Деление ядра урана. Капельная модель ядра

Рассчитаем величину энергии, выделяющейся при делении тяжелого ядра. Подставим в (f.2) выражения для энергий связи ядер (f.1), полагая А 1 =240 и Z 1 = 90. Пренебрегая последним членом в (f.1) вследствие его малости и подставив значения параметров a 2 и a 3 ,получаем

Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости. Энергия Е, освобождающаяся при делении, растет с увеличением Z 2 /A ; Z 2 /A = 17 для ядер в районе иттрия и циркония. Из полученных оценок видно, что деление энергетически выгодно для всех ядер с A > 90. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, посмотрим, как меняется форма ядра в процессе деления.

В процессе деления ядро последовательно проходит через следующие стадии (рис.2): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как меняется потенциальная энергия ядра на различных стадиях деления? После того как деление произошло, и осколки находятся друг от друга на расстоянии, много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Рассмотрим начальную стадию деления, когда ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. На этой стадии деления r - мера отклонения ядра от сферической формы (рис.3). Вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий Е" п + Е" к. Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия Е" п при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия Е" к уменьшается, так как увеличивается среднее расстояние между нуклонами. Пусть сферическое ядро в результате незначительной деформации, характеризующейся малым параметром, приняло форму аксиально-симметричного эллипсоида. Можно показать, что поверхностная энергия Е" п и кулоновская энергия Е" к в зависимости от меняются следующим образом:

В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.
В области тяжелых ядер 2Е п > Е к сумма поверхностной и кулоновской энергий увеличивается с увеличением . Из (f.4) и (f.5) следует, что при малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а, следовательно, и делению. Выражение (f.5) справедливо для малых значений (малых деформаций). Если деформация настолько велика, что ядро принимает форму гантели, то силы поверхностного натяжения, как и кулоновские силы, стремятся разделить ядро и придать осколкам шарообразную форму. На этой стадии деления увеличение деформации сопровождается уменьшением как кулоновской, так и поверхностной энергии. Т.е. при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. Теперь r имеет смысл расстояния между центрами будущих осколков. При удалении осколков друг от друга потенциальная энергия их взаимодействия будет уменьшаться, так как уменьшается энергия кулоновского отталкивания Е к. Зависимость потенциальной энергии от расстояния между осколками показана на рис. 4. Нулевой уровень потенциальной энергии соответствует сумме поверхностной и кулоновской энергий двух невзаимодействующих осколков.
Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера Н. Максимум потенциальной энергии делящегося ядра примерно равен
е 2 Z 1 Z 2 /(R 1 +R 2), где R 1 и R 2 - радиусы осколков. Например, при делении ядра золота на два одинаковых осколка е 2 Z 1 Z 2 /(R 1 +R 2) = 173 МэВ, а величина энергии Е, освобождающейся при делении (), равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 МэВ.
Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии Е к /Е п в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А (). Чем тяжелее ядро, тем меньше высота барьера Н, так как параметр делимости увеличивается с ростом массового числа:

Т.е. согласно капельной модели в природе должны отсутствовать ядра с Z 2 /А > 49, так как они практически мгновенно (за характерное ядерное время порядка 10 -22 с) самопроизвольно делятся. Возможность существования атомных ядер с Z 2 /А > 49 ("остров стабильности") объясняется оболочечной структурой. Зависимость формы, высоты потенциального барьера H и энергии деления E от величины параметра делимости Z 2 /А показана на рис. 5.

Самопроизвольное деление ядер с Z 2 /А < 49, для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения через потенциальный барьер и носит название спонтанного деления. Вероятность спонтанного деления растет с увеличением параметра делимости Z 2 /А, т.е. с уменьшением высоты барьера. В целом период полураспада относительно спонтанного деления уменьшается при переходе от менее тяжелых ядер к более тяжелым от Т 1/2 > 10 21 лет для 232 Th до 21 мс для 260 Rf. Вынужденное деление ядер с Z 2 /А < 49 может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, -частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления.

. Энергия деления

При делении 235 U тепловыми нейтронами освобождается энергия около 200 МэВ. Из них ~167 МэВ приходится на кинетическую энергию осколков. Оставшаяся часть энергии распределяется между различными частицами, возникающими в процессе деления и радиоактивного распада осколков. Часть энергии деления уносится -квантами, испускающимися возбужденными осколками сразу после вылета мгновенных нейтронов (так называемые мгновенные -лучи деления), а также -квантами, возникающими в результате - -распада осколков. Около 5% энергии деления уносят антинейтрино, образующиеся при - -распаде осколков.
Энергия деления распределяется следующим образом

В 1934 г. Э. Ферми решил получить трансурановые элементы, облучая 238 U нейтронами. Идея Э. Ферми заключалась в том, что в результате β - -распада изотопа 239 U образуется химический элемент с порядковым номером Z = 93. Однако идентифицировать образование 93-его элемента не удавалось. Вместо этого в результате радиохимического анализа радиоактивных элементов, выполненного О.Ганом и Ф.Штрассманом, было показано, что одним из продуктов облучения урана нейтронами является барий (Z = 56) – химический элемент среднего атомного веса, в то время как согласно предположению теории Ферми должны были получаться трансурановые элементы.
Л. Мейтнер и О. Фриш высказали предположение, что в результате захвата нейтрона ядром урана происходит развал составного ядра на две части

92 U + n → 56 Ba + 36 Kr + xn.

Процесс деления урана сопровождается появлением вторичных нейтронов (x > 1), способных вызвать деление других ядер урана, что открывает потенциальную возможность возникновения цепной реакции деления – один нейтрон может дать начало разветвленной цепи делений ядер урана. При этом число разделившихся ядер должно возрастать экспоненциально. Н. Бор и Дж. Уиллер рассчитали критическую энергию необходимую, чтобы ядро 236 U, образовавшееся в результате захвата нейтрона изотопом 235 U, разделилось. Эта величина равна 6,2 МэВ, что меньше энергии возбуждения изотопа 236 U, образующегося при захвате теплового нейтрона 235 U. Поэтому при захвате тепловых нейтронов возможна цепная реакция деления 235 U. Для наиболее распространенного изотопа 238 U критическая энергия равна 5,9 МэВ, в то время как при захвате теплового нейтрона энергия возбуждения образовавшегося ядра 239 U составляет только 5,2 МэВ. Поэтому цепная реакция деления наиболее распространенного в природе изотопа 238 U под действием тепловых нейтронов оказывается невозможной. В одном акте деления высвобождается энергия ≈ 200 МэВ (для сравнения в химических реакциях горения в одном акте реакции выделяется энергия ≈ 10 эВ). Возможности создания условий для цепной реакции деления открыли перспективы использования энергии цепной реакции для создания атомных реакторов и атомного оружия. Первый ядерный реактор был построен Э.Ферми в США в 1942 г. В СССР первый ядерный реактор был запущен под руководством И.Курчатова в 1946 г. В 1954 г. в г. Обнинске начала работать первая в мире атомная электро­станция. В настоящее время электрическая энергия вырабатывается примерно в 440 ядерных реакторах в 30 странах мира.
В 1940 г. Г.Флеров и К.Петржак открыли спонтанное деление урана. О сложности проведения эксперимента свидетельствуют следующие цифры. Парциальный период полураспада по отношению спонтанному делению изотопа 238 U составляет 10 16 –10 17 лет, в то время как период распада изотопа 238 U составляет 4.5∙10 9 лет. Основным каналом распада изотопа 238 U является α-распад. Для того, чтобы наблюдать спонтанное деление изотопа 238 U, нужно было регистрировать один акт деления на фоне 10 7 –10 8 актов α-распада.
Вероятность спонтанного деления в основном определяется проницаемостью барьера деления. Вероятность спонтанного деления увеличивается с увеличением заряда ядра, т.к. при этом увеличивается параметр деления Z 2 /A. В изотопах Z < 92-95 деление происходит преимущественно с образованием двух осколков деления с отношением масс тяжёлого и лёгкого осколков 3:2. В изотопах Z > 100 преобладает симметричное деление с образованием одинаковых по массе осколков. С увеличением заряда ядра доля спонтанного деления по сравнению с α-распадом увеличивается.

