Функции плазматической мембраны. Структура и функции клетки Плазматическая мембрана строение

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Плазматическая мембрана выполняет множество функций. Перечислим наиболее важные.

    Перенос веществ через мембрану. Через мембрану осуществляется транспорт веществ в обе стороны мембраны.

    Перенос информации через мембрану. На мембране информация из вне воспринимается преобразуется и передаётся в клетку или из клетки. Существенную роль при это м играют рецепторы мембран.

    Защитная роль. а) защищает содержимое клетки от механических повреждений, химических реагентов и биологической агрессии, например от проникновения вирусов и др.;

б) в многоклеточном организме рецепторы плазматической мембраны формируют иммунный статус организма;

в) в многоклеточном организме мембрана обеспечивает протекание реакции фагоцитоза.

    Ферментативная - в мембранах находятся различные ферменты (например, фосфолипаза А и др.), которые осуществляют целый ряд ферментативных реакций.

    Гликопротеины и гликолипиды на цитоплазматической мембране осуществляют контакт с мембранами других клеток.

Некоторые из перечисленных функций рассмотрим более детально.

а. Транспортная функция. Через мембрану внутрь клетки и наружу происходит перемещение различных веществ, в том числе и лекарственных препаратов. В зависимости от размера переносимых через мембрану молекул различают два вида транспорта: без нарушения целостности мембраны и с нарушением целостности мембраны. Первый тип транспорта может осуществляется двумя путями – без затрата энергии (пассивный транспорт) и с затратой энергии (активный транспорт) (см. рис. 4). Пассивный перенос происходит за счёт диффузии по электрохимическому градиенту в результате броуновского движения атомов и молекул. Этот вид транспорта может осуществляться непосредственно через липидный слой, без какого-либо участия белков и углеводов или при помощи специальных белков – транслоказ. Через липидный слой в основном транспортируются молекулы веществ, которые растворимы в жирах, и малые незаряженные или слабозаряженные молекулы, такие каквода, кислород, углекислый газ, азот, мочевина, жирные кислоты, а также многие органические соединения (например, наркотики) хорошо растворимые в жирах . Транслоказы, могут переносить вещество через мембраны в сторону его меньшей концентрации, не затрачивая энергии, при помощи двух различных механизмов – через канал, который проходит внутри белка, или путём соединения выступающей из мембраны части белка с веществом, поворотом комплекса на 180 0 и отсоединением вещества от белка. Диффузия веществ через мембрану с участием белков важна тем, что она идётзначительно быстрее простой диффузии, через липидный слой без участия белков. Поэтому диффузия, в которой принимают участие транслоказы, называют облегчённой диффузией. По такому принципу в клетку транспортируются некоторые ионы (например, ион хлора) и полярные молекулы, а также глюкоза.

Для активного переноса веществ через мембрану характерны три свойства:

    Активный перенос осуществляется против градиента концентрации.

    Осуществляется белком переносчиком.

    Идёт с затратой энергии.

Энергия при активном переносе веществ необходима для того, чтобы перенести вещество против градиента его концентрации. Системы активного переноса часто называют мембранными насосами. Энергия в этих системах может быть получена из различных источников, чаще всего таким источником служит АТФ. Расщепление фосфатных связей в АТФ осуществляет интегральный белок-фермент АТФ-аза. Поэтому этот фермент и находится в мембране многих клеток в виде интегрального белка. Важно то, что этот фермент не только освобождает энергию из АТФ, но и осуществляет перемещение вещества. Поэтому система активного переноса состоит чаще всего из одного белка - АТФ-азы, который получает энергию и перемещает вещество. Иными словами, процесс перемещения и энергообеспечения в АТФ-азе сопряжены. В зависимости от того, какие вещества перекачивает АТФ-аза насосы называют или Na + , K + - АТФ-аза или Ca 2+ -АТФ-аза . Первые регулируют содержание в клетке натрия и калия, вторые кальция (этот тип насосов чаще всего размещён на каналах ЭПС). Сразу же отметим важный для медицинских работников факт: для успешной работы калий-натриевого насоса, клетка затрачиваетоколо 30% энергии основного обмена. Это очень большой объём. Эта энергия тратится на поддержку определённых концентраций натрия и калия в клетке и межклеточном пространстве;- в клетке содержится калия больше, чем в межклеточном пространстве, натрия, наоборот, больше в межклеточном пространстве, чем в клетке. Такое распределение, далёкое от осмотического равновесия, обеспечивает наиболее оптимальный режим работы клетки.

