Осевая симметрия в природе зимой. Поющий Один из Старой Ладоги


СИММЕТРИЯ В ЖИВОЙ ПРИРОДЕ. СИММЕТРИЯ И АСИММЕТРИЯ.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая и т.д.) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: "Открытия последних десятилетий в области физики элементарных частиц заставляют нас обратить особое внимание на концепцию нарушения симметрии. Развитие Вселенной с момента ее зарождения выглядит как непрерывная последовательность нарушений симметрии.
В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создает возможности для существования все большего и большего разнообразия структур. Феномен жизни естественно вписывается в эту картину. Жизнь - это тоже нарушение симметрии"
Молекулярная асимметрия открыта Л. Пастером, который первым выделил "правые" и "левые" молекулы винной кислоты: правые молекулы похожи на правый винт, а левые - на левый. Такие молекулы химики называют стереоизомерами. Молекулыстереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру - в то же время они различимы, поскольку являются зеркально асимметричными, т.е. объект оказывается нетождественным со своим зеркальным двойником. 67 Поэтому здесь понятия "правый-левый" - условны.
В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, т.е. в состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определенным типом симметрии. Например, молекулы всех аминокислот в любом живом организме могут быть только левыми, сахара - только правыми.
Это свойство живого вещества и его продуктов жизнедеятельности называют дисимметрией. Оно имеет совершенно фундаментальный характер. Хотя правые и левые молекулы неразличимы по химическим свойствам, живая материя их не только различает, но и делает выбор. Она отбраковывает и не использует молекулы, не обладающие нужной ей структурой. Как это происходит, пока не ясно. Молекулы противоположной симметрии для нее яд.
Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей дисимметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну. Дисимметрия - единственное свойство, благодаря которому мы можем отличить вещество биогенного происхождения от неживого вещества. Мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличить живое от неживого.
Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание симметрии, при переходе от неживой к живой материи уже на микроуровне преобладает асимметрия. В живой природе асимметрию можно увидеть всюду. Очень удачно это подметил в романе "Жизнь и судьба" В. Гроссман: "В большом миллионе русских деревенских изб нет и не может быть двух неразличимо схожих. Все живое неповторимо.

Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах. На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.

СИММЕТРИЯ В МИРЕ РАСТЕНИЙ:

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии.
Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы.
Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой" Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

Соты - настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек.

Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

Листья на стебле расположены не по прямой, а окружают ветку по спирали. Сумма всех предыдущих шагов спирали, начиная с вершины, равна величине последующего шага

А+В=С, В+С=Д и т.д.

Расположение семянок в головке подсолнуха или листьев в побегах вьющихся растений соответствует логарифмической спирали

СИММЕТРИЯ В МИРЕ НАСЕКОМЫХ, РЫБ, ПТИЦ, ЖИВОТНЫХ

Типы симметрии у животных

1-центральная

3-радиальная

4-билатеральная

5-двулучевая

6-поступательная (метамерия)

7-поступательно-вращательная

Ось симметрии. Ось симметрии- это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату (рис.1, 2,3). Ось симметрии может совпадать морфологически с переднезадней осью тела.

Плоскость симметрии. Плоскость симметрии- это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti – против; mer – часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии - глоточная и щупальцевая (рис.1, 5). Наконец, у двусторонне-симметричных организмов только одна плоскость и только две зеркальные антимеры – соответственно правая и левая стороны животного (рис.1, 4,6,7).

Типы симметрии. Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

Вращательная симметрия. Любой организм обладает вращательной симметрией Для вращательной симметрии существенным характерным элементом являются антимеры . Важно знать, при повороте на какой градус контуры тела совпадут с исходным положением. Минимальный градус совпадения контура имеет шар, вращающийся около центра симметрии. Максимальный градус поворота 360 , когда при повороте на эту величину контуры тела совпадут.

Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у шестилучевых кораллов будет вращательная симметрия шестого порядка. У гребневиков две плоскости симметрии, и они имеют симметрию второго порядка. Симметрию гребневиков также называют двулучевой (рис.1, 5). Наконец, если организм имеет только одну плоскость симметрии и соответственно две антимеры, то такую симметрию называют двусторонней или билатеральной (рис.1, 4). Лучеобразно отходят тонкие иглы. Это помогает простейшим «парить» в толще воды. Шарообразны и другие представители простейших – лучевики (радиолярии) и солнечники с лучевидными отростками-псевдоподиями.« Глядя на них, так и кажется, что эти кружевные сплетения – не часть живых существ, а тончайшие ювелирные изделия, предназначенные украшать наряды морских

Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta – один за другим; mer – часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

Метамерия – одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной (рис.1, 6). У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

Вращательно-поступательная симметрия. Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков (современный наутилус или ископаемые раковины аммонитов, рис. 1, 7). С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков.

  1. Симметрия в природе (1)

    Реферат >> Биология

    ... Симметрия в природе 3 Симметрия у растений 3 Симметрия у животных 4 Симметрия у человека 5 Типы симметрии у животных 5 Типы симметрии 6 Зеркальная симметрия 7 Радиальная симметрия 8 Поворотная симметрия ... Ю. А. “Симметрия природы и природа симметрии ”. Москва, ...

  2. Симметрия в природе и искусстве

    Реферат >> Биология

    Реферат на тему «Симметрия в природе и искусстве» Понятие симметрии нам хорошо знакомо, ведь мы... мне бы хотелось поподробнее поговорить о симметрии в природе . Мы ежеднвно сталкиваемся с ней - это...

  3. Симметрия (2)

    Реферат >> Геология

    Изучения окружающего мира является симметрия . Идею симметрии подсказывает сама природа . Любопытство, желание узнать... . Поиски красоты ведут нас к познанию природы

Взгляните на лица окружающих вас людей: один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая -- менее; одно ухо выше, другое ниже. К сказанному добавим, что человек больше пользуется правым глазом, чем левым. Понаблюдайте-ка, например, за людьми, которые стреляют из ружья или лука.

