Микротрубочки веретена деления. Микротрубочки, образование веретена деления и метафаза

Микротрубочек, образованная в пространстве между полюсами, по форме напоминает веретено. В области центромеры к кинетохорам хромосомы присоединяются микротрубочки веретена. По ним хромосомы двигаются к полюсам.

Строение

Веретено деления состоит из трех основных структурных элементов: микротрубочек, полюсов деления и хромосом. Полюса деления у животных организуются с помощью центросом, в которых содержатся центриоли. В случае отсуствия центросом (у растений, и в ооцитах у некоторых видов животных) веретено имеет широкие полюса и называется ацентросомальным. В образовании веретена участвует еще одна структура - моторные белки. Они принадлежат к динеинам и кинезинам.

Веретено деления - это биполярная структура. На обоих полюсах расположены центросомы - органеллы, которые являются центрами организации микротрубочек. В строении центросомы различают две центриоли, находящиеся в окружении множества различных белков. Конденсированные хромосомы, имеющие вид двух хроматид, скрепленных на участке центромеры, располагаются между полюсами. В области центромер имеются кинетохоры, к которым происходит прикрепление микротрубочек.

Формирование

Так как веретено деления - это структура, отвечающая за деление клетки, начало ее сборки происходит в профазе. У растений и в ооцитах, при отсутствии центросом, центром организации микротрубочек служит оболочка ядра. Микротрубочки приближаются к ядерной оболочке и в конце профазы заканчивается их ориентация, и образуется "профазное веретено" - ось будущего веретена деления.

Ввиду того, что в клетках животных именно центросома выполняет роль центра организации, началом формирования веретена деления является расхождение двух центросом в период профазы. Это возможно благодаря моторным белкам динеинам: они прикрепляются на внешнюю поверхность ядра, а также на внутреннюю сторону мембраны клетки. Группа динеинов, закрепленных на мембране, соединяется с астральными микротрубочками и они начинают движение по направлению к минус-концу, за счет чего и происходит разведение центросом по противоположным участкам мембраны клетки.

Окончание сборки

Окончательное формирование веретена деления происходит на стадии прометафазы, после исчезновения мембраны ядра оно становится полноценным, ведь именно после этого центросомы и микротрубочки могут получить доступ к составляющим веретена.
Однако существует одно исключение: у почкующихся дрожжей формирование веретена деления происходит внутри ядра.

Образование нитей веретена деления и их ориентация невозможна без двух процессов: организации микротрубочек вокруг хромосом и присоединения их друг к другу на противоположных полюсах деления. Многие элементы, необходимые для окончательного формирования веретена деления, в том числе хромосомы и моторные белки, находятся внутри ядра клетки, а микротрубочки и, если это животная клетка, центросомы содержатся в цитоплазме, то есть, компоненты изолированы друг от друга. Именно поэтому образование веретена заканчивается только после исчезновения ядерной оболочки.

Присоединение хромосом

В образовании веретена деления участвует белок, а также многие другие структуры, и в клетках животных этот процесс хорошо изучен. В период профазы микротрубочки образуют вокруг центросом звездчатую структуру, которая расходится в радиальном направлении. После того как мембрана ядра разрушается, динамически нестабильные микротрубочки начинают активно зондировать эту область и кинетохоры хромосом могут закрепиться на них. Некоторая часть хромосом сразу оказывается на противоположных полюсах, остальные же сначала связываются с микротрубочками одного из полюсов, и уже потом начинают движение в сторону нужного полюса. Когда процесс закончен, хромосомы, уже связанные с каким-либо полюсом, начинают прикрепляться кинетохорами к микротрубочкам от противоположного полюса, таким образом, во время процесса метафазы к кинетохорам оказывается присоединено от десяти до сорока трубочек. Это образование называют кинетохорным пучком. Постепенно каждая из хромосом оказывается связанной с противоположным полюсом, и они формируют в центральной части веретена деления метафазную пластинку.

Второй вариант

Есть и другой сценарий, по которому может образоваться веретено деления. Это возможно и для клеток, имеющих центросомы, и для клеток, в которых они отсутствуют. В процессе участвует гамма-тубулиновый кольцевой комплекс, благодаря которому идет нуклеация коротких микротрубочек вокруг хромосом. Трубочки присоединяются к кинетохорам плюс-концом, после чего начинается полимеризация микротрубочек, то есть, регулируемый рост. Минус-концы "сливаются" и остаются у полюсов деления благодаря моторным белкам. Если в образовании веретена деления участвует пара центросом, это облегчает соединение микротрубочек, но процесс возможен и без них.

