоянии 2-3 м. на фоне водяных капель, образованных фонтанами или распылителями воды. У радуги различают семь основных цветов, плавно переходящих один в другой.



Паргелии.

"Паргелий" в переводе с греческого – "ложное солнце". Это одна из форм гало на небе наблюдается одно или несколько дополнительных изображений Солнца, расположенных на той же высоте над горизонтом, что и настоящее Солнце. Миллионы кристаллов льда с вертикальной поверхностью, отражающие Солнце, и образуют это красивейшее явление.

Паргелии можно наблюдать в тихую погоду при низком положении Солнца, когда значительное количество призм располагается в воздухе так, что их главные оси вертикальны, и призмы медленно опускаются как маленькие парашютики. В этом случае наиболее яркий преломленный свет поступает в глаз под углом 220 с граней, расположенных вертикально, и создает вертикальные столбы по обе стороны от Солнца по горизонту. Эти столбы могут быть в некоторых местах особо яркими, создавая впечатление ложного Солнца.

Полярные сияния

Одним из красивейших оптических явлений природы является полярное сияние. Невозможно передать словами красоту полярных сияний, переливающихся, мерцающих, пламенеющих на фоне темного ночного неба в полярных широтах.

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.

Полярное сияние видно из космоса. И не просто видно, а видно гораздо лучше, чем с поверхности Земли, так как в космосе наблюдать полярное сияние не мешает ни солнце, ни облака, ни искажающее влияние нижних плотных слоёв атмосферы. По словам космонавтом, с орбиты МКС полярные сияния выглядят как огромные зелёные постоянно движущиеся амёбы.

Полярное сияние может длиться сутками. А может и всего несколько десятков минут.

Полярное сияние можно наблюдать не только на Земле. Считается, это атмосферы других планет (например, Венеры) также имеют возможность порождать полярные сияния. Природа полярных сияний на Юпитере и Сатурне по последним научным данным сходна с природой их земных собратьев.

Многообразие оптических явлений в атмосфере обусловлено различными причинами. К наиболее распространенным феноменам относятся молния и весьма живописные северное и южное полярные сияния. Кроме того, особенно интересны радуга, гало, паргелий (ложное солнце) и дуги, корона, нимбы и призраки Броккена, миражи, огни святого Эльма, светящиеся облака, зеленые и сумеречные лучи. Радуга - самое красивое атмосферное явление. Обычно это огромная арка, состоящая из разноцветных полос, наблюдаемая, когда Солнце освещает лишь часть небосвода, а воздух насыщен капельками воды, например во время дождя. Разноцветные дуги располагаются в последовательности спектра (красная, оранжевая, желтая, зеленая, голубая, синяя, фиолетовая), однако цвета почти никогда не бывают чистыми, поскольку полосы взаимно перекрываются. Как правило, физические характеристики радуг существенно различаются, поэтому и по внешнему виду они весьма разнообразны. Их общей чертой является то, что центр дуги всегда располагается на прямой, проведенной от Солнца к наблюдателю. лавная радуга представляет собой дугу, состоящую из наиболее ярких цветов - красного на внешней стороне и фиолетового - на внутренней. Иногда видна только одна дуга, но часто с внешней стороны основной радуги появляется побочная. Она имеет не столь яркие цвета, как первая, а красная и фиолетовая полосы в ней меняются местами: красная располагается с внутренней стороны.

