Какие вещества подвергаются гидролизу органика. Гидролиз органических и неорганических веществ

Гидролиз сложных эфиров протекает обратимо в кислотной среде (в присутствии неорганической кислоты) с образованием соответствующего спирта и карбоновой кислоты.

Для смещения химическое равновесии в сторону продуктов реакции гидролиз проводят в присутствии щелочи.

Исторически первым примером такой реакции было щелочное расщепление сложных эфиров высших жирных кислот, что привело к получению мыла. Это произошло в 1811 г., когда французский ученый Э. Шеврёль. нагревая жиры с водой в щелочной среде, получил глицерин и мыла - соли высших карбоновых кислот. На основании этого эксперимента был установлен состав жиров, они оказались сложными эфирами, но только «трижды сложными., производными трехатомного спирта глицерина - триглицеридамн. А процесс гидролиза сложных эфиров в щелочной среде до сих пор называют «омылением».

Например, омыление эфира, образованного глицерином, пальмитиновой и стеариновой кислотами:

Натриевые соли высших карбоновых кислот - основные компоненты твердого мыла, калиевые соли - жидкого мыла.

Французский химик М. Бертло в 1854 г. осуществил реакцию этерификации и впервые синтезировал жир. Следовательно, гидролиз жиров (как и других сложных эфиров) протекает обратимо. Уравнение реакции можно упрощенно записать так:

В живых организмах происходит ферментативный гидролиз жиров. В кишечнике под влиянием фермента липазы жиры пищи гидратизуются на глицерин и органические кислоты, которые всасываются стенками кишечника, и в организме синтезируются новые жиры, свойственные данному организму. Они по лимфатической системе поступают в кровь, а затем в жировую ткань. Отсюда жиры поступают в другие органы и ткани организма, где в процессе обмена веществ в клетках опять гидролиэу-ются и затем постепенно окисляются до оксида углерода и воды с выделеиием энергии, необходимой для жизнедеятельности.

В технике гидролиз жиров используют для получения глицерина, высших карбоновых кислот, мыла.

Гидролиз углеводов

Как вы зияете, углеводы являются важнейшими компонентами нашей пищи. Причем ди- (сахароза, лактоза, мальтоза) и полисахариды {крахмал, гликогеи) непосредственно не усваиваются организмом. Они, так же как и жиры, сначала подвергаются гидролизу. Гидролиз крахмала идет ступенчато.

В лабораторных и промышленных условиях в качестве катализатора этих процессов используют кислоту. Реакции осуществляют при нагревании.
Реакцию гидролиза крахмала до глюкозы при каталитическом действии серной кислоты осуществил в 1811 г. русский ученый К. С. Кирхгоф.
В организме человека и животных гидролиз углеводов происходит под действием ферментов (схема 4).

Промышленным гидролизом крахмала получают глюкозу и патоку (смесь декстринов, мальтозы и глюкозы). Патоку применяют в кондитерском деле.
Декстрины как продукт частичного гидролиза крахмала обладают клеящим действием: с ними связано появление корочки на хлебе п жареном картофеле, а также образование плотной пленки на накрал малеином белье под действием горячего утюга.

Еще один известный вам полисахарид - целлюлоза - также может гидролизоваться до глюкозы при длительном нагревании с минеральными кислотами. Процесс идет стуненчато, но кратко. Этот процесс лежит в основе многих гидролизных производств. Они служат для получения пищевых, кормовых и технических продуктов из непищевого растительиого сырья - отходов лесозаготовок, деревообработки (опилки, стружка, щепа), переработки сельскохозяйственных культур (соломы, шелухи семян, кочерыжек кукурузы и т. д.).

Техническими продуктами таких производств являются глицерин, этиленгликоль. органические кислоты, кормовые дрожжи, этиловый снирт, сорбит (шестиатомвый спирт).

Гидролиз белка

Гидролиз можно подавить (значительно уменьшить коли чество подвергающейся гидролизу соли).

а) увеличить концентрацию растворенного вещества
б) охладить раствор;
а) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его г|я*дя в результате гидролиза кислотная, или подщелачивать, если - щелочная.

Значение гидролиза

Гидролиз солей имеет и практическое, и биологическое значение.

Еще в древности в качестве моющего средства использовали молу. В золе содержится карбонат калия, который в воде гидролизуется по аниону, водный раствор приобретает мылкость за счет образующихся при гидролизе ионов ОН.

В настоящее время в быту мы используем мыло, стиральные порошки и другие моющие средства. Основной компонент мыла - это натриевые или калиевые соли высших жирных карбоновых кислот: стеараты, пальмитаты, которые гидролизуются.

В состав же стиральных порошков и других моющих средств специально вводят соли неорганических кислот (фосфаты, карбонаты), которые усиливают моющее действие за счет повышения рh среды.

Соли, создающие необходимую щелочную срелу раствора, содержатся в фотографическом проявителе. Это карбонат натрия, карбонат калия, бура и другие соли, гидролизующиеся но аниону.