Изотоп Период полураспада Каналы распада
235 U 7.04·10 8 лет α (100%), SF (7·10 -9 %)
238 U 4.47·10 9 лет α (100%), SF (5.5·10 -5 %)
240 Pu 6.56·10 3 лет α (100%), SF (5.7·10 -6 %)
242 Pu 3.75·10 5 лет α (100%), SF (5.5·10 -4 %)
246 Cm 4.76·10 3 лет α (99,97%), SF (0.03%)
252 Cf 2.64 лет α (96,91%), SF (3.09%)
254 Cf 60.5 лет α (0,31%), SF (99.69%)
256 Cf 12.3 лет α (7.04·10 -8 %), SF (100%)

Деление ядер. История

1934 г. − Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра, природу которых установить не удалось.
Л. Сциллард выдвинул идею цепной ядерной реакции.

1939 г. − О. Ган и Ф. Штрассман обнаружили среди продуктов реакций барий.
Л. Мейтнер и О. Фриш впервые объявили, что под действием нейтронов происходило деление урана на два сравнимых по массе осколка.
Н. Бор и Дж. Уилер дали количественную интерпретацию деления ядра, введя параметр деления.
Я. Френкель развил капельную теорию деления ядер медленными нейтронами.
Л. Сциллард, Э. Вигнер, Э. Ферми, Дж. Уилер, Ф. Жолио-Кюри, Я. Зельдович, Ю. Харитон обосновали возможность протекания в уране цепной ядерной реакции деления.

1940 г. − Г. Флеров и К. Петржак открыли явление спонтанного деления ядер урана U.

1942 г. − Э. Ферми осуществил управляемую цепную реакцию деления в первом атомного реакторе.

1945 г. − Первое испытание ядерного оружия (штат Невада, США). На японские города Хиросима (6 августа) и Нагасаки (9 августа) американскими войсками были сброшены атомные бомбы.

1946 г. − Под руководством И.В. Курчатова был пущен первый в Европе реактор.

1954 г. − Запущена первая в мире атомная электростанция (г. Обнинск, СССР).

Деление ядер. С 1934 г. Э.Ферми стал применять нейтроны для бомбардировки атомов. С тех пор количество устойчивых или радиоактивных ядер, полученных путем искусственного превращения, возросло до многих сотен, и почти все места периодической системы заполнились изотопами.
Атомы, возникающие во всех этих ядерных реак­циях, занимали в периодической системе то же место, что и бомбардированный атом, или соседние места. Поэтому произвело большую сенсацию доказательство Ганом и Штрассманом в 1938 г. того, что при обстреле нейтронами последнего элемента периодической системы
урана происходит распад на элементы, которые стоят в средних частях периодической системы. Здесь выступают различные виды распада. Возникаю­щие атомы в большинстве своем неустойчивы и тотчас же распадаются дальше; у некоторых время полурас­пада измеряется секундами, так что Ган должен был применить аналитический метод Кюри для продления такого быстрого процесса. Важно отметить, что стоя­щие перед ураном элементы, протактиний и торий, также обнаруживают подобный распад под действием нейтронов, хотя для того, чтобы распад начался, требуется более высокая энергия нейтронов, чем в случае урана. Наряду с этим в 1940 г. Г. Н. Флеров и К. А. Петржак обнаружили спонтанное расщепление уранового ядра с самым большим из известных до тех пор периодом полураспада: около 2 ·10 15 лет; этот факт становится явным благодаря освобождающимся при этом нейтронам. Так явилась возможность понять, почему «естественная» периодическая система заканчивается тремя названными элементами. Теперь стали известны трансурановые элементы, но они настолько неустойчивы, что быстро распадаются.
Расщепление урана посредством нейтронов дает те­перь возможность того использования атомной энер­гии, которое уже многим мерещилось, как «мечта Жюля Верна».

М. Лауэ, «История физики»

1939 г. О. Ган и Ф. Штрассман, облучая соли урана тепловыми нейтронами, обнаружили среди продуктов реакции барий (Z = 56)


Отто Ганн
(1879 – 1968)

Деление ядер – расщепление ядра на два (реже три) ядра с близкими массами, которые называют осколками деления. При делении возникают и другие частицы – нейтроны, электроны, α-частицы. В результате деления высвобождается энергия ~200 МэВ. Деление может быть спонтанным либо вынужденным под действием других частиц, чаще всего нейтронов.
Характерной особенностью деления является то, что осколки деления, как правило, существенно различаются по массам, т. е. преобладает асимметричное деление. Так, в случае наиболее вероятного деления изотопа урана 236 U, отношение масс осколков равно 1.46. Тяжёлый осколок имеет при этом массовое число 139 (ксенон), а легкий – 95 (стронций). С учётом испускания двух мгновенных нейтронов рассматриваемая реакция деления имеет вид

Нобелевская премия по химии
1944 г. – О. Ган.
За открытие реакции деления ядер урана нейтронами.

Осколки деления

Зависимость средних масс легкой и тяжелой групп осколков от массы делящегося ядра.

Открытие деления ядер. 1939 г.

Я приехал в Швецию, где Лизе Мейтнер страдала от одиночества, и я, как преданный племянник, решил навестить ее на рождество. Она жила в маленьком отеле Кунгэльв около Гетеборга. Я застал ее за завтраком. Она обдумывала письмо, только что полученное ею от Гана. Я был весьма скептически настроен относительно содержания письма, в котором сообщалось об образовании бария при облучении урана нейтронами. Однако ее привлекла такая возможность. Мы гуляли по снегу, она пешком, я на лыжах (она сказала, что может проделать этот путь, не отстав от меня, и доказала это). К концу прогулки мы уже могли сформулировать некоторые выводы; ядро не раскалывалось, и от него не отлетали куски, а это был процесс, скорее напоминавший капельную модель ядра Бора; подобно капле ядро могло удлиняться и делиться. Затем я исследовал, каким образом электрический заряд нуклонов уменьшает поверхностное натяжение, которое, как мне удалось установить, падает до нуля при Z = 100 и, возможно, весьма мало для урана. Лизе Мейтнер занималась определением энергии, выделяющейся при каждом распаде из-за дефекта массы. Она очень ясно представляла себе кривую дефекта масс. Оказалось, что за счет электростатического отталкивания элементы деления приобрели бы энергию около 200 МэВ, а это как раз соответствовало энергии, связанной с дефектом массы. Поэтому процесс мог идти чисто классически без привлечения понятия прохождения через потенциальный барьер, которое, конечно, оказалось бы тут бесполезным.
Мы провели вместе два или три дня на рождество. Затем я вернулся в Копенгаген и едва успел сообщить Бору о нашей идее в тот самый момент, когда он уже садился на пароход, отправляющийся в США. Я помню, как он хлопнул себя по лбу, едва я начал говорить, и воскликнул: «О, какие мы были дураки! Мы должны были заметить это раньше». Но он не заметил, и никто не заметил.
Мы с Лизе Мейтнер написали статью. При этом мы постоянно поддерживали связь по междугородному телефону Копенгаген – Стокгольм.

О. Фриш, Воспоминания. УФН. 1968. Т. 96, вып.4, с. 697.