Поровну

Четкое разделение хромосом между двумя клетками, образуемыми во время деления, может произойти только в случае, если парные хроматиды своими кинетохорами присоединились к разным полюсам. Биполярное расхождение хроматид носит название амфитепического, однако существуют и другие варианты, возникающие во время того, как собирается веретено деления. Это монотепическое (один кинетохор присоединяется к одному полюсу) и синтепическое (оба кинетохора хромосомы соединяются с одним полюсом). При меротепическом один кинетохор захватывается сразу двумя полюсами. Стабильным является только обычное, биполярное скрепление, которое происходит вследствии сил натяжения от полюсов, остальные способы скрепления нестабильны и обратимы, но возможны из-за расположения кинетохор.

Решите ситуационные задачи 1-7.

1.На препарате определяются две клетки: первая находится на стадии метафазной пластинки, вторая в результате дифференцировки потеряла способность к размножению. Какова конечная судьба первой и второй клеток?

2.На препарате видна митотически делящаяся диплоидная клетка на стадии метафазы. Сколько хромосом входит в состав метафазной пластинки?

3.Микрохирургическим путем амебу (одноклеточный организм) разделили на два фрагмента: ядросодержащий и безъядерный. Какова дальнейшая судьба этих фрагментов и с чем она связана.

4.Взяли для исследования несколько клеток из эпителия ротовой полости и после специальной обработки гистологического препарата установили, что ядра исследуемых клеток не содержат полового хроматина. Субъекту какого пола (мужского или женского) принадлежали исследуемые структуры?

5.В препарате видны две клетки. Ядро одной из них содержит много интенсивно окрашенных глыбок хроматина. В другой клетке ядро светлое, хроматин распределён диффузно. Какой тип хроматина преобладает в той и другой клетках, и чем они отличаются функционально?

6.В препарате видна клетка с расположенными в центре хромосомами, образующими фигуру звезды. Назовите стадию митоза.

7.В препарате видна клетка с расположенными в ней хромосомами, образующими фигуры дочерних звёзд. Назовите стадию митоза.

Заготовьте в альбоме следующие рисунки: они пригодятся Вам при работе на занятии.

ОБЩАЯ МОРФОЛОГИЯ ЖИВОТНОЙ КЛЕТКИ МИТОЗ РАСТИТЕЛЬНОЙ КЛЕТКИ

Данное занятие занимает особое место в работе по изучению строения ядра и способов деления клеток, являясь не только теоретической основой для понимания строения ядра и способов деления клеток, но и в практической деятельности врача при установлении диагноза.

При возможности, накануне занятия, ознакомьтесь с рабочим местом своей исследовательской и учебной работы. Вспомните правила и меры безопасности при работе с микроскопом и препаратами (изложены в конце методической разработки). Заблаговременно приготовьте униформу.

3. По выполнении программы учебного занятия:

Проверьте рабочее место на предмет наличия всего необходимого для Вашей работы. При необходимости обратитесь к преподавателю. При работе с 1-м препаратом занятия обратите внимание на его окраску и объяснения преподавателя.

Препарат: ОБЩАЯ МОРФОЛОГИЯ ЖИВОТНОЙ КЛЕТКИ

Фиксатор: 10% формалин.

Малое увеличение: рассмотреть скопление клеток, определив базофильно окрашенное ядро и оксифильную цитоплазму.

Большое увеличение: определить в ядре участки слабо окрашенной нуклеоплазмы –эухроматин, более темные участки – гетерохроматин и смую плотную структуру ядра округлой формы – ядрышко; зарисовать эукариотическую клетку, указав на рисунке следующие ее структуры:

1-цитоплазма,

3-эухроматин,

4-гетерохроматин,

5-ядрышко.

Найденные особенности сопоставьте с теоретическими выкладками. Контролируйте свои действия. Представьте преподавателю отчет о выполненном задании. Получите задачу на выполнение очередного задания. Обратите внимание на объяснения преподавателя.

Препарат: МИТОЗ РАСТИТЕЛЬНОЙ КЛЕТКИ.

