Какие фигуры в пространстве называются равными. Какие фигуры называются равными

Фигуры называют равными, если совпадает их форма и размеры. Из этого определения следует, например, что если заданные прямоугольник и квадрат имеют равные площади, то они всё-равно не становятся равными фигурами, так как это разные фигуры по форме. Или, два круга однозначно имеют одну и туже форму, но если их радиусы различны, то это тоже не равные фигуры, так как не совпадают их размеры. Равными фигурами являются, например, два отрезка одинаковой длины, два круга с одинаковым радиусом, два прямоугольника с попарно равными сторонами (короткая сторона одного прямоугольника равна короткой стороне другого, длинная сторона одного прямоугольника равна длинной стороне другого).

На глаз бывает трудно определить, равны ли фигуры, имеющие одинаковую форму. Поэтому для определения равенства простых фигур их измеряют (с помощью линейки, циркуля). У отрезков длину, у кругов радиус, у прямоугольников длину и ширину, у квадратов только одну любую сторону. Тут следует отметить, что не все фигуры можно сравнивать. Нельзя, например, определить равенство прямых, т. к. любая прямая бесконечна и, следовательно, все прямые, можно сказать, равны между собой. То же самое касается лучей. Хотя у них есть начало, но нет конца.

Если же мы имеем дело со сложными (произвольными) фигурами, то бывает даже сложно определить, имеют ли они одинаковую форму. Ведь фигуры могут быть перевернуты в пространстве. Посмотрите на рисунок ниже. Трудно сказать, одинаковые ли это по форме фигуры или нет.

Таким образом, нужно иметь надежный принцип сравнения фигур. Он таков: равные фигуры при наложении друг на друга совпадают .

Чтобы сравнить две изображенные фигуры наложением, на одну из них накладывают кальку (прозрачную бумагу) и копируют (срисовывают) на нее форму фигуры. Копию на кальке пытаются наложить на вторую фигуру так, чтобы фигуры совпали. Если это удастся, то заданные фигуры равные. Если нет, то фигуры не равные. При наложении кальку можно поворачивать как угодно, а также переворачивать.

Если можно вырезать сами фигуры (или они представляют собой отдельные плоские объекты, а не нарисованы) то калька не нужна.

При изучении геометрических фигур можно заметить множество их особенностей, связанных с равенством их частей. Так, если сложить круг вдоль диаметра, то две его половинки окажутся равными (они совпадут наложением). Если разрезать прямоугольник по диагонали, то получится два прямоугольных треугольника. Если один из них повернуть на 180 градусов по часовой или против часовой стрелки, то он совпадет со вторым. То есть диагональ разбивает прямоугольник на две равные части.

Геометрические фигуры считаются равными, если они являются точной копией друг друга, то есть должны выполняться следующие условия:

  1. фигуры имеют одинаковую форму;
  2. у фигур одинаковые размеры;
  3. существует такое наложение (движение) одной фигуры на другую, что они совпадают во всех своих точках.

Что значит одинакова форма фигур

Говоря о форме фигуре, подразумевается в первую очередь класс геометрических фигур, а так же количество углов, направление выпуклостей (вогнутостей) и прочие визуальные детали контура плоской фигуры.

Например, овал и прямоугольник имеют явно различную форму. А если взять фигуры одного класса, допустим 2 треугольника, то нужно сравнить элементы, составляющие контур. В данном случае речь идет об углах и сторонах. Так, если у одного треугольника есть прямой угол, а у другого нет, то сразу заметно - они имеют различную форму. Если длины трех сторон одного треугольника не сильно отличаются друг от друга, а у другого одна сторона значительно больше двух других, мы тоже с первого взгляда заметим, что их формы различны.

Почему важно совпадение размеров фигур

Что, если отличия в размерах визуально мало заметны? Тогда необходимо произвести точные замеры обоих фигур. Также равенство размеров разделяет понятия подобных и равных фигур. К примеру, 2 квадрата с разной площадью будут подобными, но не равными (имеется ввиду, когда один больше другого).

Что понимается под «наложением» фигур друг на друга

Иногда сделать точные замеры сложно. Особенно, если фигура образована замкнутой произвольной кривой или ломаной линией. Тогда нужно найти способ, чтобы наложить одну фигуру на другую.