Спонтанное деление ядер

В описанных ниже опытах мы использовали метод, впервые предложенный Фришем для регистрации процессов деления ядер. Ионизационная камера с пластинами, покрытыми слоем окиси урана, соединяется с линейным усилителем, настроенным таким образом, что α частицы, вылетающие из урана, не регистрируются системой; импульсы же от осколков, намного превышающие по величине импульсы от α-частиц, отпирают выходной тиратрон и считаются механическим реле.
Была специально сконструирована ионизационная камера в виде многослойного плоского конденсатора с общей площадью 15 пластин в 1000 см. Пластины, расположенные друг от друга на расстоянии 3 мм, были покрыты слоем окиси урана 10-20 мг/см
2 .
В первых же опытах с настроенным для счета осколков усилителем удалось наблюдать самопроизвольные (в отсутствие источника нейтронов) импульсы на реле и осциллографе. Число этих импульсов было невелико (6 в 1 час), и вполне понятно поэтому, что это явление не могло наблю­даться с камерами обычного типа…
Мы склонны думать, что наблюдаемый нами эффект следует приписать осколкам, получающимся в результате спонтанного деления урана…

Спонтанное деление следует приписать одному из невозбужденных изотопов U с периодами полураспада, полученными из оценки наших результатов:

U 238 – 10 16 ~ 10 17 лет,
U
235 – 10 14 ~ 10 15 лет,
U
234 – 10 12 ~ 10 13 лет.

Распад изотопа 238 U

Спонтанное деление ядер

Периоды полураспада спонтанно делящихся изотопов Z = 92 - 100

Первая экспериментальная система с уран-графитовой решёткой была построена в 1941 г. под руководством Э. Ферми. Она представляла собой графитовый куб с ребром длиной 2,5 м, содержащий около 7 т окиси урана, заключенной в железные сосуды, которые были размещены в кубе на одинаковых расстояниях друг от друга. На дне уран-графитовой решётки был помещён RaBe источник нейтронов. Коэффициент размножения в такой системе был ≈ 0.7. Окись урана содержала от 2 до 5% примесей. Дальнейшие усилия были направлены на получение более чистых материалов и к маю 1942 г. была получены окись урана, в которой примесь составляла меньше 1%. Чтобы обеспечить цепную реакцию деления, было необходимо использовать большое количество графита и урана – порядка нескольких тонн. Примеси должны были составлять меньше нескольких миллионных долей. Реактор, собранный к концу 1942 г. Ферми в Чикагском университете, имел форму срезанного сверху неполного сфероида. Он содержал 40 т урана и 385 т графита. Вечером 2 декабря 1942 г. после того, как были убраны стержни нейтронного поглотителя, было обнаружено, что внутри реактора происходит цепная ядерная реакция. Измеренный коэффициент составлял 1.0006. Вначале реактор работал на уровне мощности 0.5 Вт. К 12 декабря его мощность была увеличена до 200 Вт. В дальнейшем реактор был перенесен в более безопасное место, и мощность его была повышена до нескольких кВт. При этом реактор потреблял 0.002 г урана-235 в день.

Первый ядерный реактор в СССР

Здание для первого в СССР исследовательского ядерного реактора Ф-1 было готово к июню 1946 г.
После того как были проведены все необходимые эксперименты, раз­работана система управления и защиты реактора, установлены размеры реактора, проведены все необходимые опыты с моделями реактора, определена плотность нейтронов на нескольких моделях, получены графитовые блоки (так называемой ядерной чистоты) и (после нейтронно-физической проверки) урановые блочки, в ноябре 1946 г. приступили к сооружению реактора Ф-1.
Общий радиус реактора был 3,8 м. Для него потребовалось 400 т графита и 45 т урана. Реактор собирали слоями и в 15 ч 25 декабря 1946 г. был собран последний, 62-й слой. После извлечения так называемых аварийных стержней был произведен подъем регулирующего стержня, начался отсчет плотности нейтронов, и в 18 ч 25 декабря 1946 г. ожил, заработал первый в СССР реактор. Это была волнующая победа ученых - создателей ядерного реактора и всего советского народа. А через полтора года, 10 июня 1948 г., промышленный реактор с водой в каналах достиг критического состояния и вскоре началось промышленное производство нового вида ядерного горючего − плутония.

Деление ядра - это расщепление тяжелого атома на два фрагмента примерно равной массы, сопровождаемое выделением большого количества энергии.

Открытие ядерного деления начало новую эру - «атомный век». Потенциал возможного его использования и соотношение риска к пользе от его применения не только породили множество социологических, политических, экономических и научных достижений, но также и серьезные проблемы. Даже с чисто научной точки зрения процесс ядерного деления создал большое число головоломок и осложнений, и полное теоретическое его объяснение является делом будущего.

Делиться - выгодно

Энергии связи (на нуклон) у разных ядер различаются. Более тяжелые обладают меньшей энергией связи, чем расположенные в середине периодической таблицы.

Это означает, что тяжелым ядрам, у которых атомное число больше 100, выгодно делиться на два меньших фрагмента, тем самым высвобождая энергию, которая превращается в кинетическую энергию осколков. Этот процесс называется расщеплением

В соответствии с кривой стабильности, которая показывает зависимость числа протонов от числа нейтронов для стабильных нуклидов, более тяжелые ядра предпочитают большее число нейтронов (по сравнению с количеством протонов), чем более легкие. Это говорит о том, что наряду с процессом расщепления будут испускаться некоторые «запасные» нейтроны. Кроме того, они будут также принимать на себя часть выделяющейся энергии. Изучение деления ядра атома урана показало, что при этом выделяется 3-4 нейтрона: 238 U → 145 La + 90 Br + 3n.

Атомное число (и атомная масса) осколка не равна половине атомной массы родителя. Разница между массами атомов, образовавшихся в результате расщепления, обычно составляет около 50. Правда, причина этого еще не совсем понятна.

Энергии связи 238 U, 145 La и 90 Br равны 1803, 1198 и 763 МэВ соответственно. Это означает, что в результате данной реакции высвобождается энергия деления ядра урана, равная 1198 + 763-1803 = 158 МэВ.

Самопроизвольное деление

Процессы спонтанного расщепления известны в природе, но они очень редки. Среднее время жизни указанного процесса составляет около 10 17 лет, а, например, среднее время жизни альфа-распада того же радионуклида составляет около 10 11 лет.

Причина этого заключается в том, что для того, чтобы разделиться на две части, ядро должно сначала подвергнуться деформации (растянуться) в эллипсоидальную форму, а затем, перед окончательным расщеплением на два фрагмента, образовать «горлышко» посредине.

Потенциальный барьер

В деформированном состоянии на ядро действуют две силы. Одна из них - возросшая поверхностная энергия (поверхностное натяжение капли жидкости объясняет ее сферическую форму), а другая - кулоновское отталкивание между осколками деления. Вместе они производят потенциальный барьер.

Как и в случае альфа-распада, чтобы произошло спонтанное деление ядра атома урана, фрагменты должны преодолеть этот барьер с помощью квантового туннелирования. Величина барьера составляет около 6 МэВ, как и в случае с альфа-распадом, но вероятность туннелирования α-частицы значительно больше, чем гораздо более тяжелого продукта расщепления атома.

Вынужденное расщепление

Гораздо более вероятным является индуцированное деление ядра урана. В этом случае материнское ядро ​​облучается нейтронами. Если родитель его поглощает, то они связываются, высвобождая энергию связи в виде колебательной энергии, которая может превысить 6 МэВ, необходимых для преодоления потенциального барьера.

Там, где энергии дополнительного нейтрона недостаточно для преодоления потенциального барьера, падающий нейтрон должен обладать минимальной кинетической энергией для того, чтобы иметь возможность индуцировать расщепление атома. В случае 238 U энергии связи дополнительных нейтронов не хватает около 1 МэВ. Это означает, что деление ядра урана индуцируется только нейтроном с кинетической энергией больше 1 МэВ. С другой стороны, изотоп 235 U имеет один непарный нейтрон. Когда ядро ​​поглощает дополнительный, он образует с ним пару, и в результате этого спаривания появляется дополнительная энергия связи. Этого достаточно для освобождения количества энергии, необходимого для того, чтобы ядро преодолело потенциальный барьер и деление изотопа происходило при столкновении с любым нейтроном.