Из приведенных примеров видно, что в строении тела человека, его привычках ясно выражено стремление резко выделить какое-либо направление -- правое или левое. Это не случайность. Подобные явления можно отметить также и у растений, животных и микроорганизмов.

Ученые давно обратили на это внимание. Еще в XVIII в. ученый и писатель Бернарден де Сен Пьер указывал, что все моря наполнены одностворчатыми брюхоногими моллюсками бесчисленного множества видов, у которых все завитки направлены слева направо, подобно движению Земли, если поставить их отверстиями к северу и острыми концами к Земле.

Но прежде чем приступить к рассмотрению явлений подобной асимметрии, мы выясним сначала, что такое симметрия.

Для того чтобы разобраться хотя бы в главных результатах, достигнутых при изучении симметрии организмов, нужно начать с основных понятий самой теории симметрии. Вспомните, какие тела в быту обычно считают равными. Только такие, которые совершенно одинаковы или, точнее, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два верхних лепестка на рисунке 1. Однако в теории симметрии, помимо совместимого равенства, выделяют еще два вида равенства -- зеркальное и совместимо-зеркальное. При зеркальном равенстве левый лепесток из среднего ряда рисунка 1 можно точно совместить с правым лепестком лишь после предварительного отражения в зеркале. А при совместимо-зеркальном равенстве двух тел их можно совместить друг с другом как до, так и после отражения в зеркале. Лепестки нижнего ряда на рисунке 1 равны друг другу и совместимо, и зеркально.

Из рисунка 2 видно, что наличия одних равных частей в фигуре еще недостаточно, чтобы признать фигуру симметричной: слева они расположены незакономерно и мы имеем несимметричную фигуру, справа -- однообразно и мы имеем симметричный венчик. Такое закономерное, однообразное расположение равных частей фигуры относительно друг друга и называют симметрией.

Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

Для нас наиболее важны здесь повороты и отражения. Под поворотами понимают обычные повороты вокруг оси на 360°, в результате которых равные части симметричной фигуры обмениваются местами, а фигура в целом совмещается с собой. При этом ось, вокруг которой происходит поворот, называется простой осью симметрии. (Это название не случайно, так как в теории симметрии различают еще и различного рода сложные оси.) Число совмещений фигуры с самой собой при одном полном обороте вокруг оси называется порядком оси. Так, изображение морской звезды на рисунке 3 обладает одной простой осью пятого порядка, проходящей через его центр.

Это означает, что, поворачивая изображение звезды вокруг ее оси на 360°, мы сумеем наложить равные части ее фигуры друг на друга пять раз.

Под отражениями понимают любые зеркальные отражения -- в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркально равные половины, называется плоскостью симметрии. Рассмотрим на рисунке 3 цветок с пятью лепестками. Он обладает пятью плоскостями симметрии, пересекающимися на оси пятого порядка. Симметрию этого цветка можно обозначить так: 5*m. Цифра 5 здесь означает одну ось симметрии пятого порядка, а m -- плоскость, точка -- знак пересечения пяти плоскостей на этой оси. Общая формула симметрии подобных фигур записывается в виде n*m, где n -- символ оси. Причем он может иметь значения от 1 до бесконечности (?).

При изучении симметрии организмов было установлено, что в живой природе наиболее часто встречается симметрия вида n*m. Симметрию этого вида биологи называют радиальной (лучевой). Помимо показанных на рисунке 3 цветка и морской звезды, радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 3) и т. д.

С возникновением на нашей планете живой природы возникли и развились новые виды симметрии, которых до этого либо совсем не было, либо было немного. Это особенно хорошо видно на примере частного случая симметрии вида n*m, который характеризуется лишь одной плоскостью симметрии, делящей фигуру на две зеркально равные половины. В биологии этот случай называется билатеральной (двусторонней) симметрией. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 4).

Он характерен для внешнего строения тела человека, млекопитающих, птиц, пресмыкающихся, земноводных, рыб, многих моллюсков, ракообразных, насекомых, червей, а также многих растений, например цветков львиного зева.

Полагают, что такая симметрия связана с различиями движения организмов вверх-- вниз, вперед -- назад, тогда как их движения направо -- налево совершенно одинаковы. Нарушение билатеральной симметрии неизбежно приводит к торможению движения одной из сторон и изменению поступательного движения в круговое. Поэтому не случайно активно подвижные животные двусторонне симметричны.

Билатеральность же неподвижных организмов и их органов возникает вследствие неодинаковости условий прикрепленной и свободной сторон. По-видимому, так обстоит дело у некоторых листьев, цветков и лучей коралловых полипов.

Здесь уместно отметить, что среди организмов до сих пор не встречалась симметрия, которая исчерпывается наличием только центра симметрии. В природе этот случай симметрии распространен, пожалуй, только среди кристаллов; сюда относятся, между прочем, и синие, великолепно вырастающие из раствора кристаллы медного купороса.

Другой основной вид симметрии характеризуется лишь одной осью симметрии n-го порядка и называется аксиальным или осевым (от греческого слова «аксон» -- ось). До самого последнего времени организмы, форме которых присуща аксиальная симметрия (за исключением простейшего, частного случая, когда n=1), биологам известны не были. Однако недавно обнаружено, что эта симметрия широко распространена в растительном мире. Она присуща венчикам всех тех растений (жасмина, мальвы, флоксов, фуксии, хлопчатника, желтой горечавки, золототысячника, олеандра и др.), края лепестков которых лежат друг на друге веерообразно по ходу часовой стрелки или против нее (рис. 5).

Эта симметрия присуща и некоторым животным, например медузе аурелиа инсулинда (рис. 6). Все эти факты привели к установлению существования нового класса симметрии в живой природе.