Образование главной радуги объясняется двойным преломлением и однократным внутренним отражением лучей солнечного света. Проникая внутрь капли воды (А), луч света преломляется и разлагается, как при прохождении сквозь призму. Затем он достигает противоположной поверхности капли, отражается от нее и выходит из капли наружу. При этом луч света прежде, чем достичь наблюдателя, преломляется вторично. Исходный белый луч разлагается на лучи разных цветов с углом расхождения 2?. При образовании побочной радуги происходит двойное преломление и двойное отражение солнечных лучей. В этом случае свет преломляется, проникая внутрь капли через ее нижнюю часть, и отражается от внутренней поверхности капли сначала в точке В, затем в точке С. В точке D свет преломляется, выходя из капли в сторону наблюдателя. Когда дождь или водяная пыль образуют радугу, полный оптический эффект достигается за счет суммарного воздействия всех капелек воды, пересекающих поверхность конуса радуги с наблюдателем в вершине. Роль каждой капли мимолетна. Поверхность конуса радуги состоит из нескольких слоев. Быстро пересекая их и проходя при этом через серию критических точек, каждая капля мгновенно разлагает солнечный луч на весь спектр в строго определенной последовательности - от красного до фиолетового цвета. Множество капель таким же образом пересекает поверхность конуса, так что радуга представляется наблюдателю непрерывной как вдоль, так и поперек ее дуги. Гало - белые или радужные световые дуги и окружности вокруг диска Солнца или Луны. Они возникают вследствие преломления или отражения света находящимися в атмосфере кристаллами льда или снега. Кристаллы, формирующие гало, располагаются на поверхности воображаемого конуса с осью, направленной от наблюдателя (из вершины конуса) к Солнцу. При некоторых условиях атмосфера бывает насыщена мелкими кристаллами, многие грани которых образуют прямой угол с плоскостью, проходящей через Солнце, наблюдателя и эти кристаллы. Такие грани отражают поступающие лучи света с отклонением на 22?, образуя красноватое с внутренней стороны гало, но оно может состоять и из всех цветов спектра. Реже встречается гало с угловым радиусом 46?, располагающееся концентрически вокруг 22-градусного гало. Его внутренняя сторона тоже имеет красноватый оттенок. Причиной этого также является преломление света, происходящее в этом случае на образующих прямые углы гранях кристаллов. Ширина кольца такого гало превышает 2,5?. Как 46-градусные, так и 22-градусные гало, как правило, имеют наибольшую яркость в верхней и нижней частях кольца. Изредка встречающееся 90-градусное гало представляет собой слабо светящееся, почти бесцветное кольцо, имеющее общий центр с двумя другими гало. Если оно окрашено, то имеет красный цвет на внешней стороне кольца. Механизм возникновения такого типа гало до конца не выяснен. Паргелии и дуги. Паргелический круг (или круг ложных солнц) - белое кольцо с центром в точке зенита, проходящее через Солнце параллельно горизонту. Причиной его образования служит отражение солнечного света от граней поверхностей кристаллов льда. Если кристаллы достаточно равномерно распределены в воздухе, становится видимым полный круг. Паргелии, или ложные солнца, - это ярко светящиеся пятна, напоминающие Солнце, которые образуются в точках пересечения паргелического круга с гало, имеющими угловые радиусы 22?, 46? и 90?. Наиболее часто образующийся и самый яркий паргелий формируется на пересечении с 22-градусным гало, обычно окрашенный почти во все цвета радуги. Ложные солнца на пересечениях с 46- и 90-градусными гало наблюдаются гораздо реже. Паргелии, возникающие на пересечениях с 90-градусными гало, называются парантелиями, или ложными противосолнцами. Иногда виден также антелий (противосолнце) - яркое пятно, расположенное на кольце паргелия точно напротив Солнца. Предполагается, что причиной возникновения этого явления служит двойное внутреннее отражение солнечного света. Отраженный луч проходит по тому же пути, что и падающий луч, но в обратном направлении. Околозенитная дуга, иногда неверно называемая верхней касательной дугой 46-градусного гало, - это дуга в 90? или меньше с центром в точке зенита, расположенная выше Солнца приблизительно на 46?. Она бывает видна редко и только в течение нескольких минут, имеет яркие цвета, причем красный цвет приурочен к внешней стороне дуги. Околозенитная дуга примечательна своей расцветкой, яркостью и четкими очертаниями. Еще один любопытный и очень редкий оптический эффект типа гало - дуги Ловица. Они возникают как продолжение паргелиев на пересечении с 22-градусным гало, проходят с внешней стороны гало и слегка вогнуты в сторону Солнца. Столбы беловатого света, как и разнообразные кресты, иногда видны на рассвете или на закате, особенно в полярных регионах, и могут сопутствовать как Солнцу, так и Луне. Временами наблюдаются лунные гало и другие эффекты, подобные описанным выше, причем наиболее обычное лунное гало (кольцо вокруг Луны) имеет угловой радиус 22?. Подобно ложным солнцам, могут возникать ложные луны. Короны, или венцы, - небольшие концентрические цветные кольца вокруг Солнца, Луны или других ярких объектов, которые наблюдаются время от времени, когда источник света находится за полупрозрачными облаками. Радиус короны меньше радиуса гало и составляет ок. 1-5?, ближайшим к Солнцу оказывается голубое или фиолетовое кольцо. Корона возникает при рассеивании света мелкими водяными капельками воды, образующими облако. Иногда корона выглядит как светящееся пятно (или ореол), окружающее Солнце (или Луну), которое завершается красноватым кольцом. В других случаях за пределами ореола видно не менее двух концентрических колец большего диаметра, очень слабо окрашенных. Это явление сопровождается радужными облаками. Иногда края очень высоко расположенных облаков окрашены в яркие цвета. Глории (нимбы). В особых условиях возникают необычные атмосферные явления. Если Солнце находится за спиной наблюдателя, а его тень проецируется на близрасположенные облака или завесу тумана, при определенном состоянии атмосферы вокруг тени головы человека можно увидеть цветной светящийся круг - нимб. Обычно такой нимб образуется из-за отражения света капельками росы на травяном газоне. Глории также довольно часто можно обнаружить вокруг тени, которую отбрасывает самолет на нижележащие облака. Призраки Броккена. В некоторых районах земного шара, когда тень находящегося на возвышенности наблюдателя при восходе или заходе Солнца сзади него падает на облака, расположенные на небольшом расстоянии, обнаруживается поразительный эффект: тень приобретает колоссальные размеры. Это происходит из-за отражения и преломления света мельчайшими капельками воды в тумане. Описанное явление носит название «призрак Броккена» по имени вершины в горах Гарц в Германии. Миражи - оптический эффект, обусловленный преломлением света при прохождении через слои воздуха разной плотности и выражающийся в возникновении мнимого изображения. Удаленные объекты при этом могут оказаться поднятыми или опущенными относительно их действительного положения, а также могут быть искажены и приобрести неправильные, фантастические формы. Миражи часто наблюдаются в условиях жаркого климата, например над песчаными равнинами. Обычны нижние миражи, когда отдаленная, почти ровная поверхность пустыни приобретает вид открытой воды, особенно если смотреть с небольшого возвышения или просто находиться выше слоя нагретого воздуха. Подобная иллюзия обычно возникает на нагретой асфальтированной дороге, которая далеко впереди выглядит как водная поверхность. В действительности эта поверхность является отражением неба. Ниже уровня глаз в этой «воде» могут появиться объекты, обычно перевернутые. Над нагретой поверхностью суши формируется «воздушный слоеный пирог», причем ближайший к земле слой - самый нагретый и настолько разрежен, что световые волны, проходя через него, искажаются, так как скорость их распространения меняется в зависимости от плотности среды. Верхние миражи менее распространены и более живописны по сравнению с нижними. Удаленные объекты (часто находящиеся за морским горизонтом) вырисовываются на небе в перевернутом положении, а иногда выше появляется еще и прямое изображение того же объекта. Это явление типично для холодных регионов, особенно при значительной температурной инверсии, когда над более холодным слоем находится более теплый слой воздуха. Данный оптический эффект проявляется в результате сложных закономерностей распространения фронта световых волн в слоях воздуха с неоднородной плотностью. Время от времени возникают очень необычные миражи, особенно в полярных регионах. Когда миражи возникают на суше, деревья и другие компоненты ландшафта перевернуты. Во всех случаях в верхних миражах объекты видны более отчетливо, чем в нижних. Когда границей двух воздушных масс является вертикальная плоскость, порой наблюдаются боковые миражи. Огни святого Эльма. Некоторые оптические явления в атмосфере (например, свечение и самое распространенное метеорологическое явление - молния) имеют электрическую природу. Гораздо реже встречаются огни святого Эльма - светящиеся бледно-голубые или фиолетовые кисти длиной от 30 см до 1 м и более, обычно на верхушках мачт или концах рей находящихся в море судов. Иногда кажется, что весь такелаж судна покрыт фосфором и светится. Огни святого Эльма порой возникают на горных вершинах, а также на шпилях и острых углах высоких зданий. Это явление представляет собой кистевые электрические разряды на концах электропроводников, когда в атмосфере вокруг них сильно повышается напряженность электрического поля. Блуждающие огоньки - слабое свечение голубоватого или зеленоватого цвета, которое иногда наблюдается на болотах, кладбищах и в склепах. Они часто выглядят как приподнятое примерно на 30 см над землей спокойно горящее, не дающее тепла, пламя свечи, на мгновение зависающее над объектом. Огонек кажется совершенно неуловимым и при приближении наблюдателя как бы перемещается в другое место. Причиной этого явления служит разложение органических остатков и самовозгорание болотного газа метана (СН 4) или фосфина (РН 3). Блуждающие огоньки имеют разную форму, иногда даже шаровидную. Зеленый луч - вспышка солнечного света изумрудно-зеленого цвета в тот момент, когда последний луч Солнца скрывается за горизонтом. Красная составляющая солнечного света исчезает первой, все прочие - по порядку вслед за ней, и последней остается изумрудно-зеленая. Это явление возникает, лишь когда над горизонтом остается только самый краешек солнечного диска, а иначе происходит смешение цветов. Сумеречные лучи - расходящиеся пучки солнечного света, которые становятся видимыми благодаря освещению ими пыли в высоких слоях атмосферы. Тени от облаков образуют темные полосы, а между ними распространяются лучи. Этот эффект наблюдается, когда Солнце находится низко над горизонтом перед рассветом или после заката.