Бета-распад

Несмотря на то что при реакции деления испускаются три или четыре нейтрона, осколки по-прежнему содержат больше нейтронов, чем их стабильные изобары. Это означает, что фрагменты расщепления, как правило, неустойчивы по отношению к бета-распаду.

Например, когда происходит деление ядра урана 238 U, стабильным изобаром с А = 145 является неодим 145 Nd, что означает, что фрагмент лантан 145 La распадается в три этапа, каждый раз излучая электрон и антинейтрино, пока не будет образован стабильный нуклид. Стабильным изобаром с A = 90 является цирконий 90 Zr, поэтому осколок расщепления бром 90 Br распадается в пять этапов цепи β-распада.

Эти цепи β-распада выделяют дополнительную энергию, которая почти вся уносится электронами и антинейтрино.

Ядерные реакции: деление ядер урана

Прямое излучение нейтрона из нуклида со слишком большим их количеством для обеспечения стабильности ядра маловероятно. Здесь дело заключается в том, что нет кулоновского отталкивания, и поэтому поверхностная энергия имеет тенденцию к удержанию нейтрона в связи с родителем. Тем не менее это иногда происходит. Например, фрагмент деления 90 Br в первой стадии бета-распада производит криптон-90, который может быть находиться в возбужденном состоянии с достаточной энергией, чтобы преодолеть поверхностную энергию. В этом случае излучение нейтронов может происходить непосредственно с образованием криптона-89. по-прежнему неустойчив по отношению к β-распаду, пока не перейдет в стабильный иттрий-89, так что криптон-89 распадается в три этапа.

Деление ядер урана: цепная реакция

Нейтроны, испускаемые в реакции расщепления, могут быть поглощены другим ядром-родителем, которое затем само подвергается индуцированному делению. В случае урана-238 три нейтрона, которые возникают, выходят с энергией менее 1 МэВ (энергия, выделяющаяся при делении ядра урана - 158 МэВ - в основном переходит в кинетическую энергию осколков расщепления), поэтому они не могут вызвать дальнейшее деление этого нуклида. Тем не менее при значительной концентрации редкого изотопа 235 U эти свободные нейтроны могут быть захвачены ядрами 235 U, что действительно может вызвать расщепление, так как в этом случае отсутствует энергетический порог, ниже которого деление не индуцируется.

Таков принцип цепной реакции.

Типы ядерных реакций

Пусть k - число нейтронов, произведенное в образце делящегося материала на стадии n этой цепи, поделенное на число нейтронов, образованных на стадии n - 1. Это число будет зависеть от того, сколько нейтронов, полученных на стадии n - 1, поглощаются ядром, которое может подвергнуться вынужденному делению.

Если k < 1, то цепная реакция просто выдохнется и процесс остановится очень быстро. Именно это и происходит в природной в которой концентрация 235 U настолько мала, что вероятность поглощения одного из нейтронов этим изотопом крайне ничтожна.

Если k > 1, то цепная реакция будет расти до тех пор, пока весь делящийся материал не будет использован Это достигается путем обогащения природной руды до получения достаточно большой концентрации урана-235. Для сферического образца величина k увеличивается с ростом вероятности поглощения нейтронов, которая зависит от радиуса сферы. Поэтому масса U должна превышать некоторую чтобы деление ядер урана (цепная реакция) могло происходить.

Если k = 1, то имеет место управляемая реакция. Это используется в ядерных реакторах. Процесс контролируется распределением среди урана стержней из кадмия или бора, которые поглощают большую часть нейтронов (эти элементы обладают способностью захватывать нейтроны). Деление ядра урана контролируется автоматически путем перемещения стержней таким образом, чтобы величина k оставалась равной единице.

Содержание статьи

ЯДЕР ДЕЛЕНИЕ, ядерная реакция, в которой атомное ядро при бомбардировке нейтронами расщепляется на два или несколько осколков. Полная масса осколков обычно меньше суммы масс исходного ядра и бомбардирующего нейтрона. «Недостающая масса» m превращается в энергию E в соответствии с формулой Эйнштейна E = mc 2 , где c – скорость света. Поскольку скорость света очень велика (299 792 458 м/с), небольшой массе соответствует огромная энергия. Эту энергию можно преобразовать в электричество.

Энергия, выделяющаяся при делении ядер, превращается в теплоту при торможении осколков деления. Скорость тепловыделения зависит от числа ядер, делящихся в единицу времени. Когда в небольшом объеме за короткое время происходит деление большого числа ядер, то реакция имеет характер взрыва. Таков принцип действия атомной бомбы. Если же сравнительно небольшое число ядер делится в большом объеме в течение более длительного времени, то результатом будет выделение теплоты, которую можно использовать. На этом основаны атомные электростанции. На атомных электростанциях теплота, выделяющаяся в ядерных реакторах в результате деления ядер, используется для производства пара, который подается на турбины, вращающие электрогенераторы.

Для практического использования процессов деления больше всего подходят уран и плутоний. У них имеются изотопы (атомы данного элемента с различными массовыми числами), которые делятся при поглощении нейтронов даже с очень небольшими энергиями.

Ключом к практическому использованию энергии деления явилось то обстоятельство, что некоторые элементы испускают нейтроны в процессе деления. Хотя при делении ядра один нейтрон поглощается, эта потеря восполняется благодаря возникновению новых нейтронов в процессе деления. Если устройство, в котором происходит деление, обладает достаточно большой («критической») массой, то за счет новых нейтронов может поддерживаться «цепная реакция». Цепной реакцией можно управлять, регулируя число нейтронов, способных вызывать деление. Если оно больше единицы, то интенсивность деления увеличивается, а если меньше единицы – уменьшается.

ИСТОРИЧЕСКАЯ СПРАВКА

История открытия деления ядер берет начало с работы А.Беккереля (1852–1908). Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, самопроизвольно испускают излучение, вызывающее почернение фотопластинки даже если между минералом и пластинкой поместить непрозрачное твердое вещество. Различные экспериментаторы установили, что это излучение состоит из альфа-частиц (ядер гелия), бета-частиц (электронов) и гамма-квантов (жесткого электромагнитного излучения).

Первое превращение ядер, искусственно вызванное человеком, осуществил в 1919 Э.Резерфорд, который превратил азот в кислород, облучив азот альфа-частицами урана. Эта реакция сопровождалась поглощением энергии, поскольку масса ее продуктов – кислорода и водорода – превышает массу частиц, вступающих в реакцию, – азота и альфа-частиц. Выделение же ядерной энергии впервые удалось осуществить в 1932 Дж.Кокрофту и Э.Уолтону, бомбардировавшим литий протонами. В этой реакции масса вступавших в реакцию ядер была несколько больше массы продуктов, в результате чего и происходило выделение энергии.

В 1932 Дж.Чедвик открыл нейтрон – нейтральную частицу с массой, примерно равной массе ядра атома водорода. Физики всего мира занялись изучением свойств этой частицы. Предполагалось, что лишенный электрического заряда и не отталкиваемый положительно заряженным ядром нейтрон будет с большей вероятностью вызывать ядерные реакции. Более поздние результаты подтвердили эту догадку. В Риме Э.Ферми с сотрудниками подвергли облучению нейтронами почти все элементы периодической системы и наблюдали ядерные реакции с образованием новых изотопов. Доказательством образования новых изотопов служила «искусственная» радиоактивность в форме гамма и бета-излучений.

Первые указания на возможность деления ядер.

Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 (нептуний), бомбардируя нейтронами уран (элемент с порядковым номером 92). При этом он регистрировал электроны, испускаемые в результате захвата нейтронов в предполагаемой реакции

238 U + 1 n ® 239 Np + b –,

где 238 U – изотоп урана-238, 1 n – нейтрон, 239 Np – нептуний и b - – электрон. Однако результаты оказались неоднозначными. Чтобы исключить возможность того, что регистрируемая радиоактивность принадлежит изотопам урана или другим элементам, расположенным в периодической системе перед ураном, пришлось проводить химический анализ радиоактивных элементов.

Результаты анализа показали, что неизвестным элементам соответствуют порядковые номера 93, 94, 95 и 96. Поэтому Ферми сделал вывод, что он получил трансурановые элементы. Однако О.Ган и Ф.Штрасман в Германии, проведя тщательный химический анализ, установили, что среди элементов, возникающих в результате облучения урана нейтронами, присутствует радиоактивный барий. Это означало, что, вероятно, часть ядер урана делится на два крупных осколка.

Подтверждение возможности деления.

После этого Ферми, Дж.Даннинг и Дж.Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деление урана нейтронами было подтверждено методами пропорциональных счетчиков, камеры Вильсона, а также накопления осколков деления. Первый метод показал, что при приближении источника нейтронов к образцу урана испускаются импульсы большой энергии. В камере Вильсона было видно, что ядро урана, бомбардируемое нейтронами, расщепляется на два осколка. Последний метод позволил установить, что, как и предсказывала теория, осколки радиоактивны. Все это вместе взятое убедительно доказывало, что деление действительно происходит, и давало возможность уверенно судить об энергии, выделяющейся при делении.

Поскольку допустимое отношение числа нейтронов к числу протонов в стабильных ядрах уменьшается с уменьшением размеров ядра, доля нейтронов у осколков должна быть меньше, чем у исходного ядра урана. Таким образом, были все основания предполагать, что процесс деления сопровождается испусканием нейтронов. Вскоре это было экспериментально подтверждено Ф. Жолио-Кюри и его сотрудниками: число нейтронов, испускаемых в процессе деления, было больше числа поглощенных нейтронов. Оказалось, что на один поглощенный нейтрон приходится приблизительно два с половиной новых нейтрона. Сразу стали очевидны возможность цепной реакции и перспективы создания исключительно мощного источника энергии и его использования в военных целях. После этого в ряде стран (особенно в Германии и США) в условиях глубокой секретности начались работы по созданию атомной бомбы.

Разработки в период Второй мировой войны.

С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных параметров урана и плутония. В США важнейшие необходимые для этого производственные и научно-исследовательские предприятия были в ведении «Манхаттанского военно-инженерного округа», которому 13 августа 1942 был передан «Урановый проект». В Колумбийском университете (Нью-Йорк) группой сотрудников под руководством Э.Ферми и В.Цинна были проведены первые эксперименты, в которых изучалось размножение нейтронов в решетке из блоков диоксида урана и графита – атомном «котле». В январе 1942 эта работа была перенесена в Чикагский университет, где в июле 1942 были получены результаты, показывавшие возможность осуществления самоподдерживающейся цепной реакции. Первоначально реактор работал на мощности 0,5 Вт, но спустя 10 дней мощность была доведена до 200 Вт. Возможность получения больших количеств ядерной энергии была впервые продемонстрирована 16 июля 1945 при взрыве первой атомной бомбы на полигоне в Аламогордо (шт. Нью-Мексико).

ЯДЕРНЫЕ РЕАКТОРЫ

Ядерный реактор – это установка, в которой возможно осуществление управляемой самоподдерживающейся цепной реакции деления ядер. Реакторы можно классифицировать по используемому топливу (делящимся и сырьевым изотопам), по виду замедлителя, по типу тепловыделяющих элементов и по роду теплоносителя.

Делящиеся изотопы.

Имеются три делящихся изотопа – уран-235, плутоний-239 и уран-233. Уран-235 получают разделением изотопов; плутоний-239 – в реакторах, в которых уран-238 превращается в плутоний, 238 U ® 239 U ® 239 Np ® 239 Pu; уран-233 – в реакторах, в которых торий-232 перерабатывается в уран. Ядерное топливо для энергетического реактора выбирается с учетом его ядерных и химических свойств, а также стоимости.

В приводимой ниже таблице представлены основные параметры делящихся изотопов. Полное сечение характеризует вероятность взаимодействия любого типа между нейтроном и данным ядром. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон. Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции. Число новых нейтронов, приходящихся на один поглощенный нейтрон, важно, поскольку характеризует интенсивность деления. Доля запаздывающих нейтронов, испускаемых после того, как деление произошло, связана с энергией, запасенной в данном материале.

ХАРАКТЕРИСТИКИ ДЕЛЯЩИХСЯ ИЗОТОПОВ

ХАРАКТЕРИСТИКИ ДЕЛЯЩИХСЯ ИЗОТОПОВ

Изотоп

Уран-235

Уран-233

Плутоний-239

Энергия нейтрона

1 МэВ

0,025 эВ

1 МэВ

0,025 эВ

1 МэВ

0,025 эВ

Полное сечение

6,6 ± 0,1

695 ± 10

6,2 ± 0,3

600 ± 10

7,3 ± 0,2

1005 ± 5

Сечение деления

1,25 ± 0,05

581 ± 6

1,85 ± 0,10

526 ± 4

1,8 ± 0,1

751 ± 10

Доля ядер, неучаствующих в делении

0,077 ± 0,002

0,174 ± 0,01

0,057 ± 0,003

0,098 ± 0,004

0,08 ± 0,1

0,37 ± 0,03

Число нейтронов, испускаемых в одном акте деления

2,6 ± 0,1

2,43 ± 0,03

2,65 ± 0,1

2,50 ± 0,03

3,03 ± 0,1

2,84 ± 0,06

Число нейтронов на один поглощенный нейтрон

2,41 ± 0,1

2,07 ± 0,02

2,51 ± 0,1

2,28 ± 0,02

2,07 ± 0,04

Доля запаздывающих нейтронов, %

(0,64 ± 0,03)

(0,65 ± 0,02)

(0,26 ± 0,02)

(0,26 ± 0,01)

(0,21 ± 0,01)

(0,22 ± 0,01)

Энергия деления, МэВ
Все сечения приведены в барнах (10 -28 м 2).

Данные таблицы показывают, что каждый делящийся изотоп имеет свои преимущества. Например, в случае изотопа с наибольшим сечением для тепловых нейтронов (с энергией 0,025 эВ) нужно меньше топлива для достижения критической массы при использовании замедлителя нейтронов. Поскольку наибольшее число нейтронов на один поглощенный нейтрон возникает в плутониевом реакторе на быстрых нейтронах (1 МэВ), в режиме воспроизводства лучше использовать плутоний в быстром реакторе или уран-233 в тепловом реакторе, чем уран-235 в реакторе на тепловых нейтронах. Уран-235 более предпочтителен с точки зрения простоты управления, поскольку у него больше доля запаздывающих нейтронов.

Сырьевые изотопы.

Имеются два сырьевых изотопа: торий-232 и уран-238, из которых получаются делящиеся изотопы уран-233 и плутоний-239. Технология использования сырьевых изотопов зависит от разных факторов, например от необходимости обогащения. В урановой руде содержится 0,7% урана-235, а в ториевой нет делящихся изотопов. Поэтому к торию необходимо добавлять обогащенный делящийся изотоп. Важное значение имеет и число новых нейтронов, приходящееся на один поглощенный нейтрон. С учетом этого фактора приходится отдать предпочтение урану-233 в случае тепловых нейтронов (замедленных до энергии 0,025 эВ), поскольку при таких условиях больше число испускаемых нейтронов, а следовательно, и коэффициент преобразования – число новых делящихся ядер на одно «затраченное» делящееся ядро.

