Сечение шара диаметральной плоскостью называется. Сечение шара плоскостью

Наименование параметра Значение
Тема статьи: Сечение сферы
Рубрика (тематическая категория) Образование

Плоскостью частного положения

Сфера пересечена фронтально- прое-цирующей плоскостью (рис.9.19.)

Рис.9.19.
Окружность, по которой плоскость a пересекает сферу, на плоскость Н проецируется в эллипс. На фронтальную плоскость проекций эта окружность проецируется в отрезок 1¢¢2¢¢, лежащей на следе a v . Строим точки 1¢ и 2¢, это горизонтальные проекции самой высокой и самой низкой точками сечения. Большая ось эллипса на горизонтальной плоскости проекций определяется точками 5 и 6, которые получаются при пересечении плоскости Т, проходящей через центр сферы, перпендикулярной плоскости a.

Для построения горизонтальных проекций точек воспользуемся параллелями сферы, проходящими через выбранные точки. Обязательно нужно выбрать точки 3 и 4, лежащие на экваторе, так как являются точками перехода с видимой на невидимую сторону поверхности (рис.9.19.).

РАЗВЕРТКИ

При изучении построения разверток поверхности рассматривают как гибкую нерастяжимую пленку. Некоторые поверхности при изгибании можно совместить с плоскостью без разрывов и склеивания. Такие поверхности называют развертывающимися, а полученную плоскую фигуру - разверткой. Поверхности, которые нельзя совместить с плоскостью, относятся к неразвертываемым.

Построение разверток имеет большое практическое применение, так как позволяет изготавливать разнообразные изделия из листового материала путем его изгибания.

Основные свойства разверток поверхностей

Каждой точке (фигуре) на поверхности соответствует точка (фигура) на развертке и наоборот.

На основании этого можно сформулировать следующие свойства:

1. Длины двух соответствующих линий поверхности и ее развертки равны между собой. Следствие: замкнутая линия на поверхности и соответствующая ей линия на развертке ограничивают одинаковую площадь.

2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке.

3. Прямой на поверхности соответствуют прямая на развертке.

4. Параллельным прямым на поверхности соответствуют также параллельные на развертке

Развертка поверхности многогранников

Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью.

Существуют три способа построения развертки многогранных поверхностей:

1) Способ треугольников (триангуляции);

2) Способ нормального сечения;

3) Способ раскатки.

Сечение сферы - понятие и виды. Классификация и особенности категории "Сечение сферы" 2017, 2018.

Введение

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называемой радиусом.

Отрезок, соединяющий две точки шаровой поверхности проходящей через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, также как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Сечение шара плоскостью

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство: Пусть - секущая плоскость и О - центр шара (рис. 1) Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора ОХ2=ОО"2+О"Х2. Так как ОХ не больше радиуса R шара, то О"Х?, т.е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом. Обратно: любая точка Х этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Площадь, проходящая через центр шара, называется диаметрально плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью.

ГЛАВА ЧЕТВЁРТАЯ

КРУГЛЫЕ ТЕЛА

II ШАР

Сечение шара плоскостью

125. Определение . Тело, происходящее от вращения полукруга вокруг диаметра, называется шаром , а поверхность, образуемая при этом полуокружностью, называется шаровой или сферической поверхностью. Можно также сказать, что эта поверхность есть геометрическое место точек, одинаково удалённых от одной и той же точки (называемой центром шара).

Отрезок, соединяющий центр с какой-нибудь точкой поверхности, называется радиусом , а отрезок, соединяющий две точки поверхности и проходящий через центр, называется диаметром шара. Все радиусы одного шара равны между собой; всякий диаметр равен двум радиусам.

Два шара одинакового радиуса равны, потому что при вложении они совмещаются.

126. Теорема. Всякое сечение шара плоскостью есть круг.

1) Предположим сначала, что (черт. 137) секущая плоскость АВ проходит через центр О шара. Все точки линии пересечения принадлежат шаровой поверхности и поэтому одинаково удалены от точки О, лежащей в секущей плоскости; следовательно, сечение есть круг с центром в точке О.

2) Положим теперь, что секущая плоскость СО не проходит через центр. Опустим на неё из центра перяендикуляр OK и возьмём на линии пересечения какую-нибудь точку М. Соединив её с О и А, получим прямоугольный треугольник МОК, из которого находим:

MK =√OM 2 - ОК 2 . (1)

Так как длины отрезков ОМ и ОК не изменяются при изменении положения точки М на линии пересечения, то расстояние МК есть величина постоянная для данного сечения; значит, линия пересечения есть окружность, центр которой есть точка К.

127. Следствие. Пусть R и r будут длины радиуса шара и радиуса круга сечения, а
d - расстояние секущей плоскости от центра, тогда равенство (1) примет вид:
r =√R 2 - d 2 .