Явления, обусловленные преломлением, отражением, рассеянием и дифракцией света в атмосфере: по ним можно заключить о состоянии соответствующих слоев атмосферы.

Сюда относятся рефракция, миражи, многочисленные явления гало, радуга, венцы, явления зари и сумерек, синева неба и пр.

Мира́ж (фр. mirage - букв. видимость) - оптическое явление в атмосфере: преломление потоков света на границе между резко различными по плотности и температуре слоями воздуха. Для наблюдателя такое явление заключается в том, что вместе с реально видимым отдалённым объектом (или участком неба) также видно и его отражение в атмосфере.

Классификация

Миражи делят на нижние, видимые под объектом, верхние, видимые над объектом, и боковые.

Нижний мираж

Наблюдается при большом вертикальном градиенте температуры (падении её с высотой) над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, на уходящей вдаль дороге в жаркий летний день видится лужа.

Верхний мираж

Наблюдается над холодной земной поверхностью при инверсном распределении температуры (температура воздуха повышается с увеличением высоты).

Верхние миражи случаются в целом реже, чем нижние, но чаще бывают более стабильными, поскольку холодный воздух не имеет тенденцию двигаться вверх, а теплый - вниз.

Верхние миражи являются наиболее распространенными в полярных регионах, особенно на больших ровных льдинах со стабильной низкой температурой. Такие условия могут возникать над Гренландией и в районе Исландии. Возможно, благодаря этому эффекту, получившему название хиллингар (от исландского hillingar ), первые поселенцы Исландии узнали о существовании Гренландии.

Верхние миражи также наблюдаются в более умеренных широтах, хотя в этих случаях, они слабее, менее четкие и стабильные. Верхний мираж может быть прямым или перевернутым, в зависимости от расстояния до истинного объекта и градиента температуры. Часто изображение выглядит как фрагментарная мозаика прямых и перевернутых частей.

За горизонтом движется корабль нормальных размеров. При специфическом состоянии атмосферы его отражение над горизонтом кажется гигантским.

Верхние миражи могут иметь поразительный эффект за счет кривизны Земли. Если изгиб лучей примерно такой же, как кривизна Земли, лучи света могут перемещаться на большие расстояния, в результате чего наблюдатель видит объекты, находящиеся далеко за горизонтом. Это наблюдалось и задокументировано в первый раз в 1596 году, когда судно под командованием Виллема Баренца в поисках Северо-восточного прохода застряло во льдах на Новой Земле. Экипаж был вынужден пережидать полярную ночь. При этом восход Солнца после полярной ночи наблюдался на две недели раньше, чем ожидалось. В 20-м веке это явление было объяснено, и получило название «Эффект Новой Земли».