Если кислотность почвы недостаточная, у растений появляется болезнь - хлороз. Ее признаки - пожелтение или побеление листьев, отставание в росте и развитии. Если рН> 7,5, то в нее вносят удобрение сульфат аммония, которое способствует повышению кислотности, благодаря гидролизу по катиону, проходящему в почве.

Неоценима биологическая роль гидролиза некоторых солей, входящих в состав организма.

Обратите внимание, что во всех реакциях гидролиза степени окисления химических элементов не меняются. Окислительно-восстановительные реакции к реакциям гидролиза обычно не относят, хотя при этом и происходит взаимодействие вещества с водой.

Какие факторы способны воздействовать на степень гидролиза

Как вам уже известно, из определения – гидролиз является процессом разложения с помощью воды. В растворе соли присутствуют в виде ионов и их движущей силой, которая провоцирует такую реакцию, называют образование малодиссоциирующих частиц. Такое явление свойственно многим реакциям, происходящим в растворах.

Но не всегда ионы, взаимодействуя с водой, создают малодиссоциирующие частицы. Так, как вам уже известно, что соль складывается из катиона и аниона, то при этом возможны такие типы гидролиза, как:

В случае вступления реакции воды с катионом, мы получаем гидролиз по катиону;
Если же происходит реакция воды только с анионом, то получаем гидролиз по аниону;
При одновременном вступлении катиона и аниона в реакцию с водой мы получаем совместный гидролиз.

Потому как нам уже известно, что гидролиз имеет обратимую реакцию, то на состояние его равновесия влияют некоторые факторы, к которым относится: температура, концентрация продуктов гидролиза, концентрации участников реакции, добавки посторонних веществ. Но, когда газообразные вещества не берут участия в реакции, то на давление эти вещества не влияют, за исключением воды, поскольку ее концентрация является постоянной.

Теперь рассмотрим примеры выражений констант гидролиза:



Фактором, который воздействует на состояние равновесия гидролиза, может стать температура. Так при повышении температуры происходит смещение равновесия системы вправо и в таком случае степень гидролиза возрастает.

Если следовать принципам Ле Шателье, то мы видим, что при росте концентрации ионов водорода, происходит сдвиг равновесия влево, при этом уменьшиться степень гидролиза, а при повышении концентрации влияние для реакции мы видим на второй формуле.

При концентрации солей мы можем наблюдать, что равновесие в системе смещается вправо, однако при этом степень гидролиза, если следовать принципам Ле Шателье - уменьшается. Если мы этот процесс рассмотрим с точки зрения константы, то увидим, что про добавлении фосфат-ионов, равновесие сместиться вправо и их концентрация будет возрастать. То есть, для повышения концентрации гидроксид-ионов вдвое, необходимо концентрацию фосфат-ионов повысить в четыре раза, хотя значение константы меняться не должно. Из этого следует вывод, что отношение
уменьшится в 2 раза.

При факторе разбавления происходит одновременное уменьшение частиц, что находятся в растворе, кроме воды. Если следовать принципу Ле Шателье, то мы видим, что происходит смещение равновесия и увеличивается число частиц. Но такая реакция гидролиза происходит, не учитывая воду. При этом разбавление равновесия сдвигается в сторону протекания данной реакции, то есть вправо и естественно, что степень гидролиза возрастет.

На положение равновесия могут влиять добавки посторонних веществ, при условии что они дают реакцию с одним из участников реакции. К примеру, если к раствору сульфата меди мы добавим раствор гидроксида натрия, то в этом случае присутствующие в нем гидроксид-ионы начнут взаимодействовать с ионами водорода. В этом случае из принципа Ле Шателье следует, что в итоге концентрация уменьшиться, равновесие сместиться вправо, а степень гидролиза возрастет. Ну, а когда к раствору добавить сульфид натрия, то равновесие сместится влево, из-за связывания ионов меди в практически нерастворимый сульфид меди.

Подведем итог из изученного материала и придем к выводу, что тема гидролиза не является сложной, но необходимо четко усвоить, что такое гидролиз, иметь общие представления о смещении химического равновесия и запомнить алгоритм написания уравнений.

Задания

1. Выберите примеры органических веществ, подвергающихся гидролизу:
глюкоза, этанол, бромметан, метаналь, сахароза, метиловый эфир муравьиной кислоты, стеариновая кислота, 2-метил бутан.

Составьте уравнения реакций гидролиза; в случае обратимого гидролиза укажите условия, позволяющие сместить химическое равновесие в сторону образования продукта реакции.

2. Кикие соли подвергаются гидролизу? Какую среду могут иметь при этом водные растворы солей? Приведите примеры.

3. Какие из солей подвергаются гидролизу по катиону? Составьте уравнения их гидролиза, укажите среду.