Из этой формулы выводим:

1) Наибольший радиус сечения получается при d = 0, т. е. когда секущая плоскость проходит через центр шара . В этом случае r =R. Круг, получаемый в этом случае, называется большим кругом .

2) Наименьший радиус сечения получается при d = R. В этом случае r = 0, т. е. круг сечения обращается в точку.

3) Сечения, равноотстоящие от центра шара, равны.

4) Из двух сечений, неодинаково удалённых от центра шара, то, которое ближе к центру, имеет больший радиус.

128. Теорема. Всякая плоскость (Р, черт. 138), проходящая через центр шара, делит его поверхность на две симметричные и равные части.

Возьмём на поверхности шара какую-нибудь точку А; пусть АВ есть перпендикуляр, опущенный из точки А на плоскость Р. Продолжим АВ до пересечения с поверхностью шара в точке С. Проведя ВО, мы получим два равных прямоугольных треугольника
АОВ и ВОС (общий катет ВО, а гипотенузы равны, как радиусы шара); следовательно, АВ = ВС; таким образом, всякой точке А поверхности шара соответствует другая точка С этой поверхности, симметричная относительно плоскости Р с точкой А. Значит, плоскость Р делит поверхность шара на две симметричные части.

Эти части не только симметричны, но и равны, так как, разрезав шар по плоскости Р, мы можем вложить одну из двух частей в другую и совместить эти части.

129. Теорема. Через две точка шаровой поверхности, не лежащие на концах одного диаметра, можно провести окружность большого круга и только одну .

Пусть на шаровой поверхности (черт. 139), имеющей центр О, взяты какие-нибудь две точки, например С и N, не лежащие на одной прямой с точкой О. Тогда через точки С, О к N можно провести плоскость. Эта плоскость, проходя через центр О, даст в пересечении с шаровой поверхностью окружность большого круга.

Другой окружности большого круга через те же две точки С и N провести нельзя. Действительно, всякая окружность большого круга должна, по определению, лежать в плоскости, проходящей через центр шара; следовательно, если бы через С и N можно было провести ещё другую окружность большого круга, тогда выходило бы, что через три точки С, N и О, не лежащие на одной прямой, можно провести две различные плоскости, что невозможно.

130. Теорема. Окружности двух больших кругов при пересечении делятся пополам.

Центр О (черт. 139), находясь на плоскостях обоих больших кругов, лежит на прямой, по которой эти круги пересекаются; значит, эта прямая есть диаметр того и другого круга, а диаметр делит окружность пополам.

Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

Cтраница 1


Сечение шара плоскостью, проходящей через центр, называется большим кругом. Радиус большого круга равен радиусу шара.  

Сечение шара плоскостью всегда представляет собой круг. На рис. 153 показан шар, пересеченный горизонтальной плоскостью R и фронтально-проектирующей плоскостью Q, заданных следами Rv и Qv. Он проектируется на плоскость Н также в виде круга, имеющего общий центр с очерком горизонтальной проекции шара. Для определения крайних точек t и t большой ог. Промежуточные точки эллипса, например / i и / 2, могут быть получены приемом, описанным при решении аналогичной задачи при построении точек, лежащих на поверхности шара.  

Сечение шара любой вертикальной плоскостью, проходящей через центр, дает большой круг, называемый меридианом.  

Сечение шара плоскостью, расположенной от центра шара на расстоянии, меньшем радиуса, есть круг.  

Сечение шара плоскостью представляет собой круг. Плоскость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  

Сечение шара плоскостью, перпендикулярной его радиусу, делит радиус пополам.  

Сечение шара, проходящее через ось конуса - большой круг шара, в который вписан ДЛВ5 (рис. 185), где [ ЛВ ] - диаметр основания конуса.  

Сечение шара плоскостью, проходящей через основание пирамиды, есть круг, в который вписан ДЛВС. Так как С 90, то центр этого круга О лежит на середине гипотенузы.  

Сечение шара плоскостью, проходящей через центр шара, называется большим кругом. Кйсательной плоскостью к сфере (шару) называется плоскость имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Для того чтобы плоскость была касательной к сфере, необходимо и достаточно, чтобы эта плоскость была перпендикулярна к радиусу сферы и проходила через его конец.  

Поэтому сечение шара, проходящее через его центр и касающееся основания пирамиды, будет являться кругом, вписанным в треугольник SEF, где SE и SF - апофемы боковых граней, a EF - высота ромба.  

Рассмотрим сечение шара, проходящее через ось усеченного конуса. В сечении мы получим круг, в который вписана трапеция ABCD.  

Каждое сечение шара плоскостью, проходящей через его центр, дает большой круг.  

О Сечение шара, проходящее через ось конуса - это большой круг шара, в который вписан Д ABS (рис. 339), где [ АВ ] - диаметр основания конуса.