Объекты аксиальной симметрии -- это особые случаи тел диссимметрической, т. е. расстроенной, симметрии. От всех остальных объектов они отличаются, в частности, своеобразным отношением к зеркальному отражению. Если яйцо птицы и тело речного рака после зеркального отражения совсем не изменяют своей формы, то (рис. 7)

аксиальный цветок анютиных глазок (а), асимметрическая винтовая раковина моллюска (б) и для сравнения часы (в), кристалл кварца (г), асимметричная молекула (д) после зеркального отражения изменяют свою фигуру, приобретая ряд противоположных признаков. Стрелки действительных часов и зеркальных движутся в противоположных направлениях; строки на странице журнала написаны слева направо, а зеркальные -- справа налево, все буквы как будто вывернуты наизнанку; стебель вьющегося растения и винтовая раковина брюхоногого моллюска перед зеркалом идут слева вверх направо, а зеркальных -- справа вверх налево и т. д.

Что касается простейшего, частного случая осевой симметрии(n=1),о котором упоминается выше, то биологам он известен давно и называется асимметрическим. Для примера достаточно сослаться на картину внутреннего строения подавляющего большинства видов животных, включая и человека.

Уже из приведенных примеров нетрудно заметить, что диссимметрические объекты могут существовать в двух разновидностях: в виде оригинала и зеркального отражения (руки человека, раковины моллюсков, венчики анютиных глазок, кристаллы кварца). При этом одна из форм (не важно, какая) называется правой П, а другая левой -- Л. Здесь очень важно уяснить себе, что правыми и левыми могут называться и называются не только известные в этом отношении руки или ноги человека, но и любые диссимметрические тела -- продукты производства людей (винты с правой и левой резьбой), организмы, неживые тела.

Обнаружение и в живой природе П-Л-форм поставило перед биологией сразу ряд новых и очень глубоких вопросов, многие из которых сейчас решаются сложными математическими и физико-химическими методами.

Первый вопрос -- это вопрос о закономерностях формы и строения П- и Л-биологических объектов.

Совсем недавно ученые установили глубокое структурное единство диссимметрических объектов живой и неживой природы. Дело в том, что правизна-левизна свойство, одинаково присущее живым и неживым телам. Общими для них оказались и связанные с правизной-левизной различные явления. Укажем лишь на одно такое явление -- диссимметрическую изомерию. Она показывает, что в мире существует множество объектов различного строения, но при одном и том же наборе составляющих эти объекты частей.

На рисунке 8 показаны предсказанные, а затем и обнаруженные 32 формы венчиков лютика. Здесь в каждом случае число частей (лепестков) одно и то же -- по пяти; различно лишь их взаимное расположение. Стало быть, здесь перед нами пример диссимметрической изомерии венчиков.

В качестве другого примера могут служить объекты совершенно иной природы молекулы глюкозы. Их мы можем рассматривать наряду с венчиками лютика как раз из-за одинаковости законов их строения. Состав глюкозы следующий: 6 атомов углерода, 12 атомов водорода, 6 атомов кислорода. Этот набор атомов может быть распределен в пространстве весьма различно. Ученые считают, что молекулы глюкозы могут существовать по крайней мере в 320 различных видах.

Второй вопрос: насколько часто встречаются в природе П- и Л-формы живых организмов?

Самое важное в этом отношении открытие было сделано при изучении молекулярного строения организмов. Оказалось, что протоплазма всех растений, животных и микроорганизмов усваивает в основном только П-сахара. Таким образом, каждый день мы питаемся правым сахаром. Зато аминокислоты встречаются главным образом в Л-форме, а построенные из них белки -- в основном в П-форме.

Возьмем для примера два белковых продукта: яичный белок и овечью шерсть. Оба они -- «правши». Шерсть и яичный белок «левши» в природе до сих пор не найдены. Если бы удалось каким-либо образом создать Л-шерсть, т. е. такую шерсть, аминокислоты в которой были бы расположены по стенкам вьющегося влево винта, то проблема борьбы с молью была бы решена: моль может питаться только П-шерстью, точно так же, как люди усваивают только П-белок мяса, молока, яиц. И это нетрудно понять. Моль переваривает шерсть, а человек -- мясо посредством особых белков -- ферментов, по своей конфигурации тоже правых. И подобно тому как Л-винт нельзя ввернуть в гайки с П-резьбой, посредством П-ферментов невозможно переварить Л-шерсть и Л-мясо, если таковые были бы найдены.

Возможно, в этом же кроется загадка и болезни, известной под названием рака: есть сведения, что в ряде случаев раковые клетки строят себя не из правых, а из левых, не перевариваемых нашими ферментами белков.

Широко известный антибиотик пенициллин вырабатывается плесневым грибком только в П-форме; искусственно приготовленная Л-форма его антибиотически не активна. В аптеках продается антибиотик левомицетин, а не его антипод -- правомицетин, так как последний по своим лечебным свойствам значительно уступает первому.

В табаке содержится Л-никотин. Он в несколько раз более ядовит, чем П-никотин.

Если рассматривать внешнее строение организмов, то и здесь мы увидим то же самое. В подавляющем большинстве случаев целые организмы и их органы встречаются в П- или Л-форме. Задняя часть тела волков и собак при беге несколько заносится вбок, поэтому их разделяют на право- и левобегающих. Птицы-левши складывают крылья так, что левое крыло накладывается на правое, а правши -- наоборот. Некоторые голуби при полете предпочитают кружиться вправо, а другие влево. За это голубей издавна в народе делят на «правухов» и «левухов». Раковина моллюска фрутицикола лантци встречается главным образом в П-закрученной форме. Замечательно, что при питании морковью преобладающие П-формы этого моллюска прекрасно растут, а их антиподы -- Л-моллюски -- резко теряют в весе. Инфузория туфелька из-за спирального расположения на ее теле ресничек передвигается в капельке воды, как и многие другие простейшие, по лево завивающемуся штопору. Инфузории, вбуравливающиеся в среду по правому штопору, встречаются редко. Нарцисс, ячмень, рогоз и др.-- правши: их листья встречаются только в П-винтовой форме (рис. 9). Зато фасоль -- левша: листья первого яруса чаще бывают Л-формы. Замечательно, что по сравнению с П-листьями Л-листья больше весят, имеют большую площадь, объем, осмотическое давление клеточного сока, скорость роста.