Фиксатор: жидкость Боуэна.

Краситель:

Железный гематоксилин.

На малом увеличении найти срез микропрепарата.

На большом увеличении найти и изучить все фазы митоза. Рассматривая профазу, обратить внимание на фигуры плотного и рыхлого клубка. Найти и зарисовать метафазу (фигуру материнской звезды). При зарисовке анафазы определить фигуры дочерних звезд. Последней зарисовать телофазу и появление перегородки между дочерними клетками. На рисунке подписать все фазы митотического деления клетки:

1-профаза

2.метафаза

3-анафаза

4-телофаза

5-цитокинез

ДЕМОНСТРАЦИОННЫЕ ПРЕПАРАТЫ:

Препарат: митоз животной клетки.

Фиксатор: 10% формалин.

Краситель: железный гематоксилин.

ЗАДАНИЕ: определить фазы митоза.

Препарат: митоз клеток эпителия мочевого пузыря (отпечаток).

Фиксатор: 10% формалин.

Краситель: гематоксилин-эозин.

ЗАДАНИЕ: найти наметившуюся перешнуровку ядра в виде песочных часов.

2n-->S-->4n-->2x2n

ПРОФАЗА.
В профазе происходят следующие события: конденсация хромосом, формирование веретена деления, распад ядрышек, эндоплазматического ретикулума (ЭР), цитоплазматических микротрубочек, снижается и прекращается синтез РНК.
Каждая хромосома двойная (2x2n), они тесно соприкасаются и спирализуются одна относительно другой.
Конденсация хроматина.
После S-фазы сестринские хроматиды остаются связаны мультибелковым комплексом когезинов располагающимся вдоль хроматид в процессе их удвоения. Когезины удерживают хроматиды вместе вплоть до их расхождения в анафазе.
Первый признак Митоза – конденсация хромосом (у человека в 50 раз). Конденсины – белки участвующие в конденсации. Запуск M-Cdk фосфорилирования конденсинов отвечает за их сборку в комплексы на ДНК и конденсации хромосом. При конденсации затрачивается энергия АТФ. Хромосомы конденсируются вокруг продольной центральной оси хромосомы на которой наблюдается наибольшая концентрация конденсинов. В фиксированных препаратах наблюдается сначала спиральная укладка конденсинов вдоль хромосомы (рис.1)

рис.1 Спиральная укладка хроматид - окраска на специфические белки показывает их спиральное расположение в хромосомах.

Конденсины и когезины структурно родственны и работают по одинаковым механизмам. Установлено, что если после S-фазы соединение хроматид не наступило правильно, то конденсация также не наступает.
Конденсины (когезины) образуют димеры антипараллельно направленные на концах которых находятся ДНК- и АТФ-связывающие домены, а на середине гибкий шарнир (рис.2).

Когезины связывают хромосомы еще в S-фазе.
Cohesin is a four-subunit protein complex, in which a heterodimer of SMC proteins, in this case SMC1/SMC3, associates with two other proteins, the Scc1/RAD21/Mcd1 and Scc3 proteins. In vertebrates there are two variants of Scc3, called SA1 and SA2.(Jessberger 2005)
SMC (The structural maintenance of chromosomes proteins) обнаружены в бактериях и археях. В отличии от эукариотических, представляют гомодимеры, кодируемые одним геном.

рис.3 Structure of cohesin and a possible mechanism by which it might hold sister chromatids together. (A) Smc1 (red) and Smc3 (blue) form intramolecular antiparallel coiled coils, which are organized by hinge or junction domains (triangles). Smc1/3 heterodimers are formed through heterotypic interactions between the Smc1 and Smc3 junction domains. The COOH terminus of Scc1 (green) binds to Smc1"s ABC-like ATPase head, whereas its NH2 terminus binds to Smc3"s head, creating a closed ring. Scc3 (yellow) binds to Scc1"s COOH-terminal half and does not make any direct stable contact with the Smc1/3 heterodimer. Scc1"s separase cleavage sites are marked by arrows. Cleavage at either site is sufficient to destroy cohesion. By analogy with bacterial SMC proteins, it is expected that ATP binds both the Smc1 and Smc3 heads, alters their conformation, and possibly brings them into close proximity. By altering Scc1"s association with Smc heads, ATP binding and/or hydrolysis could have a role in opening and/or closing cohesin"s ring. (B) Cohesin could hold sister DNA molecules together by trapping them both within the same ring. Cleavage of Scc1 by separase would open the ring, destroy coentrapment of sister DNAs, and cause dissociation of cohesin from chromatin. (C) Smc-containing complexes other than cohesin could also function via chromatid entrapment. Condensin, for example (black), could organize mitotic chromosomes by trapping supercoils. It and/or other related complexes could hold distant loci together (arrow) and thereby facilitate the function of long-range enhancers and silencers of transcription.