Так, если они нарисованы на листе бумаги, нужно вырезать одну из них точно по контуру и положить поверх другой. Можно ее поворачивать в любом направлении и даже переворачивать. Если найдется способ совместить эти фигуры так, чтобы они совпали точно по контурам, значит они равны.

Всегда ли можно доказать равенство фигур

Иногда сделать это не возможно. Например, если речь идет о прямых. Все они бесконечны. То же касается и лучей.

Равными называются такие фигуры, которые можно совместить, воспользовавшись каким-либо видом движения (центральная и осевая симметрия, поворот и параллельный перенос).

В таких фигурах все стороны и углы соответственно равны.

Например, если даны треугольники ABC и A₁B₁C₁, то они равны в том случае, если соблюдается равенство сторон (AB = A₁B₁, BC = B₁C₁, AC = A₁C₁) и углов (угол A = угол A₁, угол B = угол B₁, угол C = угол C₁).

Также в равных фигурах равны и соответствующие точки и линии. Например, в тех же равных треугольниках ABC и A₁B₁C₁ будут равны биссектрисы, медианы, высоты, радиусы вписанной и описанной окружностей, центроиды и т.д.

В повседневной жизни нас с вами окружают множество различных предметов. Часть из них имеют одинаковые размеры и одинаковую форму. Например, две одинаковые простыни или два одинаковых куска мыла, две одинаковых монеты и т.д.

В геометрии фигуры, имеющие одинаковые размеры и форму, называются равными фигурами . На рисунке ниже изображены две фигуры А1 и А2. Чтобы установить равенство этих фигур, нам необходимо одну из них скопировать на кальку. А затем передвигать кальку и совместить копию одной фигуры с другой фигурой. Если они совместятся, то это означает, что эти фигуры являются одинаковыми фигурами. При это записывают А1=А2 используя обычный знак равенства.

Определение равенства двух геометрических фигур

Мы можем представить, что на вторую фигуру накладывали первую фигуру, а не её копию на кальке. Поэтому в дальнейшем будем говорить о наложении самой фигуры, а не её копии, на другую фигуру. Исходя из всего вышесказанного можно сформулировать определение равенства двух геометрических фигур .

Две геометрические фигуры называются равными, если их можно совместить наложением одной фигуры на другую. В геометрии для некоторых геометрических фигур (например, треугольники) сформулированы специальные признаки, при выполнении которых можно говорить о том, что фигуры равны.

«Цилиндром называется тело» - Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Цилиндр, осевое сечение, которого-квадрат называется равносторонним. Проект «Математика в профессии «Повар, кондитер». Задача № 3. Цилиндры. Высотой цилиндра называется расстояние между плоскостями оснований. Высота цилиндра 8 м, радиус основания 5 м. Цилиндр пересечен плоскостью так, что в сечении получился квадрат.

«Площади фигур геометрия» - Равные фигуры имеют равные площади. в). чему будет равна площадь фигуры составленной из фигур А и Г. Фигуры разбиты на квадраты со стороной 1см. Равные фигуры б). Площадь параллелограмма. Фигуры имеющие равные площади называются равновеликими. Площади различных фигур. Единицы измерения площадей. Площадь треугольника.

«Площади фигур» - Площадь треугольника. Площадь плоской фигуры – неотрицательное число. Пусть S – площадь треугольника АВС. Решение: Теорема: Площадь параллелограмма. Решение. Площадь квадрата со стороной 1 равна 1. Задача. Разрезания и складывания. Равные многоугольники имеют равные площади. Четвертое свойство: Теорема доказана.

«Построение геометрических фигур» - Методы изображения и построения пространственных фигур на плоскости. Построения на проекционном чертеже. П4: Построить (найти) точку пересечения данных прямой и окружности. Требования – искомая фигура (совокупность фигур) с указанными свойствами. Алгебраический метод. Этапы решения задач на построение.