Много интересных фактов может сообщить наука симметрии и о человеке. Как известно, в среднем на земном шаре примерно 3% левшей (99 млн.) и 97% правшей (3 млрд. 201 млн.). По некоторым сведениям, в США и на Африканском континенте левшей значительно больше, чем, например, в СССР.

Интересно отметить, что центры речи в головном мозгу у правшей расположены слева, а у левшей -- справа (по другим данным --в обоих полушариях). Правая половина тела управляется левым, а левая -- правым полушарием, и в большинстве случаев правая половина тела и левое полушарие развиты лучше. У людей, как известно, сердце на левой стороне, печень -- на правой. Но на каждые 7--12 тыс. человек встречаются люди, у которых все или часть внутренних органов расположены зеркально, т. е. наоборот.

Третий вопрос -- это вопрос о свойствах П- и Л-форм. Уже приведенные примеры дают понять, что в живой природе целый ряд свойств у П- и Л-форм неодинаковы. Так, на примерах с моллюсками, фасолью и антибиотиками была показана разница в питании, скорости роста и антибиотической активности у их П- и Л-форм.

Такая черта П- и Л-форм живой природы имеет очень большое значение: она позволяет с совершенно новой стороны резко отличить живые организмы от всех тех П- и Л-тел неживой природы, которые по своим свойствам так или иначе равны, например, от элементарных частиц.

В чем же причина всех этих особенностей диссимметрических тел живой природы?

Было установлено, что, выращивая микроорганизмы бациллюс микоидес на агар-агаре с П- и Л-соединениями (сахарозой, винной кислотой, аминокислотами), Л-колонии его можно превратить в П-, а П- в Л-формы. В ряде случаев эти изменения носили длительный, возможно, наследственный характер. Эти опыты говорят о том, что внешняя П- или Л-форма организмов зависит от обмена веществ и участвующих в этом обмене П- и Л-молекул.

Иногда превращения П- в Л-формы и наоборот происходят без вмешательства человека.

Академик В. И. Вернадский отмечает, что все раковины ископаемых моллюсков фузус антиквуус, найденные в Англии, левые, а современные раковины правые. Очевидно, причины, вызывавшие такие перемены, менялись в течение геологических эпох.

Конечно, смена видов симметрии по мере эволюции жизни происходила не только у диссимметрических организмов. Так, некоторые иглокожие когда-то были двустороннесимметричными подвижными формами. Затем они перешли к сидячему образу жизни и у них выработалась радиальная симметрия (правда, личинки их до сих пор сохранили двустороннюю симметрию). У части иглокожих, вторично перешедших к активному образу жизни, радиальная симметрия вновь заменилась билатеральной (неправильные ежи, голотурии).

До сих пор мы говорили о причинах, определяющих форму П- и Л-организмов и их органов. А почему эти формы встречаются не в равных количествах? Как правило, бывает больше либо П-, либо Л-форм. Причины этого не известны. Согласно одной очень правдоподобной гипотезе причинами могут быть диссимметрические элементарные частицы, например преобладающие в нашем мире правые нейтрино, а также правый свет, который в небольшом избытке всегда существует в рассеянном солнечном свете. Все это первоначально могло создать неодинаковую встречаемость правых и левых форм диссимметрических органических молекул, а затем привести к неодинаковой встречаемости П- и Л-организмов и их частей.

Таковы лишь некоторые вопросы биосимметрики -- науки о процессах симметризации и диссимметризации в живой природе.















1 из 14

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

О, симметрия! Гимн тебе пою! О, симметрия! Гимн тебе пою! Тебя повсюду в мире узнаю. Ты в Эйфелевой башне, в малой мошке, Ты в елочке, что у лесной дорожки. С тобою в дружбе и тюльпан, и роза, И снежный рой – творение мороза! Понятие симметрии хорошо знакомо и играет важную роль в повседневной жизни. Многим творениям человеческих рук умышленно придается симметричная форма как из эстетических, так и практических соображений. В древности слово «симметрия» употреблялось как «гармония», «красота». Действительно, по-гречески оно означает «соразмерность, пропорциональность, одинаковость в расположении частей»

№ слайда 4

Описание слайда:

№ слайда 5

Описание слайда:

Центральная и осевая симметрии Центральная симметрия - Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией. Осевая симметрия - Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

№ слайда 6

Описание слайда:

№ слайда 7

Описание слайда:

Проявление симметрии в живой природе Красота в природе не создаётся, а лишь фиксируется, выражается. Рассмотрим проявление симметрии с «глобального», а именно с нашей планеты Земля. То, что Земля - шар, стало известно образованным людям еще в древности. Земля в представлении большинства начитанных людей до эпохи Коперника была центром мироздания. Поэтому прямые, проходящие через центр Земли, они считали центром симметрии Вселенной. Поэтому даже макет Земли – глобус имеет ось симметрии.

№ слайда 8

Описание слайда:

Почти все живые существа построены по законам симметрии, недаром в переводе с греческого слово «симметрия» означает «соразмерность». Почти все живые существа построены по законам симметрии, недаром в переводе с греческого слово «симметрия» означает «соразмерность». Среди цветов, например, наблюдается поворотная симметрия. Многие цветы можно повернуть так, что каждый лепесток займет положение соседнего, цветок совместится с самим собой. Минимальный угол такого поворота для различных цветов неодинаков. Для ириса он равен 120°, для колокольчика – 72°, для нарцисса – 60°.