Образование веретена деления
В микротрубочках веретена ~10^8 молекул тубулина. Веретено нормально функционирует при разрушении центриолей лазером. Центром организации микротрубочек служит аморфное вещество центросомы.
Микротрубочки растут от центросом, белки диненины связывают перекрывающиеся микротрубочки, которые продолжают расти и расталкиваются кинезинами, при этом полюса расходятся. В это время микротрубочки с кинетохором не связываются.
Число микротрубочек прикрепленных к кинетохорам различно у разных видов – у некоторых грибов – 1микротрубочка, у человека - 20-40.
Остаточное тельце – фрагменты полюсных микротрубочек+плотный матрикс.
После начала митоза центросомы расходятся и каждая образует радиально симметричный центр организации микротрубочек (астра). Центросома расположена у ядра. Две астры двигаются к противоположным сторонам ядра для формирования двух полюсов веретена деления. Когда ядерная оболочка разрушается (прометафаза) веретено захватывает хромосомы. В клетках эмбрионов Xenopus центросома удваивается даже если ядро было передвинуто, или репликация ДНК подавлена. Центросомный цикл продолжается почти нормально: сначала 2, потом 4, 8 центросом и т.д. На ооцитах Xenopus было показано, что G1/S-Cdk (комплекс cyclin E и Cdk2) инициирует ДНК репликацию в S фазе также стимулирует удвоение центросомы, это предположительно объясняет почему удвоение центросом происходит в начале S-фазы
Рост веретена зависит от моторных белков принадлежащих к двум семействам – kinesin-related proteins движущиеся к ‘+’
концу и денеины, движущиеся к ‘–‘. Три типа микротрубочек наблюдаются в веретене – астральные, кинетохорные, перекрывающиеся-создают правильную структуру веретена. Микротрубочки растут от центросомы вперед ‘+’ концом. Три вида микротрубочек различаются поведением и наборами присоед белков.
Веретено начинает собираться в профазе. M-Cdk запускают фосфорилирование двух типов белков контролирующих динамику микротрубочек. Типы: моторные белки и microtubule-associated proteins (MAPs). Также имеются белки катастрофины.
В интерфазе микротрубочки отходят от одной центросомы и находятся в динамическом равновесии. Переключение ведущее к росту называется спасение, переключение к уменьшению микротрубочек – катастрофа. В профазе длинные интерфазные микротрубочки быстро преобразуются в множество коротких окружающих каждую центросому, которые начинают формировать веретено деления.

РАСПАД ЭР
ЭР распадается на мелкие вакуоли, лежащие по переферии клетки и Аппарата Гольджи (АГ), который теряет околоядерную локализацию, разделяется на отдельные диктиосомы разбросанные в цитоплазме.

ПРОМЕТАФАЗА
Распад ядерной оболочки, беспорядочное движение хромосом в области бывшего ядра, хромосомы через кинетохор соединяются с веретеном и начинают движение.