Транспорт веществ через мембраны

Пассивный

(без затраты энергии)

Активный

(с затратой энергии)

Простая диффузия

(без участия белков)

Источник энергии - АТФ

Облегчённая диффузия

(с участием белков)

Другие виды источников

Через канал в белке

Путём переворота

белка с веществом

Рис. 4. Классификация типов транспорта веществ через мембрану.

Путём активного переноса происходит перемещение через мембрану неорганических ионов, аминокислот и сахаров, практически всех лекарственных веществ, имеющих полярные молекулы – парааминобензойная кислота, сульфаниламиды, йод, сердечные гликозиды, витамины группы В, кортикостероидные гормоны и др.

Для наглядной иллюстрации процесса переноса веществ через мембрану мы приводим (с небольшими изменениями) рисунок 5 взятый из книги «Молекулярная биология клетки» (1983) Б. Альбертса и др. учёных, считающихся лидерами в разработке теории

Транспортируемая молекула

Канальный Белок

белок переносчик

Липидный Электрохимич.

бислой градиент

Простая диффузия Облегчённая диффузия

Пассивный транспорт Активный транспорт

Рис 5. Многие мелкие незаряженные молекулы свободно проходят через липидный бислой. Заряженные молекулы, крупные незаряженные молекулы и некоторые мелкие незаряженные молекулы проходят через мембраны по каналам или порам либо с помощью специфических белков переносчиков. Пассивный транспорт всегда направлен против электрохимического градиента в сторону установления равновесия. Активный же транспорт осуществляется против электрохимического градиента и требует энергетических затрат.

трансмембранного переноса, отражены основные типы переноса веществ через мембрану. Следует отметить что белки, участвующие в трансмембранном переносе, относятся к интегральным белкам и чаще всего представлены одним сложноорганизованным белком.

Перенос высокомолекулярных молекул белка и др. больших молекул через мембрану в клетку осуществляется эндоцитозом (пиноцитоз, фагоцитоз и эндоцитоз), а из клетки – экзоцитозом. Во всех случаях эти процессы отличаются от вышеизложенных тем, что переносимое вещество (частица, вода, микроорганизмы или др.) вначале упаковывается в мембрану и в таком виде переносится в клетку или выделяется из клетки. Процесс упаковки может происходить как на поверхности плазматической мембраны, так и внутри клетки

б. Перенос информации через плазматическую мембрану.

Кроме белков, участвующих в переносе веществ через мембрану, в ней выявлены сложные комплексы из нескольких белков. Пространственно разделённые, они объединены одной конечной функцией. К сложно устроенным белковым ансамблям относится комплекс белков, отвечающих за производство в клетке очень мощного биологически активного вещества – цАМФ (циклический аденозинмонофосфат). В этом ансамбле белков имеются как поверхностные, так и интегральные белки. Например, на внутренней поверхности мембраны расположен поверхностный белок, который носит название G– белок. Этот белок поддерживает взаимоотношения между двумя рядом расположенными интегральным белками – белком, который называется адреналиновый рецептор и белком - ферментом – аденилатциклазой. Адренорецептор способен соединятся с адреналином, который попадает из крови в межклеточное пространство и возбуждаться. Это возбуждениеG– белок передаёт на аденилатциклазу – фермент, способный производить активное вещество – цАМФ. Последний, поступает в цитоплазму клетки и активирует в ней самые различные ферменты. Например, активируется фермент, расщепляющий гликоген до глюкозы. Образование глюкозы приводит к повышению активности митохондрий и повышению синтеза АТФ, которая поступает в качестве носителя энергии во все клеточные отсеки, усиливая работу лизосомы, натрий-калиевых и кальциевых насосов мембраны, рибосом и т.д. повышая в конечном итоге жизнедеятельность практически всех органов, особенно мышц. На этом примере, хотя и очень упрощенном, видно как связана деятельность мембраны с работой других элементов клетки. На бытовом уровне эта сложная схема выглядит достаточно просто. Представьте, что на человека неожиданно набросилась собака. Возникшее чувство страха приводит к выбросу в кровь адреналина. Последний, связывается с адренорецепторами на плазматической мембране изменяя при этом химическую структуру рецептора. Это, в свою очередь, приводит к изменению структурыG– белка. ИзменённыйG– белок становиться способным активировать аденилатциклазу, которая усиливает производство цАМФ. Последний стимулирует образование глюкозы из гликогена. В результате усиливается синтез энергоёмкой молекулы АТФ. Повышенное образование энергии у человека в мышцах приводит к быстрой и сильной реакции на нападение собаки (бегство, защита, борьба и т.д.).

