Закономерности равноускоренного движения без начальной скорости. Презентация на тему "Перемещение тела при прямолинейном равноускоренном движении без начальной скорости (по оси х)"

На предыдущих уроках мы обсуждали, как определить пройденный путь при равномерном прямолинейном движении. Настало время узнать, как определить координату тела, пройденный путь и перемещение при прямолинейном равноускоренном движении. Это можно сделать, если рассмотреть прямолинейное равноускоренное движение как набор большого количества очень малых равномерных перемещений тела.

Первым решил задачу местоположения тела в определенный момент времени при ускоренном движении итальянский ученый Галилео Галилей (рис. 1).

Рис. 1. Галилео Галилей (1564-1642)

Свои опыты он проводил с наклонной плоскостью. По желобу он запускал шар, мушкетную пулю, а затем определял ускорение этого тела. Как же он это делал? Он знал длину наклонной плоскости, а время определял по биению своего сердца или по пульсу (рис. 2).

Рис. 2. Опыт Галилея

Рассмотрим график зависимости скорости равноускоренного прямолинейного движения от времени. Эта зависимость вам известна, она представляет собой прямую линию: .

Рис. 3. Определение перемещения при равноускоренном прямолинейном движении

График скорости разбиваем на маленькие прямоугольные участки (рис. 3). Каждый участок будет соответствовать определенной скорости, которую можно считать постоянной в данный промежуток времени. Надо определить пройденный путь за первый промежуток времени. Запишем формулу: . Теперь посчитаем суммарную площадь всех имеющихся у нас фигур.

Сумма площадей при равномерном движении - это полный пройденный путь.

Обратите внимание: от точки к точке скорость будет изменяться, тем самым мы получим путь, пройденный телом именно при прямолинейном равноускоренном движении.

Заметим, что при прямолинейном равноускоренном движении тела, когда скорость и ускорение направлены в одну сторону (рис. 4), модуль перемещения равен пройденному пути, поэтому, когда мы определяем модуль перемещения - определяем пройденный путь . В данном случае можем говорить, что модуль перемещения будет равен площади фигуры, ограниченной графиком скорости и времени.

Рис. 4. Модуль перемещения равен пройденному пути

Воспользуемся математическими формулами для вычисления площади указанной фигуры.

Рис. 5 Иллюстрация для вычисления площади

Площадь фигуры (численно равная пройденному пути), равна полусумме оснований, умноженной на высоту. Обратите внимание, что на рисунке одним из оснований является начальная скорость, а вторым основанием трапеции будет конечная скорость, обозначенная буквой . Высота трапеции равна , это промежуток времени, за который произошло движение.

Конечную скорость, рассмотренную на предыдущем уроке, мы можем записать как сумму начальной скорости и вклада, обусловленного наличием у тела постоянного ускорения. Получается выражение:

Если раскрыть скобки, то становится удвоенным. Мы можем записать следующее выражение:

Если по отдельности записать каждое из этих выражений, итогом будет следующее:

Это уравнение впервые было получено благодаря экспериментам Галилео Галилея. Поэтому можно считать, что именно этот ученый впервые дал возможность определить местоположение тела при прямолинейном равноускоренном движении в любой момент времени. Это и есть решение главной задачи механики.

Теперь давайте вспомним, что пройденный путь, равный в нашем случае модулю перемещения , выражается разностью:

Если это выражение подставить в уравнение Галилея , то получим закон, по которому меняется координата тела при прямолинейном равноускоренном движении:

Следует помнить, что величины - это проекции скорости и ускорения на выбранную ось. Поэтому они могут быть как положительными, так и отрицательными.

Заключение

Следующим этапом рассмотрения движения станет исследование движения по криволинейной траектории.

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: учебник для 9 класса средней школы. - М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А. В. Перышкин, Е. М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300.
  3. Соколович Ю.А., Богданова Г.С . Физика: Справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «class-fizika.narod.ru» ()
  2. Интернет-портал «videouroki.net» ()
  3. Интернет-портал «foxford.ru» ()

Домашнее задание

  1. Запишите формулу, по которой определяется проекция вектора перемещения тела при прямолинейном равноускоренном движении.
  2. Велосипедист, начальная скорость которого 15 км/ч, съехал с горки за 5 с. Определите длину горки, если велосипедист двигался с постоянным ускорением 0,5 м/с ^2 .
  3. Чем отличаются зависимости перемещения от времени при равномерном и равноускоренном движениях?

Рассмотрим некоторые особенности перемещения тела при прямолинейном равноускоренном движении без начальной скорости. Уравнение, которое описывает это движение, было выведено Галилеем в XVI веке. Необходимо помнить, что при прямолинейном равномерном или неравномерном движении без изменения направления скорости модуль перемещения совпадает по своему значению с пройденным путем. Формула выглядит следующим образом:

где - это ускорение.