Распад ядерной оболочки

Кинетохор
Sc: кинетохор связан с цетромерным локусом CEN: CDEI,II,III. CDEI,III – консервативные районы сходны с Dm. CDEII – обогащен АТ, участок разной длины. CDE ответственен за связь с мт, взаимодействует с рядом белков.
кинетохор – мультибелковый комплекс, состоит из трех слоев:
наружный – плотный (СENP-E, СENP-F – участвуют в связывании мт), от него отходит множество фибрилл – фиброзная корона кинетохора (СENP-E, динеины)
средний – рыхлый, 3F3/2 – белок, регистрирует натяжение пучков мт
внутренний – плотный, участок ГХ обогащенный а-сателлитной ДНК (СENP-B- связывается с а-ДНК, MCAK-кинезинподобный белок-когезин, INCENP-когезин, СENP-А-аналог H3, СENP-G-связывается с белками ядерного матрикса, СENP-С-ф-ция не выяснена)
Функция кинетохора: связывание хроматид, закрепление мт веретена.
min число мт у Sc 1 на хромосому, у высших растений 20-40 мт на хромосому
белки кинетохора присутствуют во всех стадиях кц, образование и деление кх происх в S-периоде
Х-мы беспорядочно движутся – метакинез – то приближаются к полюсам, то удаляются к центру веретена, пока не займкт среднее положение – конгрессия х-м. мт случайно захватываются кинетохором и х-мы скользят по мт к полюсу 25мкм/мин, с помощью аналога динеина. Во время движения мт не разбираются. Хроматиды связаны и тянутся с двух сторон. Если лазером перерезать мт с одной стороны, то х-мы утянуться к противоположному полюсу
Перемещение хромосом к экватору
если митотич кл обработать D2O или таксолом – подавляют разборку мт?мт удлиняются и не тянут хромосомы?блок митоз
колхицин, низкая t, высокое гидростатич давление – разрушение нитей веретена?блок митоз
сила действующая на кинетохорную нить тем слабее чем ближе к полюсу нах кинетохор

МЕТАФАЗА
Завершается формирование веретена деления, хромосомы перестают двигаться и выстраиваются по экватору веретена (экваториальная пластинка)
метафаза - синтез белка – 20-30% от интерфазы. Клетки наиболее чувствительны к холоду, колхицину и др. агентам, которые разрушают веретено деления и приводят к прекращению митоза (К-митоз), при малых дозах митоз восстанавливается через несколько часов (иначе гибель либо полиплоидия).
Метафаза – хромосомы образуют пластинку, микротрубочки достигают max концентрации и перекрываются.

АНАФАЗА
Анафаза – хромосомы внезапно одновременно отделяются друг от друга и начинают движение к полюсам. Центромеры разъединяются – деградация центромерных когезинов. Наиболее короткая стадия, разделение хроматид и расхождение хромосом к полюсам (v=0,2-5 мкм/мин). Иногда также расходятся полюса друг от друга.
Расхождение хромосом за счет кинетохорных пучков микротрубочек – анафаза А, расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек – анафаза В.
Разделение хроматид и движение к полюсам.
Веретено и перетяжка связаны так, что пока хромосомы не разойдутся перетяжка цитоплазмы не наступает.
События анафазы: движение кинетохорных нитей к полюсам, движение полюсных нитей расталкивающих полюсы-движутся друг относительно друга; малые дозы хлоралгидрата предотвращают удлинение и движение полюсных нитей, но не влияют на кинетохорную нить.

ТЕЛОФАЗА.
Телофаза длится с момента прекращения движения хромосом. Происходит реконструкция ядер - образование ядерной оболочки, деспирализация хромосом, активация хромосом - увеличение уровня транскрипции, формирование ядрышек, разрушение веретена деления, разделение клеток, образование остаточного тельца Флеминга, образование перетяжки.
В местах контактов хромосом с мембранными пузырьками начинает образовываться ядерная оболочка. Сначала она образуется на латеральных поверхностях хромосом, затем в центромерных и теломерных участках. После смыкания ядерной оболочки происходит образование ядрышек.
Разборка микротрубочек идет от полюсов к экватору бывшей клетки, в средней части веретена микротрубочки сохраняются дольше всего – остаточное тельце.
Цитокинез.
Борозда деления образуется в плоскости метафазной пластинки под прямым углом к длинной оси митотического веретена. Перетяжка содержит актиновые филаменты и миозин II, расположенные по экватору делящейся клетки под плазматической мембраной (ПМ) стягивая ее изнутри.
Одной из причин почему цитокинез не происходит раньше окончания митоза является активность M-Cdk инактивируемой в конце митоза.

Веретено представляет собой комплекс, состоящий из микротрубочек и связанных с ними моторных белков. Организация микротрубочек обладает высоким уровнем поляризации

Микротрубочки веретена представляют собой очень динамичную структуру. Одни проявляют динамическую нестабильность, для других характерна текучесть субъединиц

Сила, необходимая для сборки веретена, генерируется при взаимодействии микротрубочек с моторными белками

Образование и функционирование веретена зависят от динамических свойств микротрубочек и от работы связанных с ними белковых моторов. Хотя микротрубочки образуют основные структурные элементы веретена, их организация и движение хромосом обеспечиваются белковыми моторами. Одни моторы непосредственно участвуют в сборке веретена и в связывании его компонентов в определенную структуру, а другие обеспечивают присоединение хромосом к веретену и генерируют силу, необходимую для их перемещения.