Основу структурной организации клетки составляют биологические мембраны. Плазматическая мембрана (плазмалемма) — это мембрана, окружающая цитоплазму живой клетки. Мембраны состоят из липидов и белков. Липиды (в основном фосфолипиды) образуют двойной слой, в котором гидрофобные «хвосты» молекул обращены внутрь мембраны, а гидрофильные — к её поверхностям. Молекулы белков могут располагаться на внешней и внут-ренней поверхности мембраны, могут частично погружать-ся в слой липидов или пронизывать её насквозь. Большая часть погруженных белков мембран — ферменты. Это жид-костно-мозаичная модель строения плазматической мем-браны. Молекулы белка и липидов подвижны, что обеспе-чивает динамичность мембраны. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов (гликокаликс), располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мем-браны каждой клетки специфичен и является своеобраз-ным указателем типа клеток.

Функции мембраны:

  1. Разделительная. Она заключается в образовании барьера между внутренним содержимым клетки и внешней средой.
  2. Обеспечение обмена веществ между цитоплазмой и внешней средой. В клетку поступают вода, ионы, неорганические и органические молекулы (транспортная функ-ция). Во внешнюю среду выводятся продукты, образован-ные в клетке (секреторная функция).
  3. Транспортная. Транспорт через мембрану может проходить разными путями. Пассивный транспорт осуществляется без затрат энергии, путем простой диффузии, осмоса или облегченной диффузии с помощью белков- переносчиков. Активный транспорт — с помощью белков-переносчиков, и он требует затрат энергии (например, натрий-калиевый насос). Материал с сайта

Крупные молекулы биополимеров попадают внутрь клетки в результате эндоцитоза. Его разделяют на фагоци-тоз и пиноцитоз. Фагоцитоз — захват и поглощение клет-кой крупных частиц. Явление впервые было описано И.И. Мечниковым. Сначала вещества прилипают к плаз-матической мембране, к специфическим белкам-рецеп-торам, затем мембрана прогибается, образуя углубление.

Образуется пищеварительная вакуоль. В ней переварива-ются поступившие в клетку вещества. У человека и живот-ных к фагоцитозу способны лейкоциты. Лейкоциты по-глощают бактерии и другие твердые частицы.

Пиноцитоз — процесс захвата и поглощения капель жидкости с растворенными в ней веществами. Вещества прилипают к белкам мембраны (рецепторам), и капля рас-твора окружается мембраной, формируя вакуоль. Пиноци-тоз и фагоцитоз происходят с затратой энергии АТФ.

  1. Секреторная. Секреция — выделение клеткой ве-ществ, синтезированных в клетке, во внешнюю среду. Гормоны, полисахариды, белки, жировые капли, заключа-ются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Мембраны сливаются, и содержимое пу-зырька выводится в среду, окружающую клетку.
  2. Соединение клеток в ткани (за счет складчатых вы-ростов).
  3. Рецепторная. В мембранах имеется большое число рецепторов — специальных белков, роль которых заключа-ется в передаче сигналов извне внутрь клетки.

Разделы: Биология

Статья является конспектом урока-изучения и первичного закрепления новых знаний (курс “Общая биология”, 10 класс, по программе В.Б. Захарова).

Задачи:

  1. формирование знаний о строении, свойствах и функциях внутреннего слоя клеточной оболочки – плазматической мембраны (а на ее примере и других мембран клетки), с использованием мыльного пузыря в качестве модели.
  2. развитие понятия о соответствии строения выполняемым функциям.
  3. первичное закрепление полученных знаний с помощью заданий в формате ЕГЭ.