На основе универсального понятия " гидролиз” показать единство мира органических и неорганических веществ. Используя интеграционный потенциал этого понятия раскрыть внутри – и межпредметные связи химии, дать яркое представление о практической значении процессов гидролиза в живой и неживой природе и в жизни общества. Ознакомить учащихся с сущностью гидролиза солей и научить составлять уравнения гидролиза различных солей.

Оборудование и реактивы: Растворы HCI, HNO 3 , NaOH, Na 2 CO 3 , AICI 3 , KNO 3 , FeCI 3 ; кусочек CaC 2 ; пробирки, штативы, растворы индикаторов и наборы универсальной индикаторной бумаги.

Форма урока. Лекция.

Ход урока

1. Организационный момент.

2. Объяснение нового материла (в ходе объяснения материла, идет демонстрация опытов).

Гидролиз – реакция обменного разложения веществ водой .

Гидролизу подвергаются: органические и неорганические вещества .

Реакции гидролиза могут быть: обратимые и необратимые.

  1. Гидролиз органических веществ :

А) гидролиз галогеналканов: C 2 H 5 CI + H 2 O -> C 2 H 5 OH + HCI
Б) гидролиз сложных эфиров: CH 3 COOC 2 H 5 + H 2 O -> CH 3 COOH + C 2 H 5 OH
В) гидролиз жиров:

Г) гидролиз дисахаридов: C 12 H 22 O 11 + H 2 O ->C 6 H 12 O 6 + C 6 H 12 O 6
Д) гидролиз белков:

H 2 N – CH 2 – CO – NH – CH 2 – CO – NH – CH 2 – COOH + H 2 O-> 3H 2 N – CH 2 COOH

Е) гидролиз полисахаридов: (C 6 H 10 O 5 ) n + H 2 O -> n C 6 H 12 O 6

2. Гидролиз бинарных неорганических веществ :

А) гидролиз карбидов: CaC 2 + 2H 2 O -> Ca(OH) 2 + C 2 H 2
Б) гидролиз галогенидов: SiCI 4 + 3 H 2 O -> H 2 SiO 4 + 4 HCI
В) гидролиз гидридов: NaH + H 2 O ->NaOH + H 2
Г) гидролиз фосфидов: Mq 3 P 2 + 6H 2 O ->3 Mq(OH) 2 + 2PH 3
Д) гидролиз сульфидов: AI 2 S 3 + 6H 2 O ->2AI(OH) 3 + 3 H 2 S.

При растворении некоторых солей в воде самопроизвольно протекают не только диссоциация их на ионы и гидратация ионов, но и процесс гидролиза солей.

Гидролиз солей – это протолитический процесс взаимодействия ионов солей с молекулами воды, в результате которого образуются малодиссоциирующие молекулы или ионы.

С позиции протолитической теории гидролиз ионов солей заключается в переходе протона от молекулы воды к аниону соли или катиону соли (с учетом его гидратации) к молекуле воды. Таким образом, в зависимости от природы иона вода выступает либо как кислота, либо как основание, а ионы соли при этом являются соответственно сопряженным основанием или сопряженной кислотой.(в водном растворе соли появляется избыток свободных H + илиOH – и раствор соли становится кислотным или щелочным.

Возможны три варианта гидролиза ионов солей:

  • гидролиз по аниону – соли, содержащий катион сильного основания и анион слабой кислоты;
  • гидролиз по катиону – соли, содержащие катион слабого основания и анион сильной кислоты;
  • гидролиз и по катиону, и по аниону – соли, содержащие катион слабого основания и анион слабой кислоты.

Рассмотрим случаи гидролиза

Гидролиз по аниону. Соли, содержащие анионы слабых кислот, например ацетаты, цианиды, карбонаты, сульфиды, взаимодействуют с водой, так как эти анионы являются сопряженными основаниями, способными конкурировать с водой за протон, связывая его в слабую кислоту:

A - + H 2 O -> AH + OH – pH > 7


CH 3 COO – + H 2 O ->CH 3 COOH + OH – CN – + H 2 O -> HCN + OH -
CO 3 2– + H 2 O -> HCO 3 – + OH – HCO 3 – + H 2 O ->H 2 CO 3 + OH -
I ступень II ступень

При этом взаимодействии возрастает концентрация ионов OH - , и поэтому pH водных растворов солей, гидролизующихся по аниону, всегда находится в щелочной области pH > 7. Гидролиз многозарядных анионов слабых кислот в основном протекает по I ступени. Работа обучающихся по листу заданий

Для характеристики состояния равновесия при гидролизе солей используют константу гидролиза К г , которая при гидролизе по аниону равна:

где К H2O – ионное произведение воды; К а – константа диссоциации слабой кислоты НА.

В соответствии с принципом Ле – Шателье смещения химического равновесия для подавления гидролиза, протекающего по аниону, к раствору соли следует добавить щелочь как поставщика иона ОН - , образующегося при гидролизе соли по аниону (ион, одноименный продукту гидролиза).