Несмотря на то что традиционно веретено рассматривается как структура, состоящая из микротрубочек , правильнее считать ее комплексом микротрубочек, белковых моторов и других белков.

Хотя моторы играют существенную роль в генерации силы, необходимой для функционирования веретена , микротрубочки представляют собой нечто большее, чем просто неподвижную структуру, вдоль которой они движутся. Во время митоза микротрубочки ведут себя как высокодинамичная структура, и это их свойство играет важную роль при сборке веретена и расхождении хромосом.

В веретене микротрубочки организованы в соответствии со своей полярностью.
Все минус-концы локализованы, поблизости от одной из двух центросом, а плюс-концы расположены на расстоянии от них.
В центре веретена микротрубочки от двух центросом перекрываются,
что обеспечивает расположение микротрубочек противоположной полярности (антипараллельные микротрубочки) близко друг к другу.

В пределах веретена микротрубочки организованы в соответствии с полярностью. Два конца микротрубочки различаются по составу и структуре. Это обусловливает ее структурную «полярность»; микротрубочка как бы указывает то или иное направление. В каждом полуверетене и связанной с ним звезде микротрубочки расположены с одинаковой полярностью: их минус-концы находятся на полюсах, а плюс-концы, на некотором от них расстояниии.

В месте пересечения двух поляризованных пучков микротрубочки перекрываются, создавая область в центре веретена, в которой соседние микротрубочки имеют противоположную полярность. Одинаковая ориентация микротрубочек в каждом полуверетене необходима для нормального функционирования их моторов при делении. Если бы полярность микротрубочек в пределах каждого полуверетена была произвольной, то молекулы каждого типа моторов просто мешали бы друг другу, делая движение хаотичным или просто невозможным.

Динамические свойства микротрубочек играют важную роль во всех фазах . Исследования, проведенные на культуре клеток позвоночных и с использованием экстрактов из яйцеклеток лягушки Xenopus laevis, показали, что в каждом веретене микротрубочки характеризуются динамической нестабильностью и являются более короткими и гораздо более динамичными, чем в интерфазных клетках. Некоторые различия можно объяснить возрастанием частоты катастроф в митозе, когда плюс-концы микротрубочек из состояния роста или полимеризации переходят в состояние укорочения или разрушения. Частично это также объясняется снижением частоты наступления спасений, при которых процесс деполимеризации или укорочения микротрубочек обратно переходит в процесс их полимеризации или роста.

Это усиление динамики происходит в клетках, вступающих в митоз, поскольку белки, связанные с микротрубочками и обычно препятствующие катастрофе, заингибированы, в то время как другие, стимулирующие рост микротрубочек, активируются. Баланс между двумя противоположно направленными процессами поддерживается основной киназой, регулирующей митоз, комплексом циклин B/CDK1, которая активируется во время разрушения ядерной оболочки. Как будет показано ниже, усиление динамики микротрубочек в клетках, вступающих в митоз, играет основную роль в сборке веретена.

После образования веретена начинает проявляться еще один тип динамики микротрубочек. В это время микротрубочки обнаруживают текучесть субъединиц. Это интересное явление заключается в том, что субъединицы тубулина присоединяются к плюс-концу микротрубочки и затем продвигаются по ней к минус-концу, на котором высвобождаются. Как следует из рисунков ниже, текучесть характерна для всех микротрубочек веретена, однако особенно она проявляется у микротрубочек нитей кинетохора. Происхождение этого явления не вполне понятно, но, возможно, оно связано с взаимодействием плюс- и минус-концов микротрубочек веретена с другими его компонентами (например, с белковыми моторами). Даже в то время, когда у микротрубочек веретена наблюдается текучесть, астральные микротрубочки продолжают проявлять динамическую нестабильность.

Хотя значение явления текучести неизвестно, возможно, оно играет роль в перемещении хромосом и в поддержании баланса сил в веретене, с тем чтобы две его половины оставались расположенными симметрично.

