Пирамида чисел экология. Пирамиды численности, биомассы, энергии

В любой трофической цепи не вся пища используется на рост особи, т.е. на накопление ее биомассы. Часть ее расходуется на удовлетворение энергетических затрат организма (дыхание, движение, размножение, поддержание температуры тела).

При этом биомасса одного звена не может быть полностью переработана последующим, и в каждом последующем звене трофической цепи происходит уменьшение биомассы.

В среднем считается, что лишь порядка 10% биомассы и связанной в ней энергии переходит с каждого трофического уровня на следующий, т.е. продукция организмов каждого последующего трофического уровня всегда меньше в среднем в 10 раз продукции предыдущего уровня.

Так, например, в среднем из 1000 кг растений образуется 100 кг биомассы растительноядных животных (консументов первого порядка). Плотоядные животные (консументы второго порядка), поедающие растительноядных, могут синтезировать из этого количества 10 кг своей биомассы, а