Примеры равноускоренного движения без начальной скорости

Равноускоренное движение без начальной скорости - важный особый случай равноускоренного движения. Рассмотрим примеры:

1. Свободное падение без начальной скорости. Примером такого движения может быть падение сосульки в конце зимы (рис. 1).

Рис. 1. Падение сосульки

В тот момент, когда сосулька отрывается от крыши, ее начальная скорость равна нулю, после чего она движется равноускоренно, ведь свободное падение - это равноускоренное движение.

2. Старт любого движения . Например, автомобиль трогается с места и разгоняется (рис 2).

Рис. 2. Старт движения

Когда мы говорим, что время набора скорости 100 км/ч у автомобиля той или иной марки, например, 6 с., чаще всего мы говорим о движении равноускоренном без начальной скорости. Аналогично когда мы говорим о старте ракеты и т. д.

3. Особую актуальность равноускоренное движение имеет для разработчиков оружия. Ведь вылет любого снаряда или пули - это движение без начальной скорости, а во время движения в стволе пуля (снаряд) движется равноускоренно. Рассмотрим пример.

Длина автомата Калашникова - . Пуля в стволе автомата движется с ускорением . С какой скоростью пуля будет вылетать из ствола?

Рис. 3. Иллюстрация к задаче

Для нахождения скорости вылета пули из ствола автомата воспользуемся выражением для перемещения при прямолинейном равноускоренном движении, если неизвестно время:

Движение осуществляется без начальной скорости, а значит, , тогда .

Получим следующее выражение для нахождения скорости вылета пули из ствола:

Решение задачи записываем следующим образом с учетом единиц измерения в СИ:

Дано:

Решение:

Ответ: .

Равноускоренное движение без начальной скорости часто встречается и в природе, и в технике. Более того, умение работать с таким движением позволяет решать обратные задачи, когда начальная скорость существует, а конечная равна нулю.

Если , то уравнение, приведенное выше, превратится в уравнение:

Это уравнение дает возможность найти пройденный путь равномерного движения. в данном случае является проекцией вектора перемещения. Ее можно определить как разность координат: . Если подставить это выражение в формулу, то получим зависимость координаты от времени:

Рассмотрим ситуацию, когда - начальная скорость равна нулю. Это значит, что движение начинается из состояния покоя. Тело покоилось, затем начинает приобретать и увеличивать скорость. Движение из состояния покоя будет записываться без начальной скорости:

Если S (проекцию перемещения) обозначить как разность начальной и конечной координаты (), то получится уравнение движения, которое дает возможность определить координату тела для любого момента времени:

Проекция ускорения может быть, как отрицательной, так и положительной, поэтому можно говорить о координате тела, которая может как увеличиваться, так и уменьшаться.

График зависимости скорости от времени

Так как равноускоренное движение без начальной скорости является особым случаем равноускоренного движения, рассмотрим график зависимости проекции скорости от времени для такого движения.

На рис. 4 представлен график зависимости проекции скорости от времени для равноускоренного движения без начальной скорости (график начинается в начале координат).

График устремлен вверх. Это говорит о том, что проекция ускорения положительна

Рис. 4. График зависимости проекции скорости от времени при равноускоренном движении без начальной скорости

Используя график, можно определить проекцию перемещения тела или пройденный путь. Для этого необходимо посчитать площадь фигуры, ограниченной графиком, координатными осями и перпендикуляром, опущенным на ось времени. То есть необходимо найти площадь прямоугольного треугольника (половина произведения катетов)

где - конечная скорость при равноускоренном движении без начальной скорости:

На рис. 5 представлен график зависимости проекции перемещения от времени двух тел для равноускоренного движения без начальной скорости.

Рис. 5 График зависимости проекции перемещения от времени двух тел для равноускоренного движения без начальной скорости

Начальная скорость обоих тел равна нулю, так как вершина параболы совпадает с началом координат:

У первого тела проекция ускорения положительна , у второго - отрицательна . Причем у первого тела проекция ускорения тела больше, так как перемещение у него осуществляется быстрее.

– пройденный путь (с точностью до знака), он пропорционален , т. е. квадрату времени. Если рассматривать равные промежутки времени – , , , то можно заметить следующие соотношения:

Если продолжить вычисления, закономерность сохранится. Пройденные расстояния увеличиваются пропорционально квадрату увеличения промежутков времени.

Например, если , то пройденный путь будет пропорционален . Если , пройденный путь будет пропорционален и т. д. Расстояние будет расти пропорционально квадрату этих промежутков времени (рис. 6).

Рис. 6. Пропорциональность пути квадрату времени

Если за единицу времени выбираем некий промежуток, то полные расстояния, пройденные телом за последующие равные промежутки времени, будут относиться как квадраты целых чисел.