С системой микротрубочек взаимодействуют много различных типов белковых моторов . В митозе участвует цитоплазматический мотор динеин, осуществляющий транспорт к минус-концу, и моторы группы кинезинов (большая часть которых движется в направлении плюс-конца). Веретено имеет сложную организацию, и моторы настолько тесно связаны с его формированием и функцией, что только в делении клеток высших организмов участвует более 15 представителей семейства кинезинов.

Белковые моторы расположены по всему веретену. Они находятся на кинетохорах, на плече хромосом, на полюсах и на микротрубочках между полюсами и хромосомами. Многие типы моторов располагаются только в определенных местах, другие занимают несколько мест. Например, цитоплазматический динеин обнаружен в кинетохорах и на полюсах, а также в клеточном кортексе, где он взаимодействует с астральными микротрубочками. В то же время кинезин-подобный белковый мотор CENP-E находится в кинетохоре, а хромокинезины только на плечах хромосом.

В митозе белковые моторы выполняют несколько основных функций. Одни из них, например динеин, связываются со структурами, включая кинетохоры и плазматическую мембрану, и транспортируют их вдоль микротрубочки (хотя в случае плазматической мембраны движется микротрубочка). Другие имеют множественные домены, организованные таким образом, что мотор может связываться сразу с двумя микротрубочками, и скреплять их между собой. В зависимости от структуры моторов микротрубочки в пучке могут обладать той же самой или противоположной полярностью. Если мотор связывается с микротрубочками противоположной полярности, он будет пытаться двигаться (скользить) по ним до тех пор, пока они перекрываются. Примером такого типа моторов является представитель кинезинов Eg5, который может связываться с обоими концами антипараллельных микротрубочек.

Наоборот, если мотор устроен так, что он связан с двумя микротрубочками с одинаковой полярностью, то в результате образуется структура с такой же полярностью, расположенная таким образом, что микротрубочки образуют фигуру, напоминающую звезду. Прочие кинезин-подобные белки не перемещаются по микротрубочкам, а способствуют разборке их плюс-концов. Наглядным примером такого белка является кинезин, связанный с митотической центромерой (МСАК), который находится на центромере каждой хромосомы. В состав веретена входят моторы с перечисленными выше основными свойствами, которые определенным образом расположены относительно друг друга. Эти же моторы генерируют усилия для движения хромосом.

Не всегда ясно, каким образом моторы обеспечивают функционирование веретена . В ряде случаев, например, они располагаются таким образом, что могут мешать друг другу. Однако, независимо от деталей строения веретена, очевидно, что его образования и функционирования необходимы множественные сбалансированные усилия. Эти усилия обеспечиваются моторами, которые расположены на каркасе динамических микротрубочек веретена.


Субъединицы тубулина постоянно включаются в микротрубочки со стороны кинетохоров и продвигаются к полюсам, где происходит их высвобождение.
Таким образом, они постоянно мигрируют от кинетохоров к полюсам вдоль микротрубочек нити кинетохора.
В течение метафазы длина кинетохорной микротрубочки остается постоянной, пока скорость сборки субъединиц на плюс-конце соответствует их разборке на минус-конце.
Если сборка субъединиц со стороны кинетохора снижается, а на полюсе скорость их разборки не изменяется, то кинетохор будет двигаться к полюсу.
Таким образом, текучесть субъединиц микротрубочек представляет собой возможный способ движения хромосомы.

Первый видеокадр, на котором представлено митотическое веретено клетки, часть тубулина которого содержит флуоресцирующий зонд (флуоресцирует зеленым).
Кинетохоры выделены оранжевыми стрелками. На видео показан поток зеленых точек кинетохорной нити во всем веретене.
В образовании веретена участвуют молекулярные моторы, которые перемещаются по микротрубочкам.
Веретено формируется за счет специфических взаимодействий между этими моторами и микротрубочками.
Эти взаимодействия обеспечивают также его подвижность и являются источниками силы.
Стрелками указано направление движения моторов.
Выберите один правильный ответ. 1. Наружная клеточная мембрана обеспечивает а) постоянную форму клетки в) обмен веществ и энергии в