№ слайда 9

Описание слайда:

В расположении листьев на стеблях растений наблюдается винтовая симметрия. Располагаясь винтом по стеблю, листья как бы раскидываются в разные стороны и не заслоняют друг друга от света), хотя сами листья тоже имеют ось симметрии В расположении листьев на стеблях растений наблюдается винтовая симметрия. Располагаясь винтом по стеблю, листья как бы раскидываются в разные стороны и не заслоняют друг друга от света), хотя сами листья тоже имеют ось симметрии

№ слайда 10

Описание слайда:

Рассматривая общий план строения какого-либо животного, мы замечаем обычно известную правильность в расположении частей тела или органов, которые повторяются вокруг некоторой оси или занимают одно и то же положение по отношению к некоторой плоскости. Эту правильность называют симметрией тела. Явления симметрии столь широко распространены в животном мире, что весьма трудно указать группу, в которой никакой симметрии тела подметить нельзя. Симметрией обладают и маленькие насекомые, и крупные животные. Рассматривая общий план строения какого-либо животного, мы замечаем обычно известную правильность в расположении частей тела или органов, которые повторяются вокруг некоторой оси или занимают одно и то же положение по отношению к некоторой плоскости. Эту правильность называют симметрией тела. Явления симметрии столь широко распространены в животном мире, что весьма трудно указать группу, в которой никакой симметрии тела подметить нельзя. Симметрией обладают и маленькие насекомые, и крупные животные.

№ слайда 11

Описание слайда:

Проявление симметрии в неживой природе В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают поворотной симметрией и, кроме того, зеркальной симметрией. А что такое кристалл? Твердое тело, имеющее естественную форму многогранника. Соль, лед, песок и т.д. состоят из кристаллов. Прежде всего Ромэ-Делиль подчёркивал правильную геометрическую форму кристаллов исходя из закона постоянства углов между их гранями. Почему же так красивы и привлекательны кристаллы? Их физические и химические свойства определяются их геометрическим строением. В кристаллографии (науке о кристаллах) существует даже раздел, который называется «Геометрическая кристаллография». В 1867 году генерал от артиллерии, профессор Михайловской академии в Петербурге А.В. Гадолин строго математически вывел все сочетания элементов симметрии, характеризующие кристаллические многогранники. Всего существует 32 вида симметрий идеальных форм кристалла.

№ слайда 14

Описание слайда:

Осевая симметрия и понятие совершенства

Осевая симметрия присуща всем формам в природе и является одним из основополагающих принципов красоты. С древнейших времен человек пытался

постигнуть смысл совершенства. Впервые обосновали это понятие художники, философы и математики Древней Греции. Да и само слово "симметрия" было придумано ими. Обозначает оно пропорциональность, гармоничность и тождественность частей целого. Древнегреческий мыслитель Платон утверждал, что прекрасным может быть только тот объект, который симметричен и соразмерен. И действительно, «радуют глаз» те явления и формы, которые имеют пропорциональность и завершенность. Их мы называем правильными.

Осевая симметрия как понятие

Симметрия в мире живых существ проявляется в закономерном расположении одинаковых частей тела относительно центра или оси. Чаще в

природе встречается осевая симметрия. Она обуславливает не только общее строение организма, но и возможности его последующего развития. Геометрические формы и пропорции живых существ формирует «осевая симметрия». Определениеее формулируется следующим образом: это свойство объектов совмещаться при различных преобразованиях. Древние считали, что принципом симметричности в наиболее полном объеме обладает сфера. Эту форму они полагали гармоничной и совершенной.

Осевая симметрия в живой природе

Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он зеркально дублируется с обеих сторон. Это означает, что существует некая линия, по которой животные и люди могут быть визуально поделены на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия. Любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Наличие различных форм также обусловлено закономерной необходимостью.

Осевая симметрия в неживой природе

В мире нас повсюду окружают такие явления и предметы, как: тайфун, радуга, капля, листья, цветы и т.д. Их зеркальная, радиальная, центральная, осевая симметрия - очевидны. В значительной степени она обусловлена явлением гравитации. Часто под понятием симметрия понимается регулярность смены каких-либо явлений: день и ночь, зима, весна, лето и осень и так далее. Практически, это свойство существует везде, где наблюдается упорядоченность. Да и сами законы природы - биологические, химические, генетические, астрономические, подчинены общим для нас всех принципам симметрии, поскольку имеют завидную системность. Таким образом, сбалансированность, тождественность как принцип имеет всеобщий масштаб. Осевая симметрия в природе - это один из «краеугольных» законов, на котором базируется мироздание в целом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Всероссийский к онкурс ученических рефератов «Кругозор»

МОУ «СОШ с. Петропавловка Дергачёвского района

Саратовской области »

РЕФЕРАТ

по математике , биологии, экологии на тему:

«Симметрия в природе»

учащийся 6 класса МОУ

Руководители: Кутищева Нина Семеновна,

Руденко Людмила Викторовна,

Введение

1. Теоретическая часть

1.1.1 Развивающее учение о симметрии

1.1.2 Осевая симметрия фигур

1.1.3 Центральная симметрия

1.1.4 Симметрия относительно плоскости

2. Практическая часть

2.2 Обоснование причины симметрии у растений

Заключение

Литература

симметрия растение геометрия точка

Введение

«Симметрия является той идеей, с помощью

которой человек веками пытается объяснить

и создать порядок, красоту и совершенство» Герман Вейль.

Летом я отдыхал на берегу Волги в замечательном местечке Саратовской области «Чардым». Меня, жителя степного Заволжья, поразило окружавшее буйство зелени, разнообразие растений, и я с интересом рассматривал окружающую меня природу. Я невольно задался вопросом: а нет ли чего-то общего в формах растений, животных? Возможно, существуют какая-то закономерность, какие-то причины, придающие такое неожиданное сходство самым разнообразным листьям, цветам, животному миру? Внимательно приглядываясь к окружающей природе, я заметил, что форма листьев всех растений подчиняется строгой закономерности: листок как бы склеен из двух более или менее одинаковых половинок. Тем же свойством обладают и бабочки. Мы их можем мысленно разделить вдоль на две зеркально равные части.