Оборудование:

  1. таблица “Строение растительной и животной клеток по данным светового и электронного микроскопов”.
  2. раствор моющего средства (для получения мыльных пузырей), пластмассовая трубочка, тонкая швейная игла.
  3. рисунок на доске: модели молекул <Рисунок 1 >.
  4. дидактические материалы с заданиями в формате ЕГЭ.

Ход урока

Учитель: На прошлом уроке мы провели лабораторную работу “Плазмолиз и деплазмолиз в клетках кожицы лука”, при проведении которой познакомились с интересными явлениями. В чем их суть?

Ученики: При помещении растительной ткани (эпидермис чешуйки лука) в гипертонический раствор поваренной соли (NaCl) не происходило диффузии этого раствора в клетки, а наблюдался выход воды из вакуолей клеток в сторону гипертонического раствора NaCl, чтобы уравновесить концентрации ионов по обе стороны клеточной оболочки. При этом объем вакуолей и всей цитоплазмы в целом уменьшался, что вело к отхождению цитоплазмы от клеточной стенки – плазмолизу. При возвращении исследуемой ткани в чистую воду мы также не наблюдали выхода растворенных веществ из вакуолей, а только поступление воды из окружающего пространства внутрь клетки, в вакуоли с клеточным соком, что вело к восстановлению объема клетки до прежних границ – деплазмолизу.

Учитель: Какой вывод можно сделать из проведенного опыта?

Ученики: Вероятно, поверхность клетки свободно пропускает воду в обоих направлениях, но задерживает ионы Na + и Cl - , входящие в состав поваренной соли.

Учитель: Свойство, которое мы обнаружили, называется избирательной проницаемостью или полупроницаемостью плазматической мембраны.

Что такое плазматическая мембрана (или плазмалемма), каково ее строение, свойства и функции мы и должны разобраться на сегодняшнем уроке. Как мы и договорились, вести урок будут ваши товарищи, которые подготовили лекцию о клеточных мембранах. Ваша задача – в процессе прослушивания записать основные сведения о клеточных мембранах. Полученные знания вы должны будете применить, отвечая на вопроса теста в конце урока.

Лектор 1. Строение мембран .

Плазматическая мембрана есть во всех клетках (под гликокаликсом – у животных и под клеточной стенкой у других организмов), она обеспечивает взаимодействие клетки с окружающей ее средой. Плазмалемма образует подвижную поверхность клетки, которая может иметь выросты и впячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы.

Несмотря на эти непрерывные изменения, клетка всегда остается охваченной плотно прилегающей мембраной. Плазматическая мембрана представляет собой тонкую пленку толщиной менее 10 нм. Даже при увеличении ее толщины в 1 млн. раз мы получим величину всего около 1 см, при этом, если всю клетку увеличить в 1 млн. раз, ее размер будет сравним с достаточно большой аудиторией.

Мембрана включает два основных типа молекул: фосфолипиды , образующие бислой в толще мембраны, и белки на ее поверхностях. Эти молекулы удерживаются вместе с помощью нековалентных взаимодействий. Такая модель мембраны, похожая на сэндвич, была предложена американскими учеными Даниели и Давсоном в 1935 году. С появлением электронного микроскопа она была подтверждена и несколько видоизменена. В настоящее время принята жидкостно-мозаичная модель мембраны , согласно которой белковые молекулы, плавающие в жидком липидном бислое, образуют в нем своеобразную мозаику. Схема этой современной модели, предложенной в 1972 году Сингером и Николсоном, дана в учебнике.

К некоторым белкам на наружной поверхности ковалентно прикреплены углеводы, образуя гликопротеины – своеобразные молекулярные антенны, являющиеся рецепторами. Гликопротеины участвуют в распознавании внешних сигналов, поступающих из окружающей среды или из других частей самого организма, и в реакции клеток на их воздействие. Такое взаимное узнавание – необходимый этап, предшествующий оплодотворению, а также сцеплению клеток в процессе дифференцирования тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунный ответ, в котором гликопротеины играют роль антигенов.