Гидролиз по катиону. Соли, содержащие катионы слабых оснований, например катионы аммония, алюминия, железа, цинка, взаимодействуют с водой, так как являются сопряженными кислотами, способными отдавать протон молекулам воды или связывать ионы ОН молекул воды с образованием слабого основания:

Kt + + H 2 O -> KtOH + H + pH < 7

NH 4 + + H 2 O -> NH 3 + H 3 O +

Fe 3+ + H 2 O -> FeOH 2+ + H + ; I – ступень

FeOH 2+ + H 2 O -> Fe(OH) + 2 + H + ; II – ступень

Fe(OH) + 2 + H 2 O ->Fe(OH) 3 + H + III – ступень

При этом взаимодействии возрастает концентрация ионов H + , и поэтому pH водных растворов солей, гидролизующихся по катиону, всегда находится в кислой области pH < 7. Гидролиз многозарядных катионов слабых оснований в основном протекает по I ступени.

Для подавления гидролиза, протекающего по катиону, к раствору соли следует добавить кислоту как поставщика иона Н + , образующегося при гидролизе соли по катиону (ион, одноименный продукту гидролиза. Работа обучающихся по листу заданий

Гидролиз по катиону и по аниону. В этом случае в реакции гидролитического взаимодействия с водой участвуют одновременно и катионы, и анионы, а реакция среды определяется природой сильного электролита.

Если гидролиз по катиону и по аниону протекает в равной степени (кислота и основание – одинаково слабые электролиты), то раствор соли имеет нейтральную реакцию; например, водный раствор ацетата аммония NH 4 CH 3 COO имеет pH = 7,т.к.pK a (CH 3 COOH) = 4,76 и pK b (NH 3 *H 2 O) = 4,76.

Если в растворе преобладает гидролиз по катиону (основание слабее кислоты), раствор такой соли имеет слабокислую реакцию (pH < 7) , например нитрит аммония NH 4 NO 2

(pK a (HNO 2 ) = 3,29) .

Если в растворе преобладает гидролиз по аниону (кислота слабее основания), раствор такой соли имеет слабощелочную реакцию (pH > 7) , например цианид аммония NH4СN

(pK a (HСN) = 9,31) .

Работа обучающихся по листу заданий

Некоторые соли, гидролизующиеся по катиону и по аниону, например сульфиды или карбонаты алюминия, хрома, железа (III), гидролизуются полностью и необратимо, так как при взаимодействии их ионов с водой образуются малорастворимые основания и летучие кислоты, что способствует протеканию реакции до конца:

AI 2 (CO 3 ) 3 + 3 H 2 O ->2 AI(OH) 3 + 3 CO 2 ; Cr 2 S 3 + 6 H 2 O ->2 Cr(OH) 3 + 3 H 2 S

Механизм необратимого гидролиза

В растворах двух солей, например сульфида натрия (Na 2 S) и хлорида алюминия (AICI 3 ), взятых порознь, устанавливается равновесие: S 2– + H 2 O -> HS – + OH -

AI 3+ + H 2 O -> AIOH 2+ + H +

гидролиз ограничивается I стадией. При смешивании этих растворов, ионы Н + и ОН – взаимно нейтрализуют друг друга, уход этих ионов из сферы реакции в виде малодиссоциированной воды смещает оба равновесия вправо и активизирует последующие ступени гидролиза:

HS – + H 2 O -> H 2 S + ОН – 3 Степень гидролиза равна отношению числа гидролизованных молекул соли к общему числу растворенных молекул. зависит:

А) температуры, Б) концентрации раствора, В) тип соли (природы основания, природы кислоты).

Факторы, влияющие на степень гидролиза:

Глубина протекания гидролиза солей в значительной степени зависит и от внешних факторов, в частности от температуры и концентрации раствора . При кипячении растворов гидролиз солей протекает значительно глубже, а охлаждение растворов, наоборот, уменьшает способность соли подвергаться гидролизу.

Увеличение концентрации большинства солей в растворах также уменьшает гидролиз, а разбавление растворов заметно усиливает гидролиз солей.

Гидролиз – процесс эндотермический, в большинстве обратимый . В соответствии с принципом смещения химического равновесия для подавления гидролиза – следует понизить температуру, увеличить концентрацию исходной соли, ввести в раствор один из продуктов гидролиза(кислоты – Н + , щелочи – ОН - ); для усиления гидролиза – следует повысить температуру, разбавить раствор, связывание какого – либо продукта гидролиза (Н + или ОН - ) в молекулы слабого электролита H 2 O

Значение гидролиза

    Гидролитические процессы вместе с процессами растворения играют важную роль в обмене веществ. С ними связано поддержание на определенном уровне кислотности крови и других физиологических жидкостей. Действие многих химиотерапевтических средств связано с их кислотно – основными свойствами и склонностью к гидролизу.