На уроках математики мы рассматривали симметрию на плоскости относительно точки и прямой, фигуры в пространстве, симметричные относительно плоскости. Так вот оно в чём дело! Вот она закономерность, которую я чувствовал в своих наблюдениях, но не мог объяснить! Законы симметрии - вот чем можно объяснить такую похожесть в листьях, цветах, животном мире.

И я задался целью выяснить: существует ли симметрия в царстве растений и чем она обусловлена. Для ее реализации мною были сформулированы следующие задачи:

1. Познакомиться подробнее с геометрическими законами симметрии.

2. Выявить причины, обуславливающие симметрию в природе.

1. Теоретическая часть

1.1 Основные понятия о симметрии и геометрии растений

1.1.1 Развивающееся учение о симметрии

Слово «симметрия» от греческого symmetria -- соразмерность. Именно она позволит охватить самые разнообразные тела с единых геометрических позиций.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Знаменитый академик В.И. Вернадский считал, что «… представление о симметрии слагалось в течение десятков, сотен, тысяч поколений. Правильность его проверена реальным опытом и наблюдением, бытом человечества в разнообразнейших природных условиях.

Понятие «симметрия» выросло на изучении живых организмов и живого вещества, в первую очередь человека. Само понятие, связанное с понятием красоты или гармонии, было дано великими греческими ваятелями, и слово «симметрия» этому явлению отвечающее, приписывается скульптуру Пифагору из Регнума (Южная Италия, тогда Великая Греция), жившему в V веке до нашей эры».

А другой известный академик А.В. Шубников (1887-1970) в предисловии к своей книге «Симметрия» писал: «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но и в известной мере и уверенностью человека в большей пригодности для практики правильных форм.

Уверенность эта продолжает существовать и до сих пор, находя свое отражение во многих областях человеческой деятельности: искусстве, науке, технике и т.д.».

Но какое же значение заключено в этом, безусловно, классическом понятии? Существует множество определений симметрии:

1. «Словарь иностранных слов»: «Симметрия - [греч. symmetria] - полное зеркальное соответствие в расположении частей целого относительно средней линии, центра; соразмерность».

2. «Краткий Оксфордский словарь»: «Симметрия - красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью».

3. «Словарь С.И. Ожегова»: «Симметрия - соразмерность, пропорциональность частей чего-нибудь, расположенных по обе стороны от середины, центра».

4. В.И. Вернадский. «Химическое строение биосферы Земли и ее окружения»: «В науках о природе симметрия есть выражение геометрически пространственных правильностей, эмпирически наблюдаемых в природных телах и явлениях. Она, следовательно, проявляется, очевидно, не только в пространстве, но и на плоскости и на линии».

Но наиболее полным и обобщающим все вышеперечисленные определения мне кажется мнение Ю.А. Урманцева: «Симметрией называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях. Другими словами, про симметричную фигуру можно сказать: «Eadem mutate resurgo» - «Измененная, я воскресаю той же самой» - надпись под очаровавшей Якоба Бернулли (1654-1705) логарифмической спиралью».

1.1.2 Осевая симметрия фигур

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре.

Рассматривая различные фигуры, мы замечаем, что некоторые из них симметричны относительно оси, т.е. отображаются на себя при симметрии относительно этой оси.

Ось симметрии делит такую фигуру на две симметричные фигуры расположенные в разных полуплоскостях определяемых осью симметрии. (рис. 1.)

Некоторые фигуры имеют несколько осей симметрии. Например круг (рис. 2) симметричен относительно любой прямой проходящей через его центр. Перегибанием чертежа по диаметру начерченного круга можно убедиться в том, что две части круга совпадают. Поэтому любой диаметр лежит на оси симметрии круга.

Отрезок имеет две оси симметрии: он симметричен относительно перпендикулярной к нему прямой, проходящей через его середину, и относительно прямой, на которой этот отрезок лежит (рис. 3).

1.1.3 Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 .

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

Центральная симметрия как частный вид поворота вокруг заданной точки, обладает всеми свойствами поворота. В частности, при центральной симметрии сохраняются расстояния, поэтому центральная симметрия есть перемещение. Отсюда следует, что если одна из двух фигур отображается на другую центральной симметрией, то эти фигуры равны.

Прямая, проходящая через центр симметрии отображается центральной симметрией на себя.

Для каждой точки плоскости существует единственная ей симметричная точка относительная данного центра; если точка А совпадает с центром симметрии то и симметричная ей точка В совпадает с центром симметрии.

Подобно тому как осевая симметрия однозначно определяется своей осью, так и центральная симметрия однозначно определяется своим центром.

Некоторые фигуры имеют центр симметрии - это значит, что для каждой точки этой фигуры центрально симметричная ей точка также принадлежит этой фигуре. Такие фигуры называют центрально-симметричными. Например, отрезок - центрально симметричная фигура, центром симметрии которой служит его середина; прямая - центрально-симметричная фигура относительно любой ее точки; окружность - центрально-симметричная фигура относительно ее центра; пара вертикальных углов есть центрально-симметричная фигура с центром симметрии в общей вершине углов.

1.1.4 Симметрия относительно плоскости (зеркальная симметрия)

Две точки А и А1 называются симметричными относительно плоскости б, если эта плоскость проходит через середину отрезка АА1 и перпендикулярна к нему (рис. 4).

Размещено на http://www.allbest.ru/

Фигура называется симметричной относительно плоскости б, если для каждой точки фигуры симметричная ей точка относительно плоскости, также принадлежит этой фигуре (рис. 5).

Размещено на http://www.allbest.ru/

В дальнейшем чаще всего мы будем иметь дело с тремя типами элементов симметрии: плоскость, оси, и центр.