Таким же образом, корабли, находящиеся на самом деле так далеко, что они не должны быть видны над горизонтом, могут появиться на горизонте, и даже над горизонтом, как верхние миражи. Это может объяснить некоторые истории о полетах кораблей или прибрежных городов в небе, как описано некоторыми полярниками.

Боковой мираж

Боковые миражи могут возникать как отражение от нагретой отвесной стены. Описан случай, когда ровная бетонная стена крепости вдруг заблистала, как зеркало, отражая в себе окружающие предметы. В жаркий день мираж наблюдался всякий раз, когда стена достаточно нагревалась солнечными лучами.

Фата-моргана

Сложные явления миража с резким искажением вида предметов носят название Фата-моргана. Фа́та-морга́на (итал. fata Morgana - фея Моргана, по преданию, живущая на морском дне и обманывающая путешественников призрачными видениями) - редко встречающееся сложное оптическое явление в атмосфере, состоящее из нескольких форм миражей, при котором отдалённые объекты видны многократно и с разнообразными искажениями.

Фата-моргана возникает в тех случаях, когда в нижних слоях атмосферы образуется (обычно вследствие разницы температур) несколько чередующихся слоёв воздуха различной плотности, способных давать зеркальные отражения. В результате отражения, а также и преломления лучей, реально существующие объекты дают на горизонте или над ним по нескольку искажённых изображений, частично накладывающихся друг на друга и быстро меняющихся во времени, что и создаёт причудливую картину фата-морганы.

Объёмный мираж

В горах очень редко, при стечении определённых условий, можно увидеть «искажённого себя» на довольно близком расстоянии. Объясняется это явление наличием в воздухе «стоячих» паров воды.

Гало́ (от др.-греч. ἅλως - круг, диск; также а́ура , нимб , орео́л ) - оптический феномен, светящееся кольцо вокруг источника света.

Физика явления

Гало обычно появляется вокруг Солнца или Луны, иногда вокруг других мощных источников света, таких как уличные огни. Существует множество типов гало и вызваны они преимущественно ледяными кристаллами в перистых облаках на высоте 5-10 км в верхних слоях тропосферы. Вид гало зависит от формы и расположения кристаллов. Отражённый и преломлённый ледяными кристаллами свет нередко разлагается в спектр, что делает гало похожим на радугу. Наиболее яркими и полноцветными бывают паргелии и зенитная дуга, менее яркими - касательные малого и большого гало. В малом 22-градусном гало различима только часть цветов спектра (от красного до жёлтого), остальная часть выглядит белой из-за многократного смешения преломленных лучей. Паргелический круг и ряд других дуг гало почти всегда белые. Интересна особенность большого 46-градусного гало - оно тусклое и малоцветное, в то время как почти совпадающая с ним при малой высоте Солнца над горизонтом верхняя касательная дуга имеет выраженные радужные цвета .

В тусклом лунном гало цветов глазом не видно, что связано с особенностями сумеречного зрения.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

1. Оптические явления в атмосфере были первыми оптическими эффектами, которые наблюдались человеком. С осмысления природы этих явлений и природы зрения человека начиналось становление проблемы света.

Общее число оптических явлений в атмосфере очень велико. Здесь будут рассмотрены лишь наиболее известные явления – миражи, радуга, гало, венцы, мерцания звёзд, голубой цвет неба и алый цвет зари . Образование этих эффектов связано с такими свойствами света как преломление на границах раздела сред, интерференция и дифракция.

2. Атмосферная рефракция это искривление световых лучей при прохождении через атмосферу планеты . В зависимости от источников лучей различают астрономическую и земную рефракцию. В первом случае лучи идут от небесных тел (звёзд, планет), во втором случае – от земных объектов. В результате атмосферной рефракции наблюдатель видит объект не там, где он находится, или не той формы, какую он имеет.

3. Астрономическая рефракция была известна уже во времена Птолемея (2 в. н.э.). В 1604 г. И. Кеплер предположил, что земная атмосфера имеет независимую от высоты плотность и определённую толщину h (рис.199). Луч 1, идущий от звёзды S прямо к наблюдателю A по прямой, не попадёт в его глаз. Преломившись на границе вакуума и атмосферы, он попадёт в точку В .

В глаз наблюдателя попадёт луч 2, который при отсутствии преломления в атмосфере должен был бы пройти мимо. В результате преломления (рефракции) наблюдатель будет видеть звезду не в направлении S , а на продолжении преломлённого в атмосфере луча, то есть в направлении S 1 .

Угол γ , на который отклоняется к зениту Z видимое положение звезды S 1 по сравнению с истинным положением S , называют углом рефракции . Во времена Кеплера углы рефракции были уже известны по результатам астрономических наблюдений некоторых звёзд. Поэтому данную схему Кеплер использовал для оценки толщины атмосферы h . По его вычислениям получилось h » 4 км. Если считать по массе атмосферы, то это примерно в два раза меньше истинного.

В действительности плотность атмосферы Земли уменьшается с высотой. Поэтому нижние слои воздуха оптически плотнее, чем верхние. Лучи света, идущие наклонно к Земле, преломляются не в одной точке границы вакуума и атмосферы, как в схеме Кеплера, а искривляются постепенно на всём протяжении пути. Это подобно тому, как проходит луч света через стопу прозрачных пластинок, показатель преломления которых тем больше, чем ниже расположена пластинка. Однако суммарный эффект рефракции проявляется так же, как и в схеме Кеплера. Отметим два явления, обусловленные астрономической рефракцией.