Замедлители.

Замедлитель служит для уменьшения энергии нейтронов, испускаемых в процессе деления, примерно от 1 МэВ до тепловых энергий около 0,025 эВ. Поскольку замедление происходит главным образом в результате упругого рассеяния на ядрах неделящихся атомов, масса атомов замедлителя должна быть как можно меньше, чтобы нейтрон мог передавать им максимальную энергию. Кроме того, у атомов замедлителя должно быть мало (по сравнению с сечением рассеяния) сечение захвата, так как нейтрону приходится многократно сталкиваться с атомами замедлителя, прежде чем он замедляется до тепловой энергии.

Наилучшим замедлителем является водород, поскольку его масса почти равна массе нейтрона и, следовательно, нейтрон при соударении с водородом теряет наибольшее количество энергии. Но обычный (легкий) водород слишком сильно поглощает нейтроны, а потому более подходящими замедлителями, несмотря на несколько большую массу, оказываются дейтерий (тяжелый водород) и тяжелая вода, так как они меньше поглощают нейтроны. Хорошим замедлителем можно считать бериллий. У углерода столь малое сечение поглощения нейтронов, что он эффективно замедляет нейтроны, хотя для замедления в нем требуется гораздо больше столкновений, чем в водороде.

Среднее число N упругих столкновений, необходимое для замедления нейтрона от 1 МэВ до 0,025 эВ, при использовании водорода, дейтерия, беррилия и углерода составляет приблизительно 18, 27, 36 и 135 соответственно. Приближенный характер этих значений обусловлен тем, что из-за наличия химической энергии связи в замедлителе столкновения при энергиях ниже 0,3 эВ вряд ли могут быть упругими. При низких энергиях атомная решетка может передавать энергию нейтронам или изменять эффективную массу в столкновении, нарушая этим процесс замедления.

Теплоносители.

В качестве теплоносителей в ядерных реакторах используются вода, тяжелая вода, жидкий натрий, жидкий сплав натрия с калием (NaK), гелий, диоксид углерода и такие органические жидкости, как терфенил. Эти вещества являются хорошими теплоносителями и имеют малые сечения поглощения нейтронов.

Вода представляет собой прекрасный замедлитель и теплоноситель, но слишком сильно поглощает нейтроны и имеет слишком высокое давление паров (14 МПа) при рабочей температуре 336° С. Лучший из известных замедлителей – тяжелая вода. Ее характеристики близки к характеристикам обычной воды, а сечение поглощения нейтронов – меньше. Натрий является прекрасным теплоносителем, но не эффективен как замедлитель нейтронов. Поэтому его используют в реакторах на быстрых нейтронах, где при делении испускается больше нейтронов. Правда, натрий имеет ряд недостатков: в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре. Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Гелий – прекрасный теплоноситель, но у него мала удельная теплоемкость. Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем. Терфенил имеет то преимущество перед водой, что у него низкое давление паров при рабочей температуре, но он разлагается и полимеризуется под действием высоких температур и радиационных потоков, характерных для реакторов.

Тепловыделяющие элементы.

Тепловыделяющий элемент (твэл) представляет собой топливный сердечник с герметичной оболочкой. Оболочка предотвращает утечку продуктов деления и взаимодействие топлива с теплоносителем. Материал оболочки должен слабо поглощать нейтроны и обладать приемлемыми механическими, гидравлическими и теплопроводящими характеристиками. Тепловыделяющие элементы – это обычно таблетки спеченного оксида урана в трубках из алюминия, циркония или нержавеющей стали; таблетки сплавов урана с цирконием, молибденом и алюминием, покрытые цирконием или алюминием (в случае алюминиевого сплава); таблетки графита с диспергированным карбидом урана, покрытые непроницаемым графитом.

Все эти твэлы находят свое применение, но для водо-водяных реакторов наиболее предпочтительны таблетки оксида урана в трубках из нержавеющей стали. Диоксид урана не вступает в реакцию с водой, отличается высокой радиационной стойкостью и характеризуется высокой температурой плавления.

Для высокотемпературных газоохлаждаемых реакторов, по-видимому, весьма подходят графитовые топливные элементы, но у них имеется серьезный недостаток – за счет диффузии или из-за дефектов в графите через их оболочку могут проникать газообразные продукты деления.

Органические теплоносители несовместимы с циркониевыми твэлами и поэтому требуют применения алюминиевых сплавов. Перспективы реакторов с органическими теплоносителями зависят от того, будут ли созданы алюминиевые сплавы или изделия порошковой металлургии, которые обладали бы прочностью (при рабочих температурах) и теплопроводностью, необходимыми для применения ребер, повышающих перенос тепла к теплоносителю. Поскольку теплообмен между топливом и органическим теплоносителем за счет теплопроводности мал, желательно использовать поверхностное кипение для увеличения теплопередачи. С поверхностным кипением будут связаны новые проблемы, но они должны быть решены, если использование органических теплоносителей окажется выгодным.

ТИПЫ РЕАКТОРОВ

Теоретически возможны более 100 разных типов реакторов, различающихся топливом, замедлителем и теплоносителями. В большинстве обычных реакторов в качестве теплоносителя используется вода, либо под давлением, либо кипящая.

Реактор с водой под давлением.

В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину.

Кипящий реактор.

В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину. В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель.

Реактор с жидкометаллическим охлаждением.

В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий по трубам. Почти во всех реакторах этого типа теплоносителем служит натрий. Пар, образующийся на другой стороны труб первого контура, подается на обычную турбину. В реакторе с жидкометаллическим охлаждением могут использоваться нейтроны со сравнительно высокой энергией (реактор на быстрых нейтронах) либо нейтроны, замедленные в графите или оксиде бериллия. В качестве реакторов-размножителей более предпочтительны реакторы на быстрых нейтронах с жидкометаллическим охлаждением, поскольку в этом случае отсутствуют потери нейтронов, связанные с замедлением.

Газоохлаждаемый реактор.

В таком реакторе теплота, выделяющаяся в процессе деления, переносится в парогенератор газом – диоксидом углерода или гелием. Замедлителем нейтронов обычно служит графит. Газоохлаждаемый реактор может работать при гораздо более высоких температурах, нежели реактор с жидким теплоносителем, а потому пригоден для системы промышленного теплоснабжения и для электростанций с высоким кпд. Небольшие газоохлаждаемые реакторы отличаются повышенной безопасностью в работе, в частности отсутствием риска расплавления реактора.

Гомогенные реакторы.

В активной зоне гомогенных реакторов используется однородная жидкость, содержащая делящийся изотоп урана. Жидкость обычно представляет собой расплавленное соединение урана. Она закачивается в большой сферический сосуд, работающий под давлением, где в критической массе происходит цепная реакция деления. Затем жидкость подается в парогенератор. Гомогенные реакторы не получили распространения из-за конструктивных и технологических трудностей.

РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ

Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезают в результате поглощения. Кроме того, возможна утечка нейтронов вследствие диффузии через вещество, аналогичной диффузии одного газа сквозь другой.

Чтобы управлять ядерным реактором, нужно иметь возможность регулировать коэффициент размножения нейтронов k , определяемый как отношение числа нейтронов в одном поколении к числу нейтронов в предыдущем поколении. При k = 1 (критический реактор) имеет место стационарная цепная реакция с постоянной интенсивностью. При k > 1 (надкритический реактор) интенсивность процесса нарастает, а при k r = 1 – (1/k ) называется реактивностью.)