«Геометрическая прогрессия» - 1073741823 > 3000000, значит купец проиграл! Геометрическая прогрессия. Бесконечная сумма оказалась равна вполне конечной величине – высоте треугольника. Свойство геометрической прогрессии: Решение задачи: b1 = 1, q =2, n =30. Bn = b1· qn – 1 – формула n-го члена прогрессии. Формула суммы бесконечной убывающей геометрической прогрессии:

«Подобие фигур» - Растения. Геометрия. Подобие нас окружает. Игрушки. Подобие в нашей жизни. Вот некоторые примеры из нашей жизни. Если изменить (увеличить или уменьшить) все размеры плоской фигуры в одно и то же число раз (отношение подобия), то старая и новая фигуры называются подобными. Использовались материалы Интернета.

какой угол называется развернутым? Какие фигуры называются равными? Обьясните как сравнить два отрезка? какая точка называется

серединой отрезка?

Какой луч называется биссектрисой угла?

что такое градусная мера угла?

Какая фигура называется треугольником?Какие треугольники называются равными?Какой отрезок называют медианой треугольника?Какой отрезок называют

биссектрисой треугольника?Какой отрезок называют высотой треугольника?Какой треугольник называется равнобедренным?Какой треугольник называется равносторонним?Что такое окружность? Определение радиуса, диаметра, хорды.Дайте определение параллельных прямых.Какой угол называется внешним углом треугольника?Какой треугольник называется остроугольным, какой треугольник называется тупоугольным, какой прямоугольным. Как называются стороны прямоугольного треугольника?Свойство двух прямых, параллельных третьей.Теорема о прямой, пересекающей одну из параллельных прямых.Свойство двух прямых перпендикулярных к третьей

Какая фигура называется ломаной? Что такое звенья вершины и длина ломаной?

Объясните какая ломанная называется многоугольником. Что такое вершины, стороны, периметр и диагонали многоугольника? Какой многоугольник называется выпуклым?
Объясните какие углы называются выпуклыми углами многоугольника. Выведите формулу для вычисления суммы углов выпуклого n-угольника. Докажите, что сумма внешних углов выпуклого многоугольника. ВЗЯТЫХ по одному прикаждой вершине, равна 360 градусов.
Чему равна сумма углов выпукого четырехугольника?

1)Какая фигура называется четырехугольником?

2)Что такое вершины,углы стороны диагонали периметр четырехугольника?
3)Какие углы стороны четырехугольник называется выпуклым?
4)чему равна сумма углов выпуклого четырехугольника?
5)какой четырех угольник называется выпуклым?
6)какой четырех угольник называют параллелограмм?
7)какими свойствами обладает параллелограмм?
8)назовите признаки параллелограмма.
9)сформулируйте свойства прямоугольника.
10)какой четырехугольник называется квадратом?
11)сформулируйте свойства ромба.
12)какой четырехугольник называется ромбом?
13)какой четырехугольник называется прямоугольником?
14)какими свойствами обладает квадрат? ответьте пожалуйста кратко...

Геометрия Атанасян 7,8,9 класс «Вопросы ответы на вопросы для повторения к главе 2 к учебнику геометрии 7-9 класс атанасян Объясните, какая фигура

называется треугольником.
2. Что такое периметр треугольника?
3. Какие треугольники называются равными?
4. Что такое теорема и доказательство теоремы?
5. Объясните, какой отрезок называется перпендикуляром, проведённым из данной точки к данной прямой.
6. Какой отрезок называется медианой треугольника? Сколько медиан имеет треугольник?
7. Какой отрезок называется биссектрисой треугольника? Сколько биссектрис имеет треугольник?
8. Какой отрезок называется высотой треугольника? Сколько высот имеет треугольник?
9. Какой треугольник называется равнобедренным?
10. Как называются стороны равнобедренного треугольника?
11. Какой треугольник называется равносторонним?
12. Сформулируйте свойство углов при основании равнобедренного треугольника.
13. Сформулируйте теорему о биссектрисе равнобедренного треугольника.
14. Сформулируйте первый признак равенства треугольников.
15. Сформулируйте второй признак равенства треугольников.
16. Сформулируйте третий признак равенства треугольников.
17. Дайте определение окружности.
18. Что такое центр окружности?
19. Что называется радиусом окружности?
20. Что называется диаметром окружности?
21. Что называется хордой окружности?