а. Видимые положения небесных объектов смещаются к зениту на угол рефракции γ . Чем ниже к горизонту находится звезда, тем заметнее приподнимается её видимое положение на небосклоне по сравнению с истинным (рис.200). Поэтому картина звёздного неба, наблюдаемая с Земли, несколько деформирована к центру. Не смещается только точка S , находящаяся в зените. Благодаря атмосферной рефракции могут наблюдаться звёзды, находящиеся несколько ниже линии геометрического горизонта.


Значения угла рефракции γ быстро убывают с ростом угла β высоты светила над горизонтом. При β = 0 γ = 35" . Это максимальный угол рефракции. При β = 5º γ = 10" , при β = 15º γ = 3" , при β = 30º γ = 1" . Для светил, высота которых β > 30º, рефракционное смещение γ < 1" .

б. Солнце освещает больше половины поверхности земного шара . Лучи 1 - 1, которые должны были бы в отсутствие атмосферы касаться Земли в точках диаметрального сечения DD , благодаря атмосфере касаются её несколько раньше (рис.201).

Поверхности Земли касаются лучи 2 - 2, которые без атмосферы прошли бы мимо. В результате линия терминатора ВВ , отделяющая свет от тени, смещается в область ночного полушария. Поэтому площадь дневной поверхности на Земле больше площади ночной.

4. Земная рефракция . Если явления астрономической рефракции обусловлены глобальным преломляющим эффектом атмосферы , то явления земной рефракции обусловлены локальными изменениями атмосферы , связанными обычно с температурными аномалиями. Наиболее замечательными проявлениями земной рефракции являются миражи .

а. Верхний мираж (от фр. mirage ). Наблюдается обычно в арктических районах с прозрачным воздухом и с низкой температурой поверхности Земли. Сильное выстывание поверхности здесь обусловлено не только низким положением солнца над горизонтом, но и тем, что поверхность, покрытая снегом или льдом, отражает большую часть радиации в космос. В результате в приземном слое с приближением к поверхности Земли очень быстро понижается температура и увеличивается оптическая плотность воздуха.

Искривление лучей в сторону Земли оказывается иногда столь значительным, что наблюдаются предметы, находящиеся далеко за линией геометрического горизонта. Луч 2 на рис.202, который в обычной атмосфере ушёл бы в её верхние слои, в данном случае искривляется к Земле и попадает в глаз наблюдателя.

По-видимому, именно такой мираж представляет собой легендарные “Летучие голландцы” - призраки кораблей, находящихся в действительности на расстоянии в сотни и даже тысячи километров. Удивительно в верхних миражах то, что не наблюдается заметного уменьшения видимых размеров тел.

Например, в 1898 г. экипаж бременского судна “Матадор” наблюдал судно-призрак, видимые размеры которого соответствовали расстоянию 3-5 миль. В действительности, как позднее выяснилось, это судно находилось в это время на расстоянии около тысячи миль. (1 морская миля равна 1852 м). Приземный воздух не только искривляет световые лучи, но и фокусирует их как сложная оптическая система.

В обычных условиях температура воздуха с увеличением высоты падает. Обратный ход температуры, когда с увеличением высоты температура растёт, называют инверсией температуры . Температурные инверсии могут возникать не только в арктических зонах, но и в других, более низких по широте местах. Поэтому верхние миражи могут возникать всюду, где воздух достаточно чист и где возникают температурные инверсии. Например, миражи дальнего видения наблюдаются иногда на побережье Средиземного моря. Инверсия температуры создаётся здесь горячим воздухом из Сахары.

б. Нижний мираж возникает при обратном ходе температуры и наблюдается обычно в пустынях в жаркое время. К полудню, когда солнце высоко, песчаный грунт пустыни, состоящий из частиц твёрдых минералов, разогревается до 50 и более градусов. В то же время на высоте нескольких десятков метров воздух остаётся сравнительно холодным. Поэтому коэффициент преломления выше расположенных слоёв воздуха оказывается заметно больше по сравнению с воздухом возле земли. Это также приводит к искривлению лучей, но в обратную сторону (рис.203).

Лучи света, идущие от низко расположенных над горизонтом частей неба, находящихся напротив наблюдателя, постоянно искривляются кверху и попадают в глаз наблюдателя в направлении снизу вверх. В результате на их продолжении на поверхности земли наблюдатель видит отражение неба, напоминающее водную гладь. Это так называемый “озёрный” мираж.

Эффект ещё более усиливается, когда в направлении наблюдения находятся скалы, возвышенности, деревья, постройки. В этом случае они видны как острова посреди обширного озера. Причём виден не только предмет, но и его отражение. По характеру искривления лучей приземный слой воздуха действует как зеркало водной поверхности.

5. Радуга . Это красочное оптическое явление, наблюдающееся во время дождя, освещённого солнцем и представляющее собой систему концентрических цветных дуг .

Первую теорию радуги разработал Декарт в 1637 г. К этому времени были известны следующие опытные факты, относящиеся к радуге:

а. Центр радуги О находится на прямой, соединяющей Солнце с глазом наблюдателя (рис.204).

б. Вокруг линии симметрии Глаз - Солнце располагается цветная дуга с угловым радиусом около 42°. Цвета располагаются, считая от центра, в порядке: голубой (г), зелёный (з), красный (к) (группа линий 1). Это главная радуга . Внутри главной радуги имеются слабые разноцветные дуги красноватого и зеленоватого оттенков.

в. Вторая система дуг с угловым радиусом около 51° называется вторичной радугой. Её цвета значительно бледнее и идут в обратном порядке, считая от центра, красный, зелёный, голубой (группа линий 2) .

г. Главная радуга появляется лишь тогда, когда солнце находится над горизонтом под углом не более 42°.