Лектор 2. Свойства мембран .

Чтобы понять, какими свойствами обладают эти микроскопические структуры, возьмем в качестве модели мыльный пузырь. Дело в том, что молекулы мыла и фосфолипидов, входящих в состав мембран, имеют аналогичное строение <Рисунок 1 >. Мыла (соли жирных кислот) в своем строении имеют гидрофильную головку (из заряженной карбоксильной группы) и длинный гидрофобный хвост . У фосфолипидов, входящих в состав мембран, тоже имеется гидрофобная хвостовая часть (из двух цепей жирных кислот) и большая гидрофильная головка, содержащая отрицательно заряженную группу фосфорной кислоты.

Рис. 1 . Модели молекул.

Когда вещества подобного строения смешиваются с водой, их молекулы самопроизвольно принимают такую конфигурацию: гидрофильные головки погружаются в воду, а гидрофобные хвосты в контакт с водой не вступают, контактируя только между собой и с другими гидрофобными веществами, которые могут быть вокруг, например, с воздухом. Оказываясь на границе между двумя средами аналогичной природы, и молекулы мыла, и молекулы фосфолипидов способны к образованию бислоя. Некоторые важные свойства биологических мембран (как и мыльных пузырей), перечисленные далее, объясняются структурой липидного бислоя.

а) Подвижность .

Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (“лектор” демонстрирует перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке ). Гидрофобные хвосты могут свободно скользить друг относительно друга.

б) Способность самозамыкаться .

“Лектор” демонстрирует, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается. Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани). Этот же эффект наблюдается при разрезании клетки на две части микроножом, после чего каждая часть оказывается окруженной замкнутой плазматической мембраной.

в) Избирательная проницаемость .

То есть, непроницаемость для молекул, растворимых в воде, из-за маслянистой пленки, образованной гидрофобными хвостами фосфолипидных молекул. Чтобы физически проникнуть сквозь такую пленку, вещество само должно быть гидрофобным, или оно может протиснуться через случайные щели, образовавшиеся в результате молекулярных перемещений (мелкие молекулы, например, молекулы воды).

Белки, пронизывающие всю толщу мембраны, или располагающиеся на внешней и внутренней ее поверхностях, помогают клетке обмениваться веществами с окружающей средой. Белковые молекулы обеспечивают избирательный транспорт веществ через мембрану, являясь ферментами, кроме того, внутри белковых молекул или между соседними молекулами образуются поры, через которые в клетки пассивно поступают вода и некоторые ионы.

Лектор 3. Функции плазматической мембраны.

Для чего же служит клетке структура с таким строением и свойствами? Оказывается, что она:

  1. Придает клетке форму и защищает от физических и химических повреждений.
  2. Благодаря подвижности, способности образовывать выросты и выпячивания, осуществляет контакт и взаимодействие клеток в тканях и органах.
  3. Отделяет клеточную среду от внешней среды и поддерживает их различия.
  4. Является своеобразным указателем типа клеток в силу того, что белки и углеводы на поверхности мембран и различных клеток неодинаковы.
  5. Регулирует обмен между клеткой и средой, избирательно обеспечивая транспорт в клетку питательных веществ и выведение наружу конечных продуктов обмена.

Лектор 4. Я хочу рассказать, как происходит транспорт через плазматическую мембрану , а аналогично и через другие мембраны клетки. Транспорт бывает пассивный, не требующий затрат энергии, и активный, энергозависимый, в процессе которого расходуется энергия, получаемая вследствие гидролиза молекул АТФ.

1. Диффузия .

Это пассивный процесс; перемещение веществ осуществляется из области с высокой концентрацией в область с низкой концентрацией. Газы и липофильные (жирорастворимые) молекулы диффундируют быстро, ионы и малые полярные молекулы (глюкоза, аминокислоты, жирные кислоты) – медленно. Диффузию ускоряют поры в белковых молекулах.

Разновидностью диффузии является осмос – перемещение воды через мембрану.

2. Эндоцитоз .