Итак, мы познакомились с исчерпывающим перечнем элементов симметрии. В нашем распоряжении имеется полный набор разных элементов симметрии для конечных фигур. Для полной характеристики таких фигур необходимо учитывать совокупности всех элементов симметрии, присутствующих на данном объекте.

1.2 Форма и симметрия растений

С осевой симметрией мы встречаемся не только в геометрии, но и в природе. В биологии принято и правильно говорить не об осевой, а о двусторонней, билатеральной симметрии или зеркальной симметрии пространственного объекта. Двусторонняя симметрия характерна для большинства многоклеточных животных и возникла в связи с активным передвижением. Также двусторонней симметрией обладают насекомые и некоторые растения. К примеру, форма листка не является случайной, она строго закономерна. Он как бы склеен из двух более или менее одинаковых половинок. Одна из этих половинок расположена зеркально относительно другой, совсем так, как располагаются друг относительно друга, отражение какого-либо предмета в зеркале и сам предмет. Для того, чтобы убедиться в сказанном, поставим зеркальце с прямым краем на линию, идущую вдоль черенка и разделяющую пластинку листка пополам. Заглянув в зеркальце, мы увидим, что отражение правой половины листка более или менее точно заменяют его левую половину и, наоборот, левая половина листка в зеркальце как бы перемещается на место правой половины. Плоскость, разделяющая листок на две зеркально равные части называется плоскостью симметрии. Ботаники называют такую симметрию билатеральной или дважды боковой. Но не только древесный листок обладает такой симметрией. Мысленно можно разрезать на две зеркально равные части обыкновенную гусеницу. Да и нас самих можно разделить на две равные половины. Всё, что растёт и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии. Эта же симметрия сохраняется у организмов, получивших возможность перемещаться. Хоть и без определённой направленности. К таким существам относятся морские звёзды и ежи.

Лучевая симметрия характерна, как правило, для животных, ведущих прикреплённый образ жизни. К таким животным относится гидра. Если вдоль тела гидры провести ось, то её щупальца будут расходиться от этой оси во все стороны, как лучи. Если рассмотреть лепестки ромашки, то можно увидеть, что они имеют тоже плоскость симметрии. Это далеко не всё. Ведь лепестков много и вдоль каждого можно провести плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, и все они пересекаются в его центре. Этот целый веер или пучок пересекающихся плоскостей симметрии. Сходным образом можно охарактеризовать и геометрию подсолнечника, василька, колокольчика. Такая симметрия, как у ромашек, грибов, ели называется радиально-лучевой. В морской среде такая симметрия не препятствует направленному плаванью животных. Такой симметрией обладает медуза. Выталкивающая из-под себя воду нижними краями тела, похожими по форме на колокол(морские ежи, звёзды). Таким образом, можно сделать вывод всё, что растёт или движется по вертикали вниз или вверх относительно земной поверхности, подчиняется радиально-лучевой симметрии.

Характерная для растений симметрия конуса хорошо видна на примере любого дерева.

Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных.

Весьма редко тело растения построено одинаково по всем направлениям. По большей части в нем можно различить верхний (передний) и нижний (задний) конец. Линия, соединяющая оба эти конца, именуется продольной осью. По отношению к этой продольной оси органы и ткани растения могут быть распределены различно.

1) Если через продольную ось можно провести не менее двух плоскостей, делящих рассматриваемую часть растения на одинаковые симметричные половины, то расположение именуют лучевым (многосимметрическое расположение). Большинство корней, стеблей и цветов построены по лучевому типу.

2) Если через продольную ось можно провести лишь одну плоскость, делящую растение на симметричные половины, то говорят о дорзивентральном (моносимметрическом) расположении. При отсутствии плоскостей симметрии орган именуют асимметрическим. Наконец, бисимметрическими или билатеральными называют такие органы, у которых можно различить правую и левую, переднюю и заднюю стороны, причем правая симметрична левой, передняя - задней, но правая и передняя, левая и задняя совершенно различны. Таким образом, здесь имеется две неодинаковые плоскости симметрии. Такое расположение получается, например, если цилиндрический орган будет сплющен в одном каком-либо направлении. Так, бисимметричны уплощенные стебли кактусов Opuntia, бисимметрично слоевище многих морских водорослей, таких, как Fucus, Laminaria и проч. Бисимметричные органы образуются обыкновенно из лучевых, что особенно хорошо видно на кактусах или на фукусе. Что касается в частности цветов, то лучевые чаще называются звездчатыми (актиноморфными), а дорзивентральные - зигоморфными.

2. Практическая часть

2.1 Особенности каждого типа симметрии

Два вида симметрии с необычным упорством повторяются вокруг нас. В этом убедился, просматривая фотографии, сделанные во время отдыха.

Меня окружали различные цветы, деревья. Подул ветерок, и листок с дерева упал мне прямо на рукав. Форма его не является случайной, она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок. Одна из этих половинок расположена зеркально относительно другой, совсем так, как располагаются друг относительно друга отражение какого- либо предмета в зеркале и сам предмет. Чтобы убедиться в этом, я поставил карманное зеркальце с прямым краем на линию, идущую вдоль черенка и разделяющую пластинку листа пополам. Заглянув в зеркальце, я увидел, что отражение правой половины листа более или менее точно заменяет его левую половину и, наоборот, левая половина листка в зеркальце как бы перемещается на место правой половины.

Плоскость, разделяющая листок на две зеркально равные части (которая сейчас совпадает с плоскостью зеркала), называется «плоскостью симметрии». Ботаники и зоологи называют такую симметрию билатеральной (в переводе с латинского дважды боковой).

Только ли древесный листок обладает такой симметрией?

Если посмотреть на красавицу бабочку с яркой расцветкой, она тоже состоит из двух одинаковых половинок. Даже пятнистый узор на ее крыльях подчиняется такой геометрии.