Как установил Декарт, основной причиной образования главной и вторичной радуги является преломление и отражение световых лучей в каплях дождя. Рассмотрим основные положения его теории.

6. Преломление и отражение монохроматического луча в капле . Пусть монохроматический луч интенсивностью I 0 падает на сферическую каплю радиуса R на расстоянии y от оси в плоскости диаметрального сечения (рис.205). В точке падения A часть луча отражается, а основная часть интенсивностью I 1 проходит внутрь капли. В точке B большая часть луча проходит в воздух (на рис.205 вышедший в В луч не показан), а меньшая часть отражается и падает в точку С . Вышедший в точке С луч интенсивностью I 3 участвует в образовании главной радуги и слабых вторичных полос внутри главной радуги.

Найдём угол θ , под которым выходит луч I 3 по отношению к падающему лучу I 0 . Заметим, что все углы между лучом и нормалью внутри капли одинаковы и равны углу преломления β . (Треугольники ОАВ и ОВС равнобедренные). Сколько бы луч не “кружился” внутри капли, все углы падения и отражения одинаковы и равны углу преломления β . По этой причине любой луч, выходящий из капли в точках В , С и т.д., выходит под одним и тем же углом, равным углу падения α .

Чтобы найти угол θ отклонения луча I 3 от первоначального, надо просуммировать углы отклонения в точках А , В и С : q = (α – β) + (π – 2β) + (α - β) = π + 2α – 4β . (25.1)

Удобнее измерять острый угол φ = π – q = 4β – 2α . (25.2)

Выполнив расчёт для нескольких сот лучей, Декарт нашёл, что угол φ с ростом y , то есть по мере удаления луча I 0 от оси капли, сначала растёт по абсолютной величине, при y /R ≈ 0,85 принимает максимальное значение, а затем начинает убывать.

Сейчас это предельное значение угла φ можно найти, исследовав функцию φ на экстремум по у . Так как sinα = yçR , а sinβ = yçR ·n , то α = arcsin(yçR ), β = arcsin(yçRn ). Тогда

, . (25.3)

Разнеся члены в разные части равенства и возведя в квадрат, получаем:

, Þ (25.4)

Для жёлтой D -линии натрия λ = 589,3 нм показатель преломления воды n = 1,333. Расстояние точки А вхождения этого луча от оси y = 0,861R . Предельный угол для этого луча равен

Интересно, что точка В первого отражения луча в капле также максимально удалена от оси капли. Исследовав на экстре-мум угол d = p α ε = p α – (p – 2β ) = 2β α по величине у , получаем то же условие, у = 0,861R и d = 42,08°/2 = 21,04°.

На рис.206 показана зависимость угла φ , под которым из капли выходит луч после первого отражения (формула 25.2), от положения точки А входа луча в каплю. Все лучи отражаются внутри конуса с углом при вершине ≈ 42º.

Очень важно для образования радуги то, что лучи, вошедшие в каплю в цилиндрическом слое толщиной уçR от 0,81 до 0,90 , выходят после отражения в тонкой стенке конуса в угловых пределах от 41,48º до 42,08º. Снаружи стенка конуса гладкая (есть экстремум угла φ ), изнутри – рыхлая. Угловая толщина стенки ≈ 20 угловых минут. Для проходящих лучей капля ведёт себя как линза с фокусным расстоянием f = 1,5R . Входят в каплю лучи по всей поверхности первого полушария, отражаются назад расходящимся пучком в пространстве конуса с осевым углом ≈ 42º, а проходят через окно с угловым радиусом ≈ 21º (рис.207).

7. Интенсивность вышедших из капли лучей . Здесь будем говорить лишь о лучах, вышедших из капли после 1-го отражения (рис.205). Если луч, падающий на каплю под углом α , имеет интенсивность I 0 , то прошедший в каплю луч имеет интенсивность I 1 = I 0 (1 – ρ ), где ρ – коэффициент отражения по интенсивности.

Для неполяризованного света коэффициент отражения ρ можно вычислить по формуле Френеля (17.20). Поскольку в формулу входят квадраты функций от разности и суммы углов α и β , то коэффициент отражения не зависит от того, в каплю входит луч, или из капли. Поскольку углы α и β в точках А , В , С одинаковы, то и коэффициент ρ во всех точках А , В , С один и тот же. Отсюда, интенсивности лучей I 1 = I 0 (1 – ρ ), I 2 = I 1 ρ = I 0 ρ (1 – ρ ), I 3 = I 2 (1 – ρ ) = I 0 ρ (1 – ρ ) 2 .

В таблице 25.1 приведены значения углов φ , коэффициента ρ и отношения интенсивности I 3 çI 0 , вычисленные при разных расстояниях уçR входа луча для жёлтой линии натрия λ = 589,3 нм. Как видно из таблицы, при у ≤ 0,8R в луч I 3 попадает меньше 4 % энергии от падающего на каплю луча. И лишь начиная с у = 0,8R и более вплоть до у = R интенсивность вышедшего луча I 3 увеличивается в несколько раз.

Таблица 25.1

y /R α β φ ρ I 3 /I 0
0 0 0 0 0,020 0,019
0,30 17,38 12,94 16,99 0,020 0,019
0,50 29,87 21,89 27,82 0,021 0,020
0,60 36,65 26,62 33,17 0,023 0,022
0,65 40,36 29,01 35,34 0,025 0,024
0,70 44,17 31,52 37,73 0,027 0,025
0,75 48,34 34,09 39,67 0,031 0,029
0,80 52,84 36,71 41,15 0,039 0,036
0,85 57,91 39,39 42,08 0,052 0,046
0,90 63,84 42,24 41,27 0,074 0,063
0,95 71,42 45,20 37,96 0,125 0,095
1,00 89,49 48,34 18,00 0,50 0,125

Итак, лучи, выходящие из капли под предельным углом φ , имеют значительно большую по сравнению с другими лучами интенсивность по двум причинам. Во-первых, за счёт сильного углового сжатия пучка лучей в тонкой стенке конуса, а во-вторых, за счёт меньших потерь в капле. Лишь интенсивность этих лучей достаточна для того, чтобы вызвать в глазу ощущение блеска капли.