  1. Геохимические процессы.
  2. Химическая промышленность

3. Закрепление материала

Работа обучающихся по листу заданий

4. Домашнее задание

Химия, как и большинство точных наук, требующих много внимания и твердых знаний, никогда не была любимой дисциплиной школьников. А зря, ведь с ее помощью можно понять множество процессов, происходящих вокруг и внутри человека. Взять, к примеру, реакцию гидролиза: на первый взгляд кажется, что она имеет значение только для ученых-химиков, но на самом деле без нее ни один организм не мог бы полноценно функционировать. Давайте узнаем об особенностях данного процесса, а также о его практическом значении для человечества.

Реакция гидролиза: что это такое?

Данным словосочетанием называется специфическая реакция обменного разложения между водой и растворяемым в ней веществом с образованием новых соединений. Гидролиз также можно назвать сольволизом в воде.

Данный химический термин образован от 2 греческих слов: «вода» и «разложение».

Продукты гидролиза

Рассматриваемая реакция может происходить при взаимодействии Н 2 О как с органическими, так и неорганическими веществами. Ее результат напрямую зависит от того, с чем контактировала вода, а также использовались ли при этом дополнительные вещества-катализаторы, изменялись ли температура и давление.

К примеру, реакция гидролиза соли способствует образованию кислот и щелочей. А если речь идет об органических веществах, получаются другие продукты. Водный сольволиз жиров способствует возникновению глицерина и высших жирных кислот. Если процесс происходит с белками, в результате образовывается различные аминокислоты. Углеводы (полисахариды) разлагаются на моносахариды.

В теле человека, неспособном полноценно усваивать белки и углеводы, реакция гидролиза «упрощает» их до веществ, которые организм в состоянии переварить. Так что сольволиз в воде играет важную роль в нормальном функционировании каждой биологической особи.

Гидролиз солей

Узнав, гидролиза, стоит ознакомиться с ее протеканием в веществах неорганического происхождения, а именно солях.

Особенностями данного процесса является то, что при взаимодействии этих соединений с водой ионы слабого электролита в составе соли отсоединяются от нее и образуют с Н 2 О новые вещества. Это может быль либо кислота, либо либо и то, и другое. Вследствие всего этого происходит смещение равновесия диссоциации воды.

Обратимый и необратимый гидролиз

В приведенном выше примере в последнем можно заметить вместо одной стрелки две, причем обе направлены в разные стороны. Что это значит? Данный знак сигнализирует о том, что реакция гидролиза имеет обратимый характер. На практике это означает, что, взаимодействуя с водой, взятое вещество одновременно не только разлагается на составляющие (которые позволяют возникать новым соединениям), но и образовывается вновь.

Однако не всякий гидролиз имеет обратимый характер, иначе бы он не имел смысла, так как новые вещества были бы нестабильны.

Существует ряд факторов, которые могут способствовать тому, чтобы подобная реакция стала необратимой:

  • Температура. От того, повышается она или понижается, зависит то, в какую сторону смещается равновесие в происходящей реакции. Если она становится выше, происходит смещение к эндотермической реакции. Если же наоборот, температура понижается, преимущество оказывается на стороне экзотермической реакции.
  • Давление. Это еще одна термодинамическая величина, активно влияющая на ионный гидролиз. Если оно повышается, химическое равновесие оказывается смещено в сторону реакции, которую сопровождает уменьшение общего количества газов. Если понижается, наоборот.
  • Высокая или низкая концентрация веществ, участвующих в реакции, а также наличие дополнительных катализаторов.

Виды реакций гидролиза в солевых растворах

  • По аниону (ион с отрицательным зарядом). Сольволиз в воде солей кислот слабых и сильных оснований. Такая реакция из-за свойств взаимодействующих веществ имеет обратимый характер.


Степень гидролиза

Изучая особенности гидролиза в солях, стоит обратить внимание на такое явление, как его степень. По этим словом подразумевается соотношение солей (которые уже вступили в реакцию разложения с Н 2 О) к общему количеству содержащегося данного вещества в растворе.

Чем слабее кислоты или основания, участвующее в гидролизе, тем выше его степень. Она измеряется в пределах 0-100 % и определяется по формуле, представленной ниже.

N - число молекул вещества, прошедших гидролиз, а N 0 - общее их количество в растворе.

В большинстве случаев степень водного сольволиза в солях невелика. К примеру, в растворе ацетата натрия 1%-м она составляет всего 0,01 % (при температуре в 20 градусов).

Гидролиз в веществах органического происхождения

Изучаемый процесс может происходить и в органических химических соединениях.

Практически во всех живых организмах происходит гидролиз как часть энергетического обмена (катаболизма). С его помощью расщепляются белки, жиры и углеводы на легко усвояемые вещества. При этом часто сама вода редко оказывается в состоянии запустить процесс сольволиза, поэтому организмам приходится использовать различные ферменты в качестве катализаторов.

Если же речь идет о химической реакции с органическими веществами, направленной на получение новых веществ в условиях лаборатории или производства, то для ускорения и улучшения его в раствор добавляют сильные кислоты или щелочи.