Это активный транспорт веществ через мембрану в клетку (экзоцитоз – из клетки). В зависимости от характера переносимого через мембрану вещества различают два типа этих процессов: если переносится плотное вещество – фагоцитоз (от греч. “фагос” – пожирать и “цитос” – клетка), если же капли жидкости, содержащие разнообразные вещества в растворенном или взвешенном состоянии, то – пиноцитоз (от греч. “пино” – пить и “цитос” – клетка).

Принцип переноса в обоих случаях идентичен: в том месте, где поверхность клетки соприкасается с частицей или каплей вещества, мембрана прогибается, образует углубление и окружает частицу или каплю жидкости, которая в “мембранной упаковке” погружается внутрь клетки. Здесь образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества. Фагоцитоз широко распространен у животных, а пиноцитоз осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей.

3. Активный транспорт при использовании ферментов, встроенных в мембрану .

Перенос идет против градиента концентрации с затратами энергии, например, в клетку поступают (“накачиваются”) ионы калия, а из клетки выводятся (“выкачиваются”) ионы натрия. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. Такие клеточные транспортные системы принято называть “насосами ”. Аналогично осуществляется транспорт аминокислот и сахаров.

Выводы :

  1. Плазмалемма – тонкая, около 10 нм толщиной, пленка на поверхности клетки. Она включает липопротеиновые структуры (липиды и белки).
  2. К некоторым поверхностным молекулам белков присоединены углеводные молекулы (они связаны с механизмом распознавания).
  3. Липиды мембраны самопроизвольно образуют бислой. Этим обусловливается избирательная проницаемость мембраны.
  4. Мембранные белки выполняют разнообразные функции, существенно облегчают транспорт через мембрану.
  5. Мембранные липиды и белки способны перемещаться в плоскости мембраны, благодаря чему поверхность клетки не бывает идеально гладкой.

Для закрепления информации, полученной на уроке, ученикам предлагаются задания в формате ЕГЭ.

Часть “А”

Выберите один правильный ответ.

А1. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами:

1) гликогена и крахмала
2) ДНК и АТФ
3) белков и липидов
4) клетчатки и глюкозы

А2. Плазматическая мембрана не выполняет функцию:

1) транспорта веществ
2) защиты клетки
3) взаимодействие с другими клетками
4) синтеза белка

А3. Углеводы, входящие в структуру клеточной мембраны, выполняют функцию:

1) транспорта веществ
2) рецепторную
3) образования двойного слоя мембраны
4) фотосинтеза

А4. Белки, входящие в структуру клеточной мембраны выполняют функцию:

1) строительную
2) защитную
3) транспортную
4) все указанные функции

А5. Фагоцитоз – это:

1) поглощение клеткой жидкости
2) захват твердых частиц
3) транспорт веществ через мембрану
4) ускорение биохимических реакций

А6. Гидрофильные поверхности мембран образованы:

1) неполярными хвостами липидов
2) полярными головками липидов
3) белками
4) углеводами

А7. Прохождение через мембрану ионов Na + и K + происходит путем:

1) диффузии
2) осмоса
3) активного переноса
4) не осуществляется

А8. Через липидный слой мембраны свободно проходит:

1) вода
2) эфир
3) глюкоза
4) крахмал

Часть “В”

1) при активном транспорте затрачивается энергия
2) фагоцитоз – это вид эндоцитоза
3) диффузия – это вид активного транспорта
4) клеточная стенка растений состоит из целлюлозы
5) осмос – это диффузия воды
6) пиноцитоз – это вид фагоцитоза
7) плазмалемма состоит из трех слоев липидов
8) у животной клетки нет клеточной стенки
9) плазмалемма обеспечивает связь клетки со средой обитания

Часть “С”

Задания со свободным развернутым ответом

С1. Каково значение эндоцитоза:

а) для простейших и низших беспозвоночных?
б) для высокоорганизованных животных и человека?

С2. Что является физической основой вакуолярного транспорта в клетке?

С3. Каково биологическое значение неровностей поверхности плазмалеммы некоторых клеток (микроворсинки, реснички и т.п.)?

С4. Электрический скат и электрический угорь оглушают свою жертву разрядами в несколько сотен вольт. Какие свойства плазмалемм клеток поддерживают возможность создания таких разрядов?

С5. Как работает функция плазмалеммы по снабжению клетки “удостоверением личности”?