Благодаря явлению запаздывающих нейтронов время «рождения» нейтронов увеличивается от 0,001 с до 0,1 с. Это характерное время реакции позволяет управлять ею с помощью механических исполнительных органов – управляющих стержней из материала, поглощающего нейтроны (B, Cd, Hf, In, Eu, Gd и др.). Постоянная времени регулирования должна быть порядка 0,1 с или больше. Для обеспечения безопасности выбирают такой режим работы реактора, в котором для поддержания стационарной цепной реакции необходимы запаздывающие нейтроны в каждом поколении.

Для обеспечения заданного уровня мощности используются управляющие стержни и отражатели нейтронов, но задачу управления можно значительно упростить правильным расчетом реактора. Например, если реактор спроектировать так, чтобы при увеличении мощности или температуры реактивность уменьшалась, то он будет более устойчивым. Например, при недостаточном замедлении из-за повышения температуры расширяется вода в реакторе, т.е. уменьшается плотность замедлителя. В результате усиливается поглощение нейтронов в уране-238, поскольку они не успевают эффективно замедлиться. В некоторых реакторах используется фактор увеличения утечки нейтронов из реактора вследствие уменьшения плотности воды. Еще один способ стабилизации реактора основан на нагревании «резонансного поглотителя нейтронов», такого, как уран-238, который тогда сильнее поглощает нейтроны.

Системы безопасности.

Безопасность реактора обеспечивается тем или иным механизмом его остановки в случае резкого увеличения мощности. Это может быть механизм физического процесса или действие системы управления и защиты, либо то и другое. При проектировании водо-водяных реакторов предусматриваются аварийные ситуации, связанные с поступлением холодной воды в реактор, падением расхода теплоносителя и слишком большой реактивностью при пуске. Поскольку интенсивность реакции возрастает с понижением температуры, при резком поступлении в реактор холодной воды повышаются реактивность и мощность. В системе защиты обычно предусматривается автоматическая блокировка, предотвращающая поступление холодной воды. При снижении расхода теплоносителя реактор перегревается, даже если его мощность не увеличивается. В таких случаях необходим автоматический останов. Кроме того, насосы теплоносителя должны быть рассчитаны на подачу охлаждающего теплоносителя, необходимую для остановки реактора. Аварийная ситуация может возникнуть при пуске реактора со слишком высокой реактивностью. Из-за низкого уровня мощности реактор не успевает нагреться настолько, чтобы сработала защита по температуре, пока не оказывается слишком поздно. Единственная надежная мера в таких случаях – осторожный пуск реактора.

Избежать перечисленных аварийных ситуаций довольно просто, если руководствоваться следующим правилом: все действия, способные увеличить реактивность системы, должны выполняться осторожно и медленно. Самое важное в вопросе о безопасности реактора – это абсолютная необходимость длительного охлаждения активной зоны реактора после прекращения в нем реакции деления. Дело в том, что радиоактивные продукты деления, остающиеся в топливных кассетах, выделяют тепло. Оно гораздо меньше тепла, выделяющегося в режиме полной мощности, но его достаточно, чтобы в отсутствие необходимого охлаждения расплавить твэлы. Кратковременное прекращение подачи охлаждающей воды привело к значительному повреждению активной зоны и аварии реактора в Три-Майл-Айленде (США). Разрушение активной зоны реактора – это минимальный ущерб в случае подобной аварии. Хуже, если произойдет утечка опасных радиоактивных изотопов. Большинство промышленных реакторов снабжено герметическими страховочными корпусами, которые должны в случае аварии предотвратить выброс изотопов в окружающую среду.

В заключение отметим, что возможность разрушения реактора в значительной степени зависит от его схемы и конструкции. Реакторы могут быть спроектированы таким образом, что снижение расхода теплоносителя не будет приводить к большим неприятностям. Таковы различные типы газоохлаждаемых реакторов.

Энергия E, высвобождающаяся при делении, растет с увеличением Z 2 /A. Величина Z 2 /A = 17 для 89 Y (иттрия). Т.е. деление энергетически выгодно для всех ядер тяжелее иттрия. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, необходимо рассмотреть механизм деления.

В процессе деления происходит изменение формы ядра. Ядро последовательно проходит через следующие стадии (рис. 7.1): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как при этом изменяется потенциальная энергия ядра на различных стадиях деления?
Первоначальное ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. В этом случае вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий E п + E к. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между протонами. Если при незначительной деформации, характеризующейся малым параметром , исходное ядро приняло форму аксиально симметричного эллипсоида, поверхностная энергия E" п и кулоновская энергия E" к как функции параметра деформации изменяются следующим образом:

В соотношениях (7.4–7.5) E п и E к – поверхностная и кулоновская энергии исходного сферически симметричного ядра.
В области тяжелых ядер 2E п > E к и сумма поверхностной и кулоновской энергий растет с увеличением . Из (7.4) и (7.5) следует, что при малых деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно, и делению.
Соотношение (7.5) справедливо для малых деформаций . Если деформация настолько велика, что ядро принимает форму гантели, то поверхностные и кулоновские силы, стремятся разделить ядро и придать осколкам сферическую форму. Таким образом, при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. График изменения поверхностной и кулоновской энергий ядра в зависимости от r показан на рис. 7.2.

Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера деления H. Максимум потенциальной энергии делящегося ядра E + H (например золота) на два одинаковых осколка ≈ 173 МэВ, а величина энергии E, освобождающейся при делении, равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 МэВ.
Высота барьера деления H тем больше, чем меньше отношение кулоновской и поверхностной энергии Е к /Е п в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра деления Z 2 /А (7.3). Чем тяжелее ядро, тем меньше высота барьера деления H, так как параметр деления в предположении, что Z пропорционально A, увеличивается с ростом массового числа:

Е к /Е п = (a 3 Z 2)/(a 2 A) ~ A. (7.6)

Поэтому более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление ядра.
Высота барьера деления обращается в нуль при 2E п – E к = 0 (7.5). В этом случае

2E п /E к = 2(a 2 A)/(a 3 Z 2),

Z 2 /A = 2a 2 /(a 3 Z 2) ≈ 49.

Таким образом, согласно капельной модели в природе не могут существовать ядра с Z 2 /A > 49, так как они должны практически мгновенно за характерное ядерное время порядка 10 –22 с самопроизвольно разде­литься на два осколка. Зависимости формы и высоты потенциального барьера H, а также энергии деления от величины параметра Z 2 /A показаны на рис. 7.3.

Рис. 7.3. Радиальная зависимость формы и высоты потенциального барьера и энергии деления E при различных величинах параметра Z 2 /A. На вертикальной оси отложена величина E п + E к.

Самопроизвольное деление ядер с Z 2 /A < 49, для которых высота барьера H не равна нулю, с точки зрения классической физики невозможно. Однако в квантовой механике такое деление возможно за счет туннельного эффекта – прохождения осколков деления через потенциальный барьер. Оно носит название спонтанного деления. Вероятность спонтанного деления растет с увеличением параметра деления Z 2 /A, т. е. с уменьшением высоты барьера деления. В целом период спонтанного деления уменьшается при переходе от менее тяжелых ядер к более тяжелым от T 1/2 > 10 21 лет для 232 Th до 0,3 с для 260 Rf.
Вынужденное деление ядер с Z 2 /A < 49 может быть вызвано их возбуждением фотонами, нейтронами, протонами, дейтронами, a частицами и другими частицами, если вносимая в ядро энергия достаточна для преодоления барьера деления.
Минимальное значение энергии возбуждения составного ядра E*, образующегося при захвате нейтрона равно энергии связи нейтрона в этом ядре ε n . В таблице 7.1 сравниваются высота барьера H и энергия связи нейтрона ε n для изотопов Th, U, Pu, образующихся после захвата нейтрона. Энергия связи нейтрона зависит от числа нейтронов в ядре. За счёт энергии спаривания энергия связи четного нейтрона больше энергии связи нечетного нейтрона.