Гидролиз в триглицеридах (триацилглицеринах)

Этим сложно произносимым термином именуются жирные кислоты, которые большинству из нас известны как жиры.

Они бывают как животного, так и растительного происхождения. Однако всем известно, что вода не способна растворять подобные вещества, как же происходит гидролиз жиров?

Рассматриваемая реакция именуется омылением жиров. Это водный сольволиз триацилглицеринов под влиянием ферментов в щелочной или кислотной среде. В зависимости от нее, выделяется щелочной гидролиз и кислотный.

В первом случае в результате реакции образуются соли высших жирных кислот (более известные всем как мыла). Таким образом, из NaOH получается обычное твердое мыло, а из КОН - жидкое. Так что щелочной гидролиз в триглицеридах - это процесс образования моющих средств. Стоит отметить, что его можно свободно проводить в жирах как растительного, так и животного происхождения.

Рассматриваемая реакция является причиной того, что мыло довольно плохо стирает в жесткой воде и вообще не мылится в соленой. Дело в том, что жесткой называется Н 2 О, в которой содержится в избытке ионов кальция и магния. А мыло, попав в воду, вновь подвергается гидролизу, распадаясь на ионы натрия и углеводородный остаток. В результате взаимодействия этих веществ в воде образуются нерастворимые соли, которые и выглядят как белые хлопья. Чтобы этого не произошло, в воду добавляется гидрокарбонат натрия NaHCO 3 , более известный как пищевая сода. Это вещество увеличивает щелочность раствора и тем самым помогает мылу выполнять свои функции. Кстати, чтобы избежать подобных неприятностей, в современной промышленности изготавливают синтетические моющие средства из других веществ, например из солей сложных эфиров высших спиртов и серной кислоты. В их молекулах содержится от двенадцати до четырнадцати углеродных атомов, благодаря чему они не теряют своих свойств в соленой или жесткой воде.

Если среда, в которой происходит реакция, кислая, такой процесс называется кислотным гидролизом триацилглицеринов. В данном случае под действием определенной кислоты вещества эволюционируют до глицерина и карбоновых кислот.

Гидролиз жиров имеет еще один вариант - это гидрогенизация триацилглицеринов. Данный процесс используется в некоторых видах очистки, например при удалении следов ацетилена из этилена или кислородных примесей из различных систем.

Гидролиз углеводов

Рассматриваемые вещества являются одними из наиболее важных составляющих пищи человека и животных. Однако сахароза, лактоза, мальтоза, крахмал и гликоген в чистом виде организм не способен усвоить. Поэтому, так же как и в случае с жирами, эти углеводы расщепляются на усвояемые элементы с помощью реакции гидролиза.

Также водный сольволиз углеродов активно применяется и в промышленности. Из крахмала, вследствие рассматриваемой реакции с Н 2 О, добывают глюкозу и патоку, которые входят в состав практически всех сладостей.

Еще один полисахарид, который активно используется в промышленности для изготовления многих полезных веществ и продуктов, - это целлюлоза. Из нее добывают технический глицерин, этиленгликоль, сорбит и хорошо известный всем этиловый спирт.

Гидролиз целлюлозы происходит при длительном воздействии высокой температуры и наличии минеральных кислот. Конечным продуктом этой реакции является, как и в случае с крахмалом, глюкоза. При этом стоит учитывать, что гидролиз целлюлозы проходит более сложно чем, у крахмала, поскольку этот полисахарид устойчивее к воздействию минеральных кислот. Однако поскольку целлюлоза является главной составляющей клеточных оболочек всех высших растений, сырье, ее содержащее, обходится дешевле, чем для крахмала. При этом целлюлозную глюкозу более используют для технических нужд, в то время как продукт гидролиза крахмала считается лучше пригодным для питания.

Гидролиз белков

Белки - это основной строительный материал для клеток всех живых организмов. Они состоят из многочисленных аминокислот и являются весьма важным продуктом для нормального функционирования организма. Однако являясь высокомолекулярными соединения, они могут плохо усваиваться. Чтобы упростить данную задачу, происходит их гидролиз.

Как и в случае с другими органическими веществами, данная реакция разрушает белки до низкомолекулярных продуктов, легко усваиваемых организмом.

ОПРЕДЕЛЕНИЕ

Гидролиз - процесс взаимодействия веществ с водой в результате которого происходит его разложение на «составные части».

Среди всего многообразия органических веществ способны гидролизоваться: галогенпроизводные алканов, сложные эфиры, алкоголяты, углеводы, белки жиры и нуклеиновые кислоты.

Высокомолекулярные вещества разлагаются водой до составляющих их мономеров, в более простых - происходит разрыв связей углерода с кислородом, галогенами, азотом, серой и другими заместителями.

Зачастую, органические соединения гидролизуются в присутствии кислот, щелочей или ферментов - кислотный, щелочной и ферментативный гидролиз.