Ответы к заданиям.

Часть “А”.

1–3, 2–4, 3–2, 4–4, 5–2, 6–2, 7–3, 8–2.

Часть “В”.

1, 2, 4, 5, 8, 9 – “да”; 3, 6, 7 – “нет”

Часть “С”.

1а. Возможность поступления пищи в клетки и дальнейшее переваривание в лизосомах.

1б. Фагоцитарная деятельность лейкоцитов имеет огромное значение в защите организма от болезнетворных бактерий и других нежелательных частиц. Пиноцитоз в клетках почечных канальцев приводит к всасыванию белков из первичной мочи.

2. Основные свойства липидных бислоев – способность мембран замыкаться.

3. Увеличение площади поверхности клетки для обмена между клеткой и окружающей ее средой.

4. Наличие ферментных систем, осуществляющих активный транспорт (“насосов”), приводит к перераспределению зарядов на плазмалемме и созданию мембранной разности потенциалов.

5. Для этого есть ряд специфических химических групп на поверхности мембраны – “антенны”, являющиеся, чаще всего, гликопротеинами.

Клеточная мембрана (плазматическая мембрана) представляет собой тонкую полупроницаемую оболочку, которая окружает клетки.

Функция и роль клеточной мембраны

Ее функция заключается в том, чтобы защитить целостность внутренней части , впуская некоторые необходимые вещества в клетку, и не позволяя проникать другим.

Он также служит основой привязанности к у одних организмов и к у других. Таким образом, плазматическая мембрана также обеспечивает форму клетки. Еще одна функция мембраны заключается в регулировании роста клеток через баланс и .

При эндоцитозе липиды и белки удаляются из клеточной мембраны по мере усвоения веществ. При экзоцитозе везикулы, содержащие липиды и белки, сливаются с клеточной мембраной, увеличивая размер клеток. , и грибковые клетки имеют плазматические мембраны. Внутренние , например, также заключены в защитные мембраны.

Структура клеточной мембраны

Плазматическая мембрана в основном состоит из смеси белков и липидов. В зависимости от расположения и роли мембраны в организме, липиды могут составлять от 20 до 80 процентов мембраны, а остальная часть приходится на белки. В то время как липиды помогают придать мембране гибкость, белки контролируют и поддерживают химический состав клетки, а также помогают в переносе молекул сквозь мембрану.

Липиды мембран

Фосфолипиды являются основным компонентом плазматических мембран. Они образуют липидный бислой, в котором гидрофильные (притянутые к воде) участки "головы" спонтанно организуются, чтобы противостоять водному цитозолю и внеклеточной жидкости, тогда как гидрофобные (отталкиваемые водой) участки "хвоста" обращены от цитозоля и внеклеточной жидкости. Липидный бислой является полупроницаемым, позволяя только некоторым молекулам диффундировать через мембрану.

Холестерин является еще одним липидным компонентом мембран животных клеток. Молекулы холестерина избирательно диспергированы между мембранными фосфолипидами. Это помогает сохранить жесткость клеточных мембран, предотвращая слишком плотное расположение фосфолипидов. Холестерин отсутствует в мембранах растительных клеток.

Гликолипиды расположены с наружной поверхности клеточных мембран и соединяются с ними углеводной цепью. Они помогают клетке распознавать другие клетки организма.

Белки мембран

Клеточная мембрана содержит два типа ассоциированных белков. Белки периферической мембраны являются внешними и связаны с ней путем взаимодействия с другими белками. Интегральные мембранные белки вводятся в мембрану, и большинство проходит сквозь нее. Части этих трансмембранных белков расположены по обе ее стороны.

Белки плазматической мембраны имеют ряд различных функций. Структурные белки обеспечивают поддержку и форму клеток. Белки рецептора мембраны помогают клеткам контактировать со своей внешней средой с помощью гормонов, нейротрансмиттеров и других сигнальных молекул. Транспортные белки, такие как глобулярные белки, переносят молекулы через клеточные мембраны посредством облегченной диффузии. Гликопротеины имеют прикрепленную к ним углеводную цепь. Они встроены в клеточную мембрану, помогая в обмене и переносе молекул.