б) осмотическое давление в клетке г) избирательную проницаемость

2. Оболочки из клетчатки, а также хлоропластов не имеют клетки

а) водорослей б) мхов в) папоротников г) животных

3. В клетке ядро и органоиды расположены в

а) цитоплазме _ в) эндоплазматической сети

б) комплексе Гольджи г) вакуолях

4. На мембранах гранулярной эндоплазматической сети происходит синтез

а) белков б) углеводов в) липидов г) нуклеиновых кислот

5. Крахмал накапливается в

а) хлоропластах б) ядре в) лейкопластах г) хромопластах

6. Белки, жиры и углеводы накапливаются в

а) ядре б) лизосомах в) комплексе Гольджи г) митохондриях

7. В образовании веретена деления участвуют

а) цитоплазма б) клеточный центр в) вакуоль г) комплекс Гольджи

8. Органоид, состоящий из множества связанных между собой полостей, в
которых накапливаются синтезированные в клетке органические вещества - это

а) комплекс Гольджи в) митохондрия

б) хлоропласт г) эндоплазматическая сеть

9. Обмен веществ между клеткой и окружающей ее средой происходит через
оболочку благодаря наличию в ней

а) молекул липидов в) молекул углеводов

б) многочисленных нор г) молекул нуклеиновых кислот

10.Синтезируемые в клетке органические вещества перемещаются к органоидам
а) с помощью комплекса Гольджи в) с помощью вакуолей

б) с помощью лизосом г) по каналам эндоплазматической сети

11.Расщепление органических веществ в клетке, сопровождаемое освобождением.
энергии и синтезом большого числа молекул АТФ происходит в

а) митохондриях б) лизосомах в) хлоропластах г) рибосомах

12. Организмы, клетки которых не имеют оформленного ядра, митохондрий,
комплекса Гольджи, относят к группе

а) прокариот б) эукариот в) автотрофов г) гетеротрофов

13. К прокариотам относятся

а) водоросли б) бактерии в) грибы г) вирусы

14. Ядро играет большую роль в клетке, так как оно участвует в синтезе

а) глюкозы б) липидов в) клетчатки г) нуклеиновых кислот и белков

15. Органоид, отграниченный от цитоплазмы одной мембраной, содержащий
множество ферментов, которые расщепляют сложные органические вещества
до простых мономеров, это

а) митохондрия б) рибосома в) комплекс Гольджи г) лизосома

Помогите плиз А1. Прикрепление нитей веретена деления происходит: в 1) интерфазе 2)профазе 3) метефазе 4)анафазе. А2. В профазе митоза не происхо

дит: 1) растворения ядерной оболочки 2)формирование веретена деления 3)удвоения ДНК 4)растворения ядрышек. А3)у животных в процессе митоза, в отличии от мейоза образуются клетки: 1) соматические 2)с половинным набором хромосом 3)половые 4)споровые. А4)расхождение хромотид к полюсам клетки происходит в: 1)профазе первого деления мейоза 2)профазе второго деления мейоза 3)интерфазе перед первым делением 4)интерфазе перед вторым делением

1. Крахмал

накапливается в

А
– хлоропластах Б – ядре В – лейкопластах Г – хромопластах
2. Цитоплазма не выполняет
функцию

А
– перемещения веществ Б – взаимодействия всех органоидов

В
– питания Г – защитную
3. Запасные
питательные вещества и продукты распада накапливаются в клетках растений в

А
– лизосомах Б – хлоропластах В – вакуолях Г – ядре
4. Белки,
жиры и углеводы окисляются с освобождением энергии в

А
– митохондриях Б – лейкопластах

В
– эндоплазматической сети Г – комплексе Гольджи
5. «Сборка»
рибосом происходит в

А
– эндоплазматической сети Б - комплексе Гольджи

В
– цитоплазме Г – ядрышках
6. На поверхности гладкой эндоплазматической сети синтезируются молекулы А – минеральных солей Б – нуклеотидов В – углеводов, липидов Г – белков
7. На поверхности шероховатой эндоплазматической сети размещаются А – лизосомы Б – микротрубочки В – митохондрии Г – рибосомы
8. Эукариоты – это организмы, имеющие А – пластиды Б – жгутики В – клеточную оболочку Г – оформленное ядро
9. Клетка – основная единица строения всех организмов, так как А – в основе размножения организмов лежит деление клетки Б – в клетке протекают реакции обмена веществ В – деление клетки лежит в основе роста организма Г – все организмы состоят из клеток
10. В образовании веретена деления участвует А – цитоплазма Б – клеточный центр В – эндоплазматическая сеть Г - вакуоль