Гидролиз органических веществ

Галогеналканы подвергаются гидролизу в щелочной среде, при этом происходит образование спиртов. Рассмотрим на примере хлорпентана и хлорфенола:

C 5 H 11 Cl + H 2 O (NaOH) → C 5 H 11 OH;

C 6 H 5 Cl + H 2 O (NaOH) → C 6 H 5 OH.

Сложные эфиры гидролизуются до образующих их карбоновых кислот и спиртов. Рассмотрим на примере метилового эфира уксусной кислоты (метилацетата):

CH 3 COOCH 3 + H 2 O ↔ CH 3 COOH + CH 3 OH

Алкоголяты - производные спиртов, пригидролизераспадаютсянасоответствующийспиртищелочь. Рассмотрим на примере алкоголята натрия:

C 2 H 5 ONa + H 2 O ↔ C 2 H 5 OH + NaOH

Углеводы гидролизуются начиная с дисахаридов. Рассмотрим на примере сахарозы:

C 12 H 22 O 11 + H 2 O → C 6 H 12 O 6 (глюкоза) + C 6 H 12 O 6 (фруктоза)

Белки и полипептиды частично подвергаются гидролизу, в ходе которого образуются аминокислоты:

CH 2 (NH 2)-CO-NH-CH 2 -COOH + H 2 O ↔ 2CH 2 (NH 2)-COOH

При гидролизе жиров можно получить смесь высших карбоновых кислот и глицерин:

Нуклеиновые кислоты гидролизуются в несколько этапов. Сначала получаются нуклеотиды, затем нуклеозиды, а после этого пуриновые или пиримидиновые основания, ортофосфорная кислота и моносахарид (рибоза или дезоксирибоза).

Примеры решения задач

ПРИМЕР 1

Гидролиз органических веществ происходящее в почве расщепление органических веществ водой в присутствии кислот или щелочей.

  • - НИИОПиК. Основан в 1931 в системе Анилтреста в результате реорганизации Экспериментального завода имени Ворошилова, созданного на базе организованной в 1928 Центральной научно-опытной лаборатории...

    Москва (энциклопедия)

  • - Институ́т органи́ческих полупроду́ктов и краси́телей...

    Москва (энциклопедия)

  • - процесс взаимодействия химических соединений с ионами молекул воды, условием протекания которого является способность веществ образовывать с протонами и гидроксиль-ными группами слабодиссоциирующие молекулы и...

    Начала современного Естествознания

  • - I Гидро́лиз химическая реакция между каким-либо веществом и водой. При гидролитическом расщеплении солей, которое, как правило, является обратимой реакцией, образуются кислоты и основания...

    Медицинская энциклопедия

  • - разложение вещества с участием воды: одна из основных реакций обмена веществ в организме...

    Медицинские термины

  • - совокупность процессов разложения органических веществ, во время которых химические элементы освобождаются из состава сложных, богатых энергией органических соединений и снова образуют различные минеральные,...

    Словарь по гидрогеологии и инженерной геологии

  • - химическое взаимодействие вещества с водой, сопровождающееся распадом сложного химического тела на составляющие его части и присоединением к ним ионов воды...
  • - см. степень разложения органического вещества почвы...

    Толковый словарь по почвоведению

  • - комплексная добавка, состоящая из нескольких полимеров, оказывающих действие как на дисперсную фазу, так и на дисперсионную среду. При этом получают оптимальную структуру органического вяжущего...

    Строительный словарь

  • - упорядоченное расположение орг. остатков; зависит от их формы и характера среды переноса. Удлиненные орг. остатки в потоках располагаются длинной осью преимущественно вдоль берега...

    Геологическая энциклопедия

  • - "...: освобождение перерабатываемых в органическое удобрение органических отходов от возбудителей инфекционных и инвазионных заболеваний...

    Официальная терминология

  • - или закон гомологов - состоит в том, что вещества одной химической функции и одинакового строения, отличающиеся друг от друга по своему атомному составу лишь на nСН 2, оказываются сводными и во всем своем остальном...
  • - В диссертации "О причинах изомерии фумаровой и малеиновой кислот" Танатар высказал предположение, что причину различия в свойствах некоторых изомеров нужно искать в различном содержании энергии их молекулами и...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Химическое строение...

    Энциклопедический словарь Брокгауза и Евфрона

  • - введение галогенов в молекулы органических соединений замещением в них атомов водорода атомами галогенов. Наибольшее значение имеет Хлорирование органических соединений...
  • - см. Номенклатура химическая...