Таблица 7.1

Высота барьера деления H, энергия связи нейтрона ε n

Изотоп Высота барьера деления H, МэВ Изотоп Энергия связи нейтрона ε n
232 Th 5.9 233 Th 4.79
233 U 5.5 234 U 6.84
235 U 5.75 236 U 6.55
238 U 5.85 239 U 4.80
239 Pu 5.5 240 Pu 6.53

Характерной особенностью деления является то, что осколки, как правило, имеют различные массы. В случае наиболее вероятного деления 235 U отношение масс осколков в среднем равно ~ 1.5. Распределение по массам осколков деления 235 U тепловыми нейтронами показано на рис. 7.4. Для наиболее вероятного деления тяжелый осколок имеет массовое число 139, легкий – 95. Среди продуктов деления имеются осколки с A = 72 – 161 и Z = 30 – 65. Вероятность деления на два равных по массе осколка не равна нулю. При делении 235 U тепловыми нейтронами вероятность симметричного деления примерно на три порядка меньше, чем в случае наиболее вероятного деления на осколки с A = 139 и 95.
Асимметричное деление объясняется оболочечной структурой ядра. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов каждого осколка образовала наиболее устойчивый магический остов.
Отношение числа нейтронов к числу протонов в ядре 235 U N/Z = 1.55, в то время как у стабильных изотопов, имеющих массовое число, близкое к массовому числу осколков, это отношение 1.25 − 1.45. Следовательно, осколки деления оказываются сильно перегружеными нейтронами и должны быть
β - радиоактивны. Поэтому, осколки деления испытывают последовательные β - -распады, причем заряд первичного осколка может изменяться на 4 − 6 единиц. Ниже приведена характерная цепочка радиоактивных распадов 97 Kr – одного из осколков, образующегося при делении 235 U:

Возбуждение осколков, вызванное нарушением соотношения числа протонов и нейтронов, характерного для стабильных ядер, снимается также за счет вылета мгновенных нейтронов деления. Эти нейтроны испускаются движущимися осколками за время, меньшее, чем ~ 10 -14 с. В среднем в каждом акте деления испускается 2 − 3 мгновенных нейтрона. Их энергетический спектр непрерывный с максимумом около 1 МэВ. Средняя энергия мгновенного нейтрона близка к 2 МэВ. Испускание более чем одного нейтрона, в каждом акте деления делает возможным получение энергии за счет цепной ядерной реакции деления.
При наиболее вероятном делении 235 U тепловыми нейтронами лёгкий осколок (A = 95) приобретает кинетическую энергию ≈ 100 МэВ, а тяжёлый (A = 139) – около 67 МэВ. Таким образом, суммарная кинетическая энергия осколков ≈ 167 МэВ. Полная энергия деления в данном случае составляет 200 МэВ. Таким образом, оставшаяся энергия (33 МэВ) распределяется между другими продуктами деления (нейтроны, электроны и антинейтрино β - -распада осколков, γ-излучение осколков и продуктов их распада). Распределение энергии деления между различными продуктами при делении 235 U тепловыми нейтронами дано в таблице 7.2.

Таблица 7.2

Распределение энергии деления 235 U тепловыми нейтронами

Продукты ядерного деления (ПЯД) представляют собой сложную смесь более чем 200 радиоактивных изотопов 36 элементов (от цинка до гадолиния). Большую часть ак­тивности составляют короткоживущие радионуклиды. Так, через 7, через 49 и через 343 суток после взрыва активность ПЯД снижается соответственно в 10, 100 и 1000 раз по сравнению с активностью через час после взрыва. Выход наиболее биологически зна­чимых радионуклидов приведен в таблице 7.3. Кроме ПЯД радиоактивное загрязнение обусловлено радионуклидами наведенной активности (3 H, 14 C, 28 Al, 24 Nа, 56 Mn, 59 Fe , 60 Cо и др.) и неразделившейся частью урана и плутония. Особенно велика роль наведен­ной активности при термоядерных взрывах.

Таблица 7.3

Выход некоторых продуктов деления при ядерном взрыве

Радио­нуклид Период полураспада Выход на одно деление, % Активность на 1 Мт,
10 15 Бк
89 Sr 50.5 сут. 2.56 590
90 Sr 29.12 лет 3.5 3.9
95 Zr 65 сут. 5.07 920
103 Ru 41 сут. 5.2 1500
106 Ru 365 сут. 2.44 78
131 I 8.05 сут. 2.9 4200
136 Cs 13.2 сут. 0.036 32
137 Cs 30 лет 5.57 5.9
140 Ba 12.8 сут. 5.18 4700
141 Cs 32.5 сут. 4.58 1600
144 Cs 288 сут. 4.69 190
3 H 12.3 лет 0.01 2.6·10 -2

При ядерных взрывах в атмосфере значительная часть осадков (при наземных взрывах до 50%) выпадает вблизи района испытаний. Часть радиоактивных веществ задерживается в нижней части атмосферы и под действием ветра перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе примерно месяц, радиоактивные вещества во время этого перемещения постепенно выпадают на Землю. Большая часть радионуклидов выбрасывается в стратосферу (на высоту 10÷15 км), где происходит их глобальное рассеивание и в значительной степени распад.
Высокую активность в течение десятков лет имеют различные элементы конструкции ядерных реакторов (таблица 7.4)

Таблица 7.4

Значения удельной активности (Бк/т урана) основных продуктов деления в тепловыделяющих элементах, извлеченных из реактора после трехлетней эксплуатации

Радионуклид 0 1 сут. 120 сут. 1 год 10 лет
85 Kr 5. 78· 10 14 5. 78· 10 14 5. 66· 10 14 5. 42· 10 14

4. 7· 10 14

3. 03· 10 14
89 Sr 4. 04· 10 16 3. 98· 10 16 5. 78· 10 15 2. 7· 10 14

1. 2· 10 10

90 Sr 3. 51· 10 15 3. 51· 10 15 3. 48· 10 15 3. 43· 10 15

3. 26· 10 15

2. 75· 10 15
95 Zr 7. 29· 10 16 7. 21· 10 16 1. 99· 10 16 1. 4· 10 15 5. 14· 10 11
95 Nb 7. 23· 10 16 7. 23· 10 16 3. 57· 10 16 3. 03· 10 15 1. 14· 10 12
103 Ru 7. 08· 10 16 6. 95· 10 16 8. 55· 10 15 1. 14· 10 14 2. 97· 10 8
106 Ru 2. 37· 10 16 2. 37· 10 16 1. 89· 10 16 1. 19· 10 16 3. 02· 10 15 2. 46· 10 13
131 I 4. 49· 10 16 4. 19· 10 16 1. 5· 10 12 1. 01· 10 3
134 Cs 7. 50· 10 15 7. 50· 10 15 6. 71· 10 15 5. 36· 10 15 2. 73· 10 15 2. 6· 10 14
137 Cs 4. 69· 10 15 4. 69· 10 15 4. 65· 10 15 4. 58· 10 15 4. 38· 10 15 3. 73· 10 15
140 Ba 7. 93· 10 16 7. 51· 10 16 1. 19· 10 14 2. 03· 10 8
140 La 8. 19· 10 16 8. 05· 10 16 1. 37· 10 14 2. 34· 10 8
141 Ce 7. 36· 10 16 7. 25· 10 16 5. 73· 10 15 3. 08· 10 13 5. 33· 10 6
144 Ce 5. 44· 10 16 5. 44· 10 16 4. 06· 10 16 2. 24· 10 16 3. 77· 10 15 7. 43· 10 12
143 Pm 6. 77· 10 16 6. 70· 10 16 1. 65· 10 14 6. 11· 10 8
147 Pm 7. 05·10 15 7. 05· 10 15 6. 78· 10 15 5. 68· 10 15

3. 35· 10 14