8. Образование главной радуги . При падении на каплю света вследствие дисперсии луч расщепляется. В результате стенка конуса яркого отражения расслаивается по цветам (рис.208). Фиолетовые лучи (l = 396,8 нм) выходят под углом j = 40°36", красные (l = 656,3 нм) – под углом j = 42°22". В этом угловом интервале Dφ = 1°46" заключён весь спектр выходящих из капли лучей. Фиолетовые лучи образуют внутренний конус, красные – внешний. Если освещённые солнцем дождевые капли видит наблюдатель, то те из них, лучи конуса которых попадают в глаз, видятся наиболее яркими. В итоге все капли, находящиеся по отношению к солнечно-му лучу, проходящему через глаз наблюдателя, под углом красного конуса, видятся красными, под углом зелёного -зелёными (рис.209).

9. Образование вторичной радуги происходит благодаря лучам, выходящим из капли после второго отражения (рис.210). Интенсивность лучей после второго отражения примерно на порядок меньше по сравнению с лучами после первого отражения и имеет примерно такой же ход с изменением уçR .

Лучи, выходящие из капли после второго отражения образуют конус с углом при вершине ≈ 51º. Если у первичного конуса гладкая сторона снаружи, то у вторичного изнутри. Между этими конусами практически нет лучей. Чем крупнее капли дождя, тем ярче радуга. С уменьшением размеров капель радуга бледнеет. При переходе дождя в морось с R ≈ 20 – 30 мкм радуга вырождается в белесоватую дугу с практически неразличимыми цветами.

10. Гало (от греч. halōs - кольцо) – оптическое явление, представляющее собой обычно радужные круги вокруг диска Солнца или Луны с угловым радиусом 22º и 46º. Эти круги образуются в результате преломления света находящимися в перистых облаках ледяными кристаллами, имеющими форму шестигранных правильных призм.

Снежинки, падающие на землю, очень разнообразны по форме. Однако кристаллики, образующиеся в результате конденсации паров в верхних слоях атмосферы, имеют, в основном, форму шестигранных призм. Из всех возможных вариантов прохождения луча через шестигранную призму наиболее важны три (рис.211).

В случае (а) луч проходит через противоположные парал-лельные грани призмы, не расщепляясь и не отклоняясь.

В случае (б) луч проходит через грани призмы, образующие между собой угол 60º, и преломляется как в спектральной призме. Интенсивность луча, выходящего под углом наименьшего отклонения 22º, максимальна. В третьем случае (в) луч проходит через боковую грань и основание призмы. Преломляющий угол 90º, угол наименьшего отклонения 46º. В обоих последних случаях белые лучи расщепляются, голубые лучи отклоняются больше, красные – меньше. Случаи (б) и (в) обуславливают появление колец, наблюдающихся в проходящих лучах и имеющих угловые размеры 22º и 46º (рис.212).

Обычно наружное кольцо (46º) ярче внутреннего и оба они имеют красноватый оттенок. Это объясняется не только интенсивным рассеиванием голубых лучей в облаке, но и тем, что дисперсия голубых лучей в призме больше, чем красных. Поэтому голубые лучи выходят из кристаллов сильно расходящимся пучком, из-за чего их интенсивность уменьшается. А красные лучи выходят узким пучком, имеющим значительно большую интенсивность. При благоприятных условиях, когда удаётся различать цвета, внутренняя часть колец красная, внешняя – голубая.

10. Венцы – светлые туманные кольца вокруг диска светила. Их угловой радиус много меньше радиуса гало и не превышает 5º. Венцы возникают вследствие дифракционного рассеяния лучей на образующих облако или туман водяных каплях.

Если радиус капли R , то первый дифракционный минимум в параллельных лучах наблюдается под углом j = 0,61∙lçR (см. формулу 15.3). Здесь l - длина волны света. Дифракционные картины отдельных капель в параллельных лучах совпадают, в результате интенсивность светлых колец усиливается.

По диаметру венцов можно определять размер капель в облаке. Чем крупнее капли (больше R ), тем меньше угловой размер кольца. Самые большие кольца наблюдаются от самых мелких капель. На расстояниях несколько километров дифракционные кольца ещё заметны, когда размер капель не менее 5 мкм. В этом случае j max = 0,61lçR ≈ 5 ¸ 6°.

Окраска светлых колец венцов проявляется очень слабо. Когда она заметна, то наружный край колец имеет красноватый цвет. То есть распределение цветов в венцах обратно распределению цветов в кольцах гало. Помимо угловых размеров это также позволяет различать венцы и гало между собой. Если в атмосфере присутствуют капли широкого спектра размеров, то кольца венцов, налагаясь друг на друга, образуют общее светлое сияние вокруг диска светила. Это сияние называют ореолом .

11. Голубой цвет неба и алый цвет зари . Когда Солнце находится выше горизонта, безоблачное небо видится голубым. Дело в том, что из лучей солнечного спектра в соответствии с законом Рэлея I расс ~ 1/l 4 наиболее интенсивно рассеиваются короткие синие, голубые и фиолетовые лучи.