    Большая Советская энциклопедия

"Гидролиз органических веществ" в книгах

автора

Разнообразие органических соединений

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Разнообразие органических соединений Хотя органические молекулы составляют менее 1 % всех молекул клетки (99 % молекул приходится на долю воды), они определяют протекание основных биохимических процессов. В клетке встречаются как малые органические соединения

2. Теория органических сил

Из книги Гердер автора Гулыга Арсений Владимирович

2. Теория органических сил В этой теории Гердера идея развития приобретает всеобщий характер. Зародившись первоначально как мысль о естественном происхождении поэзии, языка и мышления, она постепенно распространяется им на природу и общество. Конечно, это еще не научная

Программирование воды и других органических веществ

Из книги Грустные размышления практикующего мага автора Лосев Владимир

Программирование воды и других органических веществ В последнее время я стал часто использовать для лечения запрограммированную воду. Воду можно запрограммировать как лекарство, она будет нести в себе программу исцеления, и насыщать организм в отсутствие целителя.

Лазеры на органических красителях

Из книги История лазера автора Бертолотти Марио

Лазеры на органических красителях Если большинство лазеров, которые мы рассмотрели, появились в результате высокоскоординированных усилий и требовали развития передовых технологий (это объясняет, почему они все появились в США), то случай органических красителей

Внесение органических удобрений

Из книги Эффективная подкормка для чудо-урожая автора Плотникова Татьяна Федоровна

Внесение органических удобрений Органические удобрения питают почву, улучшают ее структуру так, что почва рассыпается на мелкие комки, становится рыхлой и хорошо проницаемой для воздуха и воды, понижается ее кислотность. Органические удобрения активизируют

2.3. Химическая организация клетки. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Обоснование родства организмов на основе анализа химического состава их клеток

автора Лернер Георгий Исаакович

2.3. Химическая организация клетки. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Обоснование родства организмов на основе анализа химического состава их

7.4. Круговорот веществ и превращения энергии в экосистемах, роль в нем организмов разных царств. Биологическое разнообразие, саморегуляция и круговорот веществ – основа устойчивого развития экосистем

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

7.4. Круговорот веществ и превращения энергии в экосистемах, роль в нем организмов разных царств. Биологическое разнообразие, саморегуляция и круговорот веществ – основа устойчивого развития экосистем Круговорот веществ и энергии в экосистемах обусловлен

Гидролиз

БСЭ

Гидролиз древесины

Из книги Большая Советская Энциклопедия (ГИ) автора БСЭ

Гидролиз растительных материалов

Из книги Большая Советская Энциклопедия (ГИ) автора БСЭ

Из книги Кодекс о Правонарушениях Республики Молдова в силе с 31.05.2009 автора Автор неизвестен

Статья 85. Незаконное приобретение или хранение наркотических или иных психотропных веществ в малых размерах либо потребление таких веществ без назначения врача (1) Незаконное приобретение или хранение без цели сбыта наркотических или иных психотропных веществ в

Из книги Кодекс РФ об административных правонарушениях автора Законы РФ

Статья 6. 15. Нарушение правил оборота веществ, инструментов или оборудования, используемых для изготовления наркотических средств или психотропных веществ (введена Федеральным законом от 09.05.2005 №45-ФЗ)Нарушение юридическим лицом правил производства, изготовления,

НОМЕНКЛАТУРА И КВОТЫ НАРКОТИЧЕСКИХ СРЕДСТВ, СИЛЬНОДЕЙСТВУЮЩИХ И ЯДОВИТЫХ ВЕЩЕСТВ, В ТОМ ЧИСЛЕ ВЕЩЕСТВ, ВКЛЮЧЕННЫХ В ТАБЛИЦЫ I И II КОНВЕНЦИИ ООН О БОРЬБЕ ПРОТИВ НЕЗАКОННОГО ОБОРОТА НАРКОТИЧЕСКИХ СРЕДСТВ И ПСИХОТРОПНЫХ ВЕЩЕСТВ 1988 ГОДА, НА КОТОРЫЕ РАСПРОСТРАНЯЕТСЯ ПОРЯДОК ВВОЗА В РОССИЙСКУЮ ФЕДЕРАЦИ

Из книги Правовые основы судебной медицины и судебной психиатрии в Российской Федерации: Сборник нормативных правовых актов автора Автор неизвестен

НОМЕНКЛАТУРА И КВОТЫ НАРКОТИЧЕСКИХ СРЕДСТВ, СИЛЬНОДЕЙСТВУЮЩИХ И ЯДОВИТЫХ ВЕЩЕСТВ, В ТОМ ЧИСЛЕ ВЕЩЕСТВ, ВКЛЮЧЕННЫХ В ТАБЛИЦЫ I И II КОНВЕНЦИИ ООН О БОРЬБЕ ПРОТИВ НЕЗАКОННОГО ОБОРОТА НАРКОТИЧЕСКИХ СРЕДСТВ И ПСИХОТРОПНЫХ ВЕЩЕСТВ 1988 ГОДА, НА КОТОРЫЕ РАСПРОСТРАНЯЕТСЯ ПОРЯДОК

19 сентября. Суточный уровень расхода органических веществ

Из книги Рецепты Болотова на каждый день. Календарь на 2013 год автора Болотов Борис Васильевич