Источники инфракрасного излучения: виды, применение. Инфракрасные волны

Занимающее спектральную область между красным концом видимого света (с длиной полны l, ок. 0,76 мкм) и коротковолновым радиоизлучением (l~1-2 мм). Верх, граница И. и. определяется чувствительностью человеческого глаза к видимому излучению, а нижняя - условна, т. к. ИК-диапазон перекрывается радиодиапазоном длин волн. ИК-область спектра обычно делят на ближнюю (0,76-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). И. и. подчиняется всем законам оптики и относится к оптич. излучению. И. и. не видимо глазом, но создаёт ощущение тепла и поэтому часто наз. тепловым. Спектр И. и. может состоять из отд. линий, полос или быть непрерывным в зависимости от испускающего его источника. Линейчатые

Рис. 1. Инфракрасный спектр излучения ртути. 1-12 - спектральные линии, длины волн которых в мкм равны: 1 - 1,014; 2 - 1,129; 3 - 1,357; 4 - 1,367; 5 - 1,395; 6 - 1,530; 7 - 1,692; 8 - 1,707 и 1,711; 9 - 1,814; 10 - 1,970; 11 - 2,249; 12 - 2,326.

ИК-спектры испускают возбуждённые атомы или ионы при переходах между близко расположенными электронными уровнями энергии (рис. 1; см. Атомные спектры ).Полосатые ИК-спектры наблюдаются в спектрах испускания возбуждённых молекул, возникающих при переходах между колебат. и вращат. уровнями энергии, - колебат. и вращат. спектры (см. Молекулярные спектры ).Колебат. и колебательно-вращат. спектры расположены гл. обр. в средней, а чисто вращательные - в далёкой ИК-области. Непрерывный ИК-спектр излучают нагретые твёрдые и жидкие тела. Абс. и относит, доля И. и. нагретого твёрдого тела зависит от его темп-ры. При темп-pax ниже 500 К излучение почти целиком расположено в ИК-области (тело кажется тёмным). Однако полная энергия излучения при таких темп-pax мала. При повышении темп-ры доля излучения в видимой области увеличивается, тело становится тёмно-красным, затем красным, жёлтым и, наконец, при темп-pax выше 5000 К белым; при этом вместе с полной энергией излучения растёт и энергия И. п. Строгая зависимость энергии излучения нагретых тел от темп-ры существует только для абсолютно чёрного тела . всех диапазонов длин

Рис. 2. Кривые излучения абсолютно чёрного тела Л и вольфрама В при температуре 2450 °К. Заштрихованная часть - излучение вольфрама в ИК-области; интервал 0,4-0,74 мкм - видимая область.

волн реальных тел меньше, чем излучение абсолютно чёрного тела той же темп-ры, и может носить селективный характер. Напр., излучение накалённого вольфрама в ИК-области отличается от излучения чёрного тела больше, чем в видимой области спектра (рис. 2). Излучение Солнца близко к излучению абсолютно чёрного тела с темп-рои около 6000 8К, причём около 50% энергии излучения расположено в ИК-области. Распределение энергии излучения человеческого тела в ИК-области близко к распределению энергии чёрного излучения с максимумом при l~9,5 мкм.

Источники И. и . Наиболее распространённые источники И. и.- лампы накаливания с вольфрамовой нитью мощностью до 1 кВт, 70-80% излучаемой энергии к-рых приходится на ИК-диапазон (они используются, напр., для сушки и нагрева), а также угольная электрич. дуга, газоразрядные лампы, электрич. спирали из нихромовой проволоки. Для ИК-фотографии и в нек-рых ИК-приборах (напр., приборах ночного видения) для выделения И. и. применяют ИК-светофильтры. В науч. исследованиях (напр., в инфракрасной спектроскопии )применяют разл. спец. источники И. и. в зависимости от области спектра. Так, в ближней ИК-области (l=0,76-2,5 мкм) источником И. и. служит ленточная вольфрамовая лампа, в средней ИК-области (2,5-25 мкм) - штифт Нернста и глобар, в области l~20 -100 мкм - платиновая полоска, покрытая тонким слоем окислов нек-рых редкоземельных металлов; в далёкой ИК-области (100-1600 мкм) - ртутная кварцевая лампа высокого давления. Источниками И. и. являются не-к-рые ИК-лазеры: лазер на ниодимовом стекле (l=1,06 мкм), гелий-неоновый лазер (l=1,15 мкм и 3,39 мкм), СО-лазер (l~5,08-6,66 мкм), СО 2 -лазер (l~9,12-11,28 мкм), лазер на парах воды (l~118,6 мкм), HCN-лазер (l~773 мкм), хим. лазер на смеси Н 2 и С1 2 (l~3,7-3,8 мкм), на GaAs (l~0,83-0,92 мкм), InSb (l~4,8-5,3 мкм), (Pb, Sn) Те (l~6,5-32 мкм) и др. Многие ИК-лазеры могут работать в режиме перестраиваемой частоты излучения.