Иными словами, перемещения, совершенные телом за каждую последующую секунду, будут относиться как нечетные числа:

Рис. 7. Перемещения за каждую секунду относятся как нечетные числа

Исследованные два очень важных заключения свойственны только прямолинейному равноускоренному движению без начальной скорости.

Задача . Автомобиль начинает двигаться от остановки, т. е. из состояния покоя, и за четвертую секунду своего движения проходит 7 м. Определите ускорение тела и мгновенную скорость через 6 с после начала движения (рис. 8).

Рис. 8. Иллюстрация к задаче

Дано:

Слайд 2

Учимся решать задачи

Из основных уравнений: Где y0=0, v0y=0, ay=g, y =h, v y= v Получаем формулы: (1) (2)

Слайд 3

Пустьh(1) –путьпройденный телом в одну секунду h (2) –путь пройденный телом во вторую секунду, в третью и т.д.h 2 – путь пройденный телом за две секунды h (1): h (2):h (3)… = 1: 3: 5… Надо помнить: h1 = h(1) Формула 2t -1 позволяет определить любое нечетное число, которое соответствует модулю вектора перемещения в n-секунду движения, Так для h (5) соответствует нечетное число: 2 · 5 -1 =9

Слайд 4

Задача № 1 (FА.П. Рымкевич) Тело свободно падает с высоты 80 м. Каково его перемещение в последнюю секунду падения? Оформляем стандарт: Дано: СИ Решение: «Дано» и «СИ» запиши сам

Слайд 5

Решение 1 (способ)

Разбираемся с термином: « в последнюю секунду падения», Надо знать: сколько времени тело падало для этого из формулы (1) находим время. 2. Подставляем числовые значения, получаем, что t = 4 с 3. Следовательно, тело падало 4 секунды, Нам надо определить перемещение в четвертую секунду падения (помним отличия) 4. Составляем уравнения: h (1): h (4) = 1: 7 получаем h (4) =7 h(1) 5. Где h (1) = h 1 = h (1) = h 1=5 м. 6.h (4) =7·5 м = 35 м. Пишем ответ.

Слайд 6

Решение (2 способ)

1. Тело находилось в падении 4 секунды. Значит, четвертая секунда падения – это разность между четырьмя и тремя секундами движения. 2. Тогда искомое перемещение h (4) = h 4 – h 3 где h 4 – перемещение за 4 секунды падения; h3 – перемещение за три секунды падения. 3. Из формулы Находим h4=g·16/2=80 м, что дано в условии задачи; h3=g·9/2=45м, Тогда h(4) =80 м – 45 м = 35 м. Пишем ответ.

Проекция вектора перемещения при прямолинейном равноускоренном движении рассчитывается по следующей формуле:

  • Sx=V0x*t+(ax*t^2)/2.

Рассмотрим случай, когда движения начинается с нулевой начальной скоростью. В этом случае записанное выше уравнение примет следующий вид:

  • Sx= ax*t^2)/2.

Для модулей векторов a и S можно записать следующее уравнение:

  • S=(a*t^2)/2.

Зависимость перемещения и времени

Видим, что при прямолинейной равноускоренном движении без начальной скорости, модуль вектора перемещения будет прямо пропорционален квадрату промежутку времени, в течение которого совершалось это перемещение. То есть, другими словами, если мы увеличим в n-раз время движения, то перемещение увеличится в n^2 раз.

Например, если за какой-то промежуток времени t1 от начала движения тело совершило перемещение s1=(a/2)*(t1)^2,

Тогда за промежуток времени t2=2*t1, это тело совершит перемещение S2=(a/2)*4*(t1)^2=4*S1.

За промежуток t3=3*t1, это тело совершит перемещение S3=9*S1 и т.д., для любого натурального n. Это конечно же будет выполняться, при условии, что время должно отсчитываться от одного и того же момента.

На следующем рисунке хорошо представлена эта зависимость.

  • OA:OB:OC:OD:OE = 1:4:9:16:25.

При увеличении промежутка времени, который отсчитывается от начал движения, в целое число раз по сравнению с t1, модули векторов перемещений будут возрастать как ряд квадратов последовательных натуральных чисел.

Помимо этой закономерности, из представленного выше рисунка можно установить еще одну, следующую закономерность:

  • OA:AB:BC:CD:DE = 1:3:5:7:9.

За последовательные равные промежутки времени, модули векторов перемещений, совершаемых телом, будут относиться между собой как ряд последовательных нечетных чисел.

Стоит отметить, что такие закономерности будут верными только в равноускоренном движении. То есть они являются как бы неким своеобразным признаком равноускоренного движения. Если необходимо проверить, является ли движение равноускоренным, то можно проверить эти закономерности, и если они будут выполняться, то движение будет равноускоренным.