И выглянувший из травы жучок, и промелькнувшая мошка, и сорванная ветка, - все подчиняется «билатеральной симметрии». Итак, повсюду в лесу мы наталкиваемся на билатеральную симметрию. Может быть любое существо обладает плоскостью симметрии и следовательно, подходит тем самым под билатеральную симметрию.

На первый взгляд может показаться, что подходит, но не все так просто, как кажется. Возле куста скромно выглядывает из травы обыкновенный поповник (ромашка). Я сорвал его и рассмотрел. Вокруг желтой середки, как лучи вокруг солнышка на детском рисунке, расположены белые лепестки.

Имеет ли такое «цветочное солнышко» плоскость симметрии? Конечно! Без всякого труда можно его разрезать на две зеркально равные половинки по линии, проходящей через центр цветка и продолжающейся воль середины любого из лепестков или между ними. Это, однако, не все. Ведь лепестков-то много, и вдоль каждого лепестка можно обнаружить плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, и все они пересекаются в его центре. Сходным образом, можно охватить и геометрию подсолнечника, василька, колокольчика.

Все то, что растет и движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии.

Этому всеобщему закону послушны не только растения, но и животные.

2.2 Обоснование причин симметрии у растений

Мною была проведена исследовательская работа, цель которой выяснить причины, обусловливающие симметрию в царстве растений. В две прозрачные трубки я поместил проростки бобов. Одну трубку расположил в горизонтальном положении, а другую - в вертикальном. Через неделю обнаружил, что, как только корень и стебель выросли за пределы горизонтально расположенной трубки, корень стал расти строго вниз, а стебель вверх. Я считаю, что рост корня вниз обусловлен земным притяжением; рост стебля вверх - влиянием света. Опыты, проводимые космонавтами на борту орбитальной станции в условиях невесомости, показали, что при отсутствии силы тяжести привычная пространственная ориентация у проростков нарушается. Следовательно, в условиях земного притяжения наличие симметрии позволяет растениям занять устойчивое положение.

Вывод: Чаще всего центральная симметрия встречается у цветковых и у голосеменных в листьях. У осевой симметрии наибольшее количество растений - это водоросли (корень и листья), зеленые мхи (корень, стебель, листья), хвощи (корень, стебель, листья), плауны (корень, стебель, листья), папоротники (корень, листья), голосеменные и цветковые. У зеркальной симметрии встречаются такие виды растений, как папоротники (листья), голосеменные (стебель, плоды) и цветковые.

Что же является основной причиной возникновения различной симметрии у растений? Это сила земного притяжения, или сила тяжести.

Изучение геометрии, биологии и физики в старших классах помогут мне более глубоко выяснить причины симметрии в природе, определить тип симметрии у любого растения.

Заключение

Трудно найти человека, который не имел бы какого-либо представления о симметрии, объясняющей наличие определенного порядка, закономерности в расположении частей окружающего мира. В каждом цветочке есть сходство с другими, но есть и различие.

Рассмотрев и изучив вышеизложенное на страницах реферата, я теперь могу утверждать: все, что растет по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии; все то, что растет горизонтально или наклонно по отношению к земной поверхности подчиняется билатеральной симметрии. Так же я на практике доказал, что упорядоченность и пропорциональность растений обусловлена двумя факторами:

Земное притяжение;

Влияние света.

Знание геометрических законов природы имеют огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить их на пользу людям.

В своём реферате я больше внимания уделил симметрии живой природы, но это только малая часть, доступная для моего понимания. В дальнейшем я хотел бы изучить мир симметрии более глубоко.

Источники

1. Атанасян Л.С. Геометрия 7-9. М.: Просвещение, 2004. с. 110.

2. Атанасян Л.С. Геометрия 10-11. М.: Просвещение, 2007. с. 68.

3. Вернадский В.И.. Химическое строение биосферы Земли и ее окружения. М., 1965.

4. Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991. с. 135.

5. Шубников А.В.. Симметрия. М., 1940.

6. Урманцев Ю.А. Симметрия в природе и природа симметрии. М., Мысль, 1974. с. 230.

7. Шафрановский И.И. Симметрия в природе. 2-е изд., перераб. Л.

8. http://kl10sch55.narod.ru/kl/sim.htm#_Toc157753210.

9. http://www.wikiznanie.ru/ru-wz/index.php/.

Размещено на Allbest.ru

...

Подобные документы

    Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.

    реферат , добавлен 14.03.2011

    Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.

    реферат , добавлен 25.06.2009

    Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.

    презентация , добавлен 23.09.2013

    Понятие симметрии и особенности ее отражения в различных сферах: геометрии и биологии. Ее разновидности: центральная, осевая, зеркальная и вращения. Специфика и направления исследования симметрии в человеческом теле, природе, архитектуре, быту, физике.

    презентация , добавлен 13.12.2016

    Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.

    презентация , добавлен 30.10.2014

    Понятие отражательной и вращательной осевых симметрий в евклидовой геометрии и в естественных науках. Примеры осевой симметрии - бабочка, снежинка, Эйфелева башня, дворцы, лист крапивы. Зеркальное отражение, радиальная, аксиальная и лучевая симметрии.

    презентация , добавлен 17.12.2013

    Понятие симметрии в математике, ее виды: поступательная, вращательная, осевая, центральная. Примеры симметрии в биологии. Ее проявления в химии в геометрической конфигурации молекул. Симметрия в искусствах. Простейший пример физической симметрии.

    презентация , добавлен 14.05.2014

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    Понятие и свойства симметрии, ее типы: центральная и осевая, зеркальная и поворотная. Распространенность симметрии в живой природе. Гомотетия (преобразование подобие). Оценка роли и значения данного явления в химии, архитектуре, технических объектах.

    презентация , добавлен 04.12.2013

    Системы обозначения видов симметрии. Правила записи международного символа точечной группы. Теоремы к выбору кристаллографических осей, правила установки. Кристаллографические символы узлов, направлений и граней. Закон рациональности отношения параметров.