Если Солнце находится низко над горизонтом, то его диск воспринимается багрово-красным по этой же причине. Благодаря интенсивному рассеянию коротковолнового света до наблюдателя доходят, в основном, слабо рассеивающиеся красные лучи. Рассеяние лучей от восходящего или заходящего Солнца особенно велико ещё потому, что лучи проходят большое расстояние вблизи поверхности Земли, где концентрация рассеивающих частиц особенно велика.

Утренняя или вечерняя заря – окрашивание близкой к Солнцу части неба в розовый цвет – объясняется дифракционным рассеянием света на кристалликах льда в верхних слоях атмосферы и геометрическим отражением света от кристаллов.

12. Мерцание звёзд – это быстрые изменения блеска и цвета звёзд, особенно заметные вблизи горизонта. Мерцание звёзд обусловлено преломлением лучей в быстро пробегающих струях воздуха, которые из-за разной плотности имеют разный показатель преломления. В результате слой атмосферы, через который проходит луч, ведёт себя как линза с переменным фокусным расстоянием. Она может быть как собирающей, так и рассеивающей. В первом случае свет концентрируется, блеск звезды усиливается, во втором – свет рассеивается. Такая перемена знака регистрируется до сотни раз в секунду.

Вследствие дисперсии луч разлагается на лучи разных цветов, которые идут по разным путям и могут расходиться тем больше, чем ниже звезда к горизонту. Расстояние между фиолетовыми и красными лучами от одной звезды может достигать у поверхности Земли 10 метров. В результате наблюдатель видит непрерывное изменение блеска и цвета звезды.

Электрические и оптические явления в атмосфере. Атмосферные явления. Электрические и оптические явления в атмосфере удивительные, а иногда опасные атмосферные явления.

Электрические явления в атмосфере.

3. Электрические явления это проявление атмосферного электричества (гроза, зарница, полярное сияние).

Гроза – сильные электрические разряды, происходящие в атмосфере. Сопровождается порывистым ветром, ливнем, вспышками яркого света (молнией) и резкими звуковыми эффектами (громом). Раскаты грома слышны на расстоянии до двадцати километров. Причиной являются кучево-дождевые облака. Электрические разряды могут возникать межу облаками, внутри самих облаков, между облаками и поверхностью земли. Гроза бывает фронтальной при движении холодного или теплого фронта воздушных масс или внутримассовой. Внутримассовая гроза образуется при местном прогревании воздуха. Гроза является очень опасным природным явлением для человека. По количеству унесенных человеческих жизней гроза находится на втором месте после наводнений. Любопытные ученые определили, что одновременно на Земле происходит полторы тысячи гроз. Каждую секунду возникает сорок шесть молний! Только на полюсах и в полярных районах не бывает грозы.

Зарница это световое явление, при котором на короткое время освещаются молнией облака или горизонт. Сама молния не наблюдается. Причиной является далеко проходящая гроза (на расстоянии более двадцати километров). Гром при зарнице не слышен.

Полярное сияние – разноцветное свечение ночного неба в высоких широтах. Причиной является значительное колебание магнитного поля Земли. При этом выделяется большое количество энергии. Длительность такого явления может составлять от нескольких минут до нескольких суток.

Оптические явления в атмосфере.

4. Оптические явления это результат дифракции (преломления) света от Солнца или Луны (мираж, радуга, гало).

Мираж это появление мнимого изображения действительно существующего предмета. Обычно мнимые предметы появляются в перевернутом виде или сильно искажены. Причиной является искривление лучей света из-за оптической неоднородности воздуха. Неоднородность атмосферы появляется при неравномерном нагреве воздуха на различной высоте.

Радуга – большая разноцветная дуга на фоне дождевых облаков. У радуги внешняя часть красного цвета, а внутренняя – фиолетовая. Нередко с наружной стороны радуги появляется вторичная радуга, у которой обратное чередование цветов. Причиной возникновения является преломление и отражение лучей света в капельках водяного пара. Радугу можно наблюдать только в том случае, если солнце расположено низко над горизонтом.

Гало – светлые красноватые дуги, круги, пятна, появляющиеся вокруг Солнца или Луны. Причиной возникновения является преломление и отражение лучей света от кристаллов льда в перисто-слоистых облаках.

5. Неклассифицированные атмосферные явления это все явления, которые трудно отнести к какому-нибудь другому виду (шквал, смерч, вихрь, мгла).

Шквал это неожиданное и резкое усиление ветра в течение одной или двух минут. Ветер достигает скорости более 10 метров в секунду. Причиной является движение восходящих и нисходящих масс воздуха. Шквалу сопутствуют гроза, ливень и кучево-дождевые облака.

Вихрь — это вращательное и поступательное движение больших масс воздуха. Диаметр вихря может достигать нескольких тысяч километров. Атмосферные вихри: циклон, тайфун.

Смерч или торнадо – очень сильный вихрь, представляющий собой гигантскую воронку или столб из облака. Диаметр такого столба над водой может быть до 100 метров, а над землей до километра. Высота смерча достигает 10 километров.

Внутри воронки или столба, при вращении воздуха, образуется зона разреженного воздуха. Скорость движения воздуха в воронке пока не определена. Просто нет такого смельчака, рискнувшего попасть с приборами в воронку. Смерч втягивает в себя воду, песок, пыль, другие предметы и переносит их на значительные расстояния. Срок жизни смерча составляет от нескольких минут до полутора часов. Образуется в жару и исходит из кучево-дождевого облака. Люди пока полностью не определили механизм возникновения смерчей.