Методы обнаружения и измерения И. и . основаны на преобразовании энергии И. и. в др. виды энергии, методы регистрации к-рых хорошо разработаны. В тепловых приёмниках поглощённое И. и. вызывает повышение темп-ры термочувствит. элемента, к-рое тем или иным способом регистрируется. Тепловые приёмники могут работать практически во всей области И. и. В фотоэлектрич. приёмниках поглощённое И. и. приводит к появлению или изменению электрич. тока или . Такие приёмники в отличие от тепловых селективны, т. е. чувствительны лишь в определ. ИК-области спектра (см. Приёмники оптического излучения) . Мн. фотоэлектрич. приёмники И. и. особенно для средней и далёкой ИК-области спектра работают лишь в охлаждённом состоянии. В качестве приёмников И. и. также используются приборы, основанные на усилении или тушении люминесценции , под действием И. и., а также т. н. антистоксовы люминофоры (см. Антистоксова люминесценция ),непосредственно преобразующие И. и. в видимое (люминофор с ионами Yb и Еr преобразует излучение l=1,06 мкм в видимое с l=0,7 мкм). Спец. фотоплёнки и пластинки - инфрапластинки - также чувствительны к И. н. (до l=1,3 мкм). Существуют также спец. приборы, к-рые позволяют путём регистрации собств. теплового И. и. получить распределение темп-ры по поверхности объекта, т. е. его тепловое (или температурное) изображение. Это т. н. тепловое изображение можно преобразовать в видимое изображение, в к-ром яркость видимого изображения в отд. точках пропорциональна темп-ре соответствующих точек объекта. Изображение, полученное в этих приборах, не является ИК-изображением в обычном смысле, т. к. даёт лишь картину распределения темн-ры на поверхности объекта. Приборы визуализации И. и. делятся на несканирующие и сканирующие. В первых И. и. регистрируется непосредственно на фотоплёнке или люминесцентном экране, а также на экране с помощью электроннооптических преобразователей (ЭОП) или эвапорографов. К сканирующим приборам относятся тепловизоры или термографы с оптико-механич. сканированием объекта. Область чувствительности ЭОП определяется чувствительностью к И. и. и не превышает l=1,3 мкм. Эвапорографы и тепловизоры могут быть использованы в средней ИК-области, и потому они позволяют получать тепловое изображение низкотемпературных тел. Существуют также методы параметрич. преобразования И. и. в видимое излучение при смешивании И. и. с лазерным излучением в оптически нелинейных кристаллах (см. Параметрический генератор света ).

Оптические свойства веществ в ИК-области спектра (прозрачность, коэф. отражения, коэф. преломления), как правило, значительно отличаются от оптич. свойств в видимой и УФ-областях спектра. Мн. вещества, прозрачные в видимой области, оказываются непрозрачными в нек-рых областях И. и., и наоборот. Напр., слой


воды толщиной в неск. см непрозрачен для И. и. с l>1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны для И. и. (германий для l>1,8 мкм, кремний для l>1,0 мкм). Чёрная бумага прозрачна в далёкой ИК-области. Вещества, прозрачные для И. и. и непрозрачные в видимой области, используются в качестве светофильтров для выделения И. и.

Рис. 3. Отражение инфракрасного излучения от щёлочно-галоидных кристаллов.

Поглощение И. и. для большинства веществ в тонких слоях носит селективный характер в виде относительно узких областей - полос поглощения. Нек-рые вещества, гл. обр. монокристаллы, даже при толщине до неск. см прозрачны в достаточно больших определённых диапазонах ИК-спектра. В табл. приведена длинноволновая граница l г пропускания нек-рых материалов, применяемых в ИК-области спектра для изготовления призм, линз, окон и пр. оптич. деталей (материалы, помеченные звёздочкой, гигроскопичны). Полиэтилен, парафин, тефлон, алмаз прозрачны для l>100 мкм (пропускание более 50% при толщине 2 мм). Отражат. способность для И. и. у большинства металлов значительно больше, чем для видимой области, и возрастает с увеличением l И. и. (см. Металлооптика ).Напр., коэф. отражения Al, Au, Ag, Сu в области l=10 мкм достигает 98%. Жидкие и твёрдые неметаллич. вещества обладают в ИК-области селективным отражением, причём положение максимумов отражения зависит от хим. состава вещества. У нек-рых


Рис. 4. Кривая пропускания атмосферы в области l=0,6-14 мкм. "Окна" прозрачности в области l@2,0-2,5 мкм; 3,2-4,2 мкм; 4,5-5,2 мкм; 8,0-13,5 мкм. Полосы поглощения с максимумами при l@0,93; 1,13; 1,40; 1,87; 2,74; 6,3 мкм принадлежат парам воды; при l=2,7, 4,26 и 15,0 мкм - углекислому газу и при l@9,5 мкм - озону.

кристаллов коэф. отражения в максимуме селективного отражения (рис. 3) достигает больших значений (до 80%), и поэтому пластинки из таких кристаллов могут служить отражат. фильтрами для выделения определ. областей И. и. (т. н. метод остаточных лучей). Прозрачность земной атмосферы для И. и. (так же как и для видимого и УФ-излучения) играет большую роль в процессе теплового радиац. обмена между излучением Солнца, падающим на Землю, и И. и. Земли в мировое пространство (обратное излучение Земли расположено гл. обр. в области спектра с максимумом ок. 10 мкм), а также существенна при практич. использовании И. и. (для связи, в ИК-фотографии, для применения И. и. в военном деле и т. д.). Проходя через земную атмосферу, И. и. ослабляется в результате рассеяния (см. Рассеяние света )и поглощения. Азот и кислород воздуха не поглощают И. и., а ослабляют его лишь в результате рассеяния, к-рое значительно меньше, чем для излучения видимого света (т. к. коэф. рассеяния ~l - 4). Пары воды, СО 2 , озона и др. примеси, имеющиеся в атмосфере, селективно поглощают И. и. Особенно сильно поглощают И. и. пары воды, полосы поглощения к-рых расположены почти во всей ИК-области спектра (рис. 4). Благодаря сильному поглощению И. и. земной атмосферой лишь небольшая часть обратного И. и. Земли выходит за пределы атмосферы, т. е. атмосфера служит теплоизолирующей оболочкой, препятствующей охлаждению Земли. Наличие в атмосфере частиц дыма, пыли, мелких капель воды (дымка, туман) приводит к дополнит, ослаблению И. и. в результате рассеяния на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны И. и.

Применение ИК-излучения . И. н. находит широкое применение в науч. исследованиях, при решении большого числа практич. задач, в военном деле и пр. Исследование спектров испускания и поглощения веществ в ИК-области является дополнением к исследованиям в видимой и УФ-областях и используется при изучении структуры электронной оболочки атомов, определения структуры молекул, а также для качеств, и количеств. спектрального анализа . Широкое применение для изучения структуры атомов и молекул н элементного состава вещества нашли ИК-лазеры (особенно с перестраиваемой частотой; см. Лазерная спектроскопия ). Благодаря особенностям взаимодействия И. и. с веществом ИК-фотография имеет ряд преимуществ перед фотографией в видимом излучении. Так, в результате меньшего ослабления И. и. вследствие рассеяния при прохождении через дымку и небольшой туман и при использовании инфраплёнок и ИК-светофильтров удаётся получить ИК-фотографии предметов, удалённых на расстояние в сотни км. Фотографии одного и того же объекта, полученные в И. и. и в видимом свете, вследствие различия коэф. отражения и пропускания объекта могут значительно различаться, и на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии и непосредственно глазом, что используется при фотографировании земной поверхности со спутников Земли, в ботанике, медицине, криминалистике, аэрофоторазведке и т. д. На ИК-фотографиях отд. участков неба часто можно увидеть большее число звёзд, туманностей и др. объектов, чем на обычных фотографиях. Фотографирование в И. и. можно производить и в полной темноте при облучении объектов И. и. В пром-сти И. и. используются для сушки (в т. ч. локальной) разл. материалов и изделий. На основе электронно-оптич. преобразователей, чувствительных к И. и., созданы различного рода приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов И. и. от спец. источников со светофильтрами вести наблюдение или прицеливание в полной темноте. Эвапорографы и тепловизоры применяются в пром-сти для обнаружения перегретых участков машин или электронных приборов, для получения температурных карт местности и т. д. Создание высокочувствит. приёмников И. и. (напр., болометров или охлаждаемых фотосопротивлений) позволило построить теплопеленгаторы для обнаружения и пеленгации объектов, темп-pa к-рых выше темп-ры окружающего фона (нагретые трубы кораблей, двигатели самолётов и др.), по их собств. тепловому И. и. Созданы также системы самонаведения на цель снарядов и ракет. ИК-локаторы и дальномеры позволяют обнаружить в темноте любые объекты и измерять расстояния до них. ИК-лазеры используются также для наземной и космич. связи. Лит.: Леконт Ж., Инфракрасное излучение, пер. с франц., М., 1958; Соловьев С. М., Инфракрасная фотография, М., I960; Оптические материалы для инфракрасной техники. [Справочник], М., 1965; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, 3 изд., М., 1985; Марков М. Н., Приемники инфракрасного излучения, М., 1968; Приёмники инфракрасного излучения, пер. с франц., М., 1969; Xадсон Р., Инфракрасные системы, пер. с англ., М., 1972; Ллойд Д ж., Системы тепловидения, пер. с англ., М., 1978; Левитин И. Б., Применение инфракрасной техники в народном хозяйстве. Л., 1981; Гибсон X., Фотографирование в инфракрасных лучах, пер. с англ., М., 1982. В . И. Малышев.

Гамма-излучение Ионизирующее Реликтовое Магнито-дрейфовое Двухфотонное Спонтанное Вынужденное

Инфракра́сное излуче́ние - электромагнитное излучение , занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами .

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

  • коротковолновая область: λ = 0,74-2,5 мкм;
  • средневолновая область: λ = 2,5-50 мкм;
  • длинноволновая область: λ = 50-2000 мкм;

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн - терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым » излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы . Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .

Применение

Медицина

Инфракрасные лучи применяются в физиотерапии .

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления , системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата .

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Антикоррозийное средство

Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал , белок , липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесенные на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надежной защитой от подделок.

Опасность для здоровья

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

См. также

Другие способы теплопередачи

Способы регистрации (записи) ИК-спектров.

Примечания

Ссылки

Свет – это залог существования живых организмов на Земле. Существует огромное количество процессов, которые могут протекать благодаря воздействию инфракрасного излучения. Помимо этого, его применяют в лечебных целях. С ХХ века терапия светом стала значимой составляющей традиционной медицины.

Особенности излучения

Фототерапия – это специальный раздел в физиотерапии, занимающийся изучением воздействия волны световой на организм человека. Было отмечено, что волны имеют различный диапазон, поэтому они по-разному сказываются на человеческом организме. Важно отметить, излучение владеет самой большой глубиной проникновения. Что касается поверхностного влияния, то им обладает ультрафиолет.

Диапазон инфракрасного спектра (спектр излучения) имеет соответствующую длину своей волны, а именно 780 нм. до 10000 нм. Что касается физиотерапии, то для лечения человека применяется длина волны, которая колеблется в спектре от 780 нм. до 1400 нм. Данный диапазон инфракрасного излучения считается нормой для терапии. Простыми словами, применяется соответствующая длина волны, а именно более короткая, способная проникать в кожу на три сантиметра. Помимо этого, учитывается специальная энергия кванта, частота излучений.

Согласно многим исследованиям, было установлено, что свет, радиоволны, лучи инфракрасные, обладают одной природой, так как это разновидности электромагнитной волны, которая окружает людей повсюду. Подобные волны обеспечивают работу телевизоров, мобильных телефонов и радио. Простыми словами, волны позволяют человеку увидеть окружающий мир.

Инфракрасный спектр имеет соответствующую частоту, длина волны которой 7-14 мкм, что оказывает уникальное воздействие на организм человека. Данная часть спектра соответствует излучениям человеческого тела.

Что касается объектов кванта, то молекулы не имеют возможности произвольно колебаться. Каждая молекула кванта обладает определенным комплексом энергии, частот излучений, которыми запасаются в момент колебаний. Однако стоит учесть, что молекулы воздуха оснащены обширным набором таких частот, поэтому атмосфера способна поглощать излучение в разнообразных спектрах.

Источники излучения

Солнце является основным источником ИК.

Благодаря ему предметы могут нагреваться до конкретной температуры. В итоге осуществляется излучение тепловой энергии в спектре данных волн. Затем энергия доходит к объектам. Процесс передачи тепловой энергии осуществляется от предметов с высокой температурой к более низкой. В этой ситуации у объектов присутствуют различные излучающие свойства, имеющие зависимость от нескольких тел.

Источники инфракрасного излучения присутствуют повсюду, они оснащенными такими элементами, как светодиоды. Все современные телевизоры оснащены пультами, работающими на дистанционном управлении, так как он функционирует в соответствующей частоте инфракрасного спектра. В их составе имеются светодиоды. Различные источники инфракрасного излучения можно увидеть на промышленных производствах, например: в сушке лакокрасочных поверхностей.

Самым ярким представителем искусственного источника на Руси являлись русские печи. Практически все люди испытали на себе влияние подобной печи, а также оценили ее пользу. Именно поэтому от нагретой печи или же радиатора отопления можно почувствовать такое излучение. В настоящее время огромной популярностью пользуются обогреватели инфракрасные. Они обладают перечнем преимуществ по сравнению с конвекционным вариантом, так как более экономичны.

Значение коэффициента

В инфракрасном спектре имеется несколько разновидностей коэффициента, а именно:

  • излучения;
  • коэффициент отражения;
  • пропускной коэффициент.

Итак, коэффициент излучения является способностью объектов излучать частоту излучений, а также энергию кванта. Может меняться в соответствии с материалом и его свойствами, а также температуры. Коэффициент имеет такое максимальное излечение = 1, но в реальной ситуации он всегда меньше. Что касается низкой способности излучения, то ею наделены элементы, имеющие блестящую поверхность, а также металлы. Коэффициент зависит от температурных показателей.

Коэффициент отражения дает увидеть возможность материалов отражать частоту изучений. Зависит от типа материалов, свойств и температурных показателей. В основном отражение имеется у полированных и гладких поверхностей.

Коэффициент пропускания показывает способность предметов проводить сквозь себя частоту инфракрасного излучения. Подобный коэффициент напрямую зависит от толщины и разновидности материала. Важно заметить, что большая часть материалов не имеет такой коэффициент.

Использование в медицине

Световое лечение инфракрасным излучением стало достаточно популярным в современном мире. Применение инфракрасного излучения в медицине обусловлено тем, что методика имеет лечебные свойства. Благодаря этому, наблюдается благотворное влияние на организм человека. Тепловое влияние образует в тканях тело, регенерирует ткани и стимулирует репарацию, ускоряет физико-химические реакции.

Помимо этого, организм испытывает значительные улучшения, так как происходят такие процессы:

  • ускорение кровотока;
  • расширение сосудов;
  • выработка биологически активных веществ;
  • мышечная релаксация;
  • прекрасное настроение;
  • комфортное состояние;
  • хороший сон;
  • снижение давления;
  • снятие физического, психоэмоционального перенапряжения и прочее.

Видимый эффект от лечения наступает в течение нескольких процедур. Помимо отмеченных функций, инфракрасный спектр оказывает противовоспалительное влияние на организм человека, помогает бороться с инфекцией, стимулирует и укрепляет иммунную систему.

Подобная терапия в медицине имеет следующие свойства:

  • биостимулирующее;
  • противовоспалительное;
  • дезинтоксикационное;
  • улучшение кровотока;
  • пробуждение второстепенных функций организма.

Инфракрасное световое излучения, а точнее лечение им, имеет видимую пользу для человеческого организма.

Лечебные методики

Терапия бывает двух видов, а именно – общая, местная. Что касается местного воздействия, то лечение осуществляется на определенной части тела больного. Во время общей терапии, применение световой терапии рассчитано на весь организм.

Процедура осуществляется дважды в день, продолжительность сеанса колеблется в пределах 15-30 минут. Общий лечебный курс содержит не менее пяти – двадцати процедур. Следите за тем, чтобы была готова защита от инфракрасного излучения, предназначенная для области лица. Для глаз предназначены специальные очки, вата или же картонные накладки. После проведения сеанса, кожа покрывается эритемой, а именно – покраснениями, имеющими размытые границы. Эритема исчезает через час после процедуры.

Показания и противопоказания к лечению

ИК имеет основные показания к применению в медицине:

  • болезни лор-органов;
  • невралгия и неврит;
  • заболевания, затрагивающие опорно-двигательный аппарат;
  • патология глаз и суставов;
  • воспалительные процессы;
  • раны;
  • ожоги, язвы, дерматозы и рубцы;
  • астма бронхиальная;
  • цистит;
  • болезнь мочекаменная;
  • остеохондроз;
  • холецистит без камней;
  • артрит;
  • гастродуоденит в хронической форме;
  • пневмония.

Световое лечение имеет положительные результаты. Помимо лечебного эффекта, ИК может быть опасно для человеческого организма. Это обусловлено тем, что имеются определенные противопоказания, не соблюдая которые можно нанести вред здоровью.

Если имеются следующие недуги, то подобное лечение принесет вред:

  • период беременности;
  • болезни крови;
  • индивидуальная непереносимость;
  • хронические болезни в острой стадии;
  • гнойные процессы;
  • туберкулез активной формы;
  • предрасположенность к кровотечениям;
  • новообразования.

Следует учитывать указанные противопоказания, чтобы не причинить вреда собственному здоровью. Слишком высокая интенсивность излучения способна причинить огромный вред.

Что касается вреда ИК в медицине и на производстве, то может возникнуть ожог и сильнейшее покраснение кожного покрова. В некоторых случаях у людей возникали опухоли на лице, так как они контактировали с данным излучением достаточно долго. Существенный вред инфракрасного излучения может вылиться в форме дерматитов, а также бывает тепловой удар.

Инфракрасные лучи достаточно опасны для глаз, особенно в диапазоне до 1,5 мкм. Длительное воздействие оказывает существенный вред, так как появляется светобоязнь, катаракта, проблемы со зрением. Длительное влияние ИК – очень опасно не только для людей, но для растений. Используя оптические приборы, можно постараться исправить проблему со зрением.

Воздействие на растения

Всем известно, что ИК оказывают благотворное влияние на рост, развитие растений. Например, если обустроить теплицу обогревателем с ИК, то можно увидеть ошеломляющий результат. Обогрев осуществляется в инфракрасном спектре, где соблюдается определенная частота, а волна равна от 50 000 нм. до 2 000 000 нм.

Существуют достаточно интересные факты, согласно которым можно узнать, что все растения, живые организмы, подвергаются влиянию солнечного света. Радиация солнца имеет определенный диапазон, состоящий из 290 нм. – 3000 нм. Простыми словами, лучистая энергия оказывает важную роль в жизни каждого растения.

Учитывая интересные и познавательные факты, можно определить, что растения нуждаются в свете и солнечной энергии, так как они отвечают за формирование хлорофилла и хлоропластов. Скорость света влияет на растяжение, зарождение клеток и ростовых процессов, сроки плодоношения и цветения.

Специфика микроволновой печи

Бытовые микроволновые печи оснащены микроволнами, показатели которых немного ниже гамма и рентгеновских лучей. Такие печи способны спровоцировать ионизирующий эффект, который несет опасность человеческому здоровью. Микроволны расположились в промежутке между инфракрасными и радиоволнами, поэтому такие печи не могут ионизировать молекулы, атомы. Исправные СВЧ-печи не оказывают воздействия на людей, так как они впитываются в пищу, образуя тепло.

СВЧ-печи – не могут излучать радиоактивных частиц, поэтому не оказывают радиоактивного влияния на пищу и живые организмы. Именно поэтому не стоит переживать, что микроволновые печи способны навредить вашему здоровью!

Все многообразие излучений, исходящих от Солнца, имеет единую природу - это электромагнитные волны. Разнообразие в их свойствах вызвано отличиями в длине волны. Видимая часть спектра солнечного излучения начинается с самых коротких - фиолетовых волн (0,38 мкм) и завершается самыми длинными волнами (0,76 мкм), которые человеческий глаз воспринимает, как красный цвет.

Немецкий учёный Гершель в 1800 году обнаружил за красной частью спектра некие невидимые лучи, вызывающее значительное повышение температуры термометра, используемого им для исследования. Это излучение было названо - инфракрасным.

Каково влияние инфракрасного излучения на организм человека? Давайте это выясним.

Что такое инфракрасное излучение

Излучение, примыкающее к красной части видимого спектра, не воспринимаемое нашими органами зрения, но обладающее способностью нагревать освещаемые поверхности, было названо инфракрасным. Приставка «инфра» означает «больше». В нашем случае - это электромагнитные лучи с длиной волны большей, чем у видимого красного света.

Что является источником инфракрасного излучения

Его естественным источником является Солнце. Диапазон инфракрасных лучей достаточно широк. Это волны с длиной от 7 и до 14 микрометра (мкм). Частичное поглощение и рассеяние инфракрасных лучей происходит в атмосфере Земли.

О масштабах инфракрасного солнечного излучения говорит тот факт, что на него приходится 58% всего спектра электромагнитных волн, исходящих от нашего светила.

Такой, достаточно широкий диапазон ИК лучей делят на три части:

  • длинные волны, излучаемые нагревателем с температурой до 300 °C;
  • средние - до 600 °C;
  • короткие - более 800 °C.

Все они излучаются возбуждёнными атомами (т. е. обладающими избыточной энергией), а также ионами вещества. Источником ИК излучения являются все тела, если их температура выше абсолютного нуля (минус 273 °C).

Итак, в зависимости от температуры излучателя формируются ИК лучи разной длины волны, интенсивности и проникающей способности. А от этого и зависит, как инфракрасное излучение воздействует на живой организм.

Польза и вред ИК излучения для здоровья человека

Ответить на вопрос - вредно ли для человека инфракрасное излучение, можно, вооружившись некоторыми сведениями.

Длинноволновые ИК лучи, попадая на кожу, воздействует на нервные рецепторы, вызывая ощущение тепла. Поэтому инфракрасное излучение ещё называют тепловым.

Более 90% этого излучения поглощается влагой, содержащейся в верхних слоях кожи. Оно вызывает лишь повышение температуру кожного покрова. Медицинские исследования показали, что длинноволновое излучение не только безопасно для человека, но и повышает иммунитет, запускает механизм регенерации и оздоровления многих органов и систем. Особенно эффективными в этом отношении являются ИК лучи с длиной волны 9,6 мкм. Этими обстоятельствами обусловлено применение инфракрасного излучения в медицине.

Совсем иной механизм воздействия инфракрасных лучей на организм человека, относящегося коротковолновой части спектра. Они способны проникнуть на глубину нескольких сантиметров, вызывая нагревание внутренних органов.

В месте облучения из-за расширения капилляров может появиться покраснение кожи, вплоть до образования волдырей. Особенно опасны короткие ИК лучи для органов зрения. Они могут спровоцировать образования катаракты, нарушения водно-солевого баланса, появления судорог.

Причиной известного эффекта теплового удара служит именно коротковолновое ИК излучение. Повышение температуры головного мозга на 1 °C уже вызывает его признаки:

Перегревание на 2 °C может спровоцировать развитие менингита.

Теперь разберёмся с понятием интенсивности электромагнитного излучения. Этот фактор зависит от расстояния до источника тепла и его температуры. Длинноволновое тепловое излучение малой интенсивности играет важную роль для развития жизни на планете. Человеческий организм нуждается в постоянной подпитке этими длинами волн.

Таким образом, определяется длиной волны и временем воздействия.

Как избежать вредного воздействия ИК лучей

Поскольку мы определились, что негативное влияние на человеческий организм оказывает коротковолновое ИК излучение, выясним, где нас может подстерегать эта опасность.

Прежде всего это тела с температурой, превышающей 100 °C. Такими, могут явиться следующие.

  1. Производственные источники лучистой энергии (сталеплавильные, электродуговые печи и пр.) Снижение опасности их воздействия достигается специальной защитной одеждой, теплозащитными экранами, применением более новых технологий, а также лечебно-профилактическими мероприятиями для обслуживающего персонала;
  2. . Самым надёжным и проверенным из них является русская печь. Излучаемое ею тепло не только чрезвычайно приятно, но и целебно. К великому сожалению эта деталь быта почти полностью канула в Лету. На смену ей пришли все возможные электрические обогреватели. Те из них, чья тепловыделяющая спираль защищена теплоизолирующим материалом, излучают мягкое длинноволновое излучение. Оно оказывает благотворное влияние на организм. Обогреватели с открытым нагревательным элементом излучают жёсткое, коротковолновое излучение, которое и может привести к описанным выше негативным последствиям. В техническом паспорте обогревателя производитель обязан указать характер излучения этого прибора.

Если же вы стали обладателем коротковолнового обогревателя, соблюдайте правило - чем ближе обогреватель, тем меньшим должно быть время его воздействия.

Помощь при тепловом ударе

Природа наделила человека очень совершенной системой терморегуляции. Но, если все же имеет место тепловой удар, следует выполнить определённый комплекс мероприятий, минимизирующих его последствия:

Человечество живёт в мире природных и рукотворных источников различных излучений. Неоспоримо воздействие инфракрасного излучения на организм человека. Но нет статистики, доказывающей его вред.

А знание закономерностей его взаимодействия с биологическими объектами позволяет использовать полезное влияние инфракрасного излучения на человека для предотвращения болезней и терапии различных заболеваний.

В 1800 году ученый Уильям Гершель объявил на заседании Лондонского Королевского общества о своем открытии. Он измерил температуру за пределами спектра и обнаружил невидимые лучи с большой нагревательной силой. Опыт проводился им с помощью светофильтров телескопа. Он заметил, что они в разной мере поглощают свет и тепло солнечных лучей.

Через 30 лет факт существования невидимых лучей, расположенных за красной частью видимого солнечного спектра, был неоспоримо доказан. Французский Беккерель назвал это излучение инфракрасным.

Свойства ИК-излучения

Спектр инфракрасного излучения состоит из отдельных линий и полос. Но он может быть так же непрерывным. Все зависит от источника ИК лучей. Иначе говоря, имеет значение кинетическая энергия или температура атома или молекулы. Любой элемент таблицы Менделеева в условиях разных температур имеет различные характеристики.

Например, инфракрасные спектры возбужденных атомов из-за относительного состояния покоя связки ядро - будут иметь строго линейчатые ИК-спектры. А возбужденные молекулы - полосатые, хаотично расположенные. Все зависит не только от механизма наложения собственных линейных спектров каждого атома. Но так же от взаимодействия этих атомов между собой.

При повышении температуры изменяется спектральная характеристика тела. Так, нагретые твердые и жидкие тела выделяют непрерывный инфракрасный спектр. При температурах ниже 300°С излучение нагретого твердого тела целиком расположено в инфракрасной области. От диапазона температур зависит как изучение ИК-волн, так применения их важнейших свойств.

Главные свойства ИК-лучей это поглощение и дальнейший нагрев тел. Принцип передачи тепла инфракрасными обогревателями отличается от принципов конвекции или теплопроводности. Находясь в потоке горячих газов, предмет теряет какое-то количество тепла, пока его температура ниже температуры нагретого газа.

И наоборот: если инфракрасные излучатели облучают предмет, еще не значит, что его поверхность данное излучение поглощает. Он может так же отражать, поглощать или пропускать лучи без потерь. Практически всегда облучаемый предмет поглощает часть этого облучения, часть отражает и часть пропускает.

Далеко не все светящиеся объекты или нагретые тела излучают ИК-волны. Например, люминесцентные лампы или пламя газовой плиты такого излучения не имеют. Принцип работы люминесцентных лам основан на свечении (фотолюминесценции). Ее спектр ближе всего к спектру дневного, белого света. Поэтому ИК-излучения в нём почти нет. А наибольшая интенсивность излучения пламени газовой плиты приходится на длину волны голубого цвета. У перечисленных нагретых тел ИК-излучение очень слабое.

Существуют так же вещества, которые прозрачны для видимого света, но не способны пропускать ИК-лучи. Например, слой воды толщиной несколько сантиметров не пропустит инфракрасное излучение с длиной волны больше 1 мкм. При этом человек может различить находящиеся на дне предметы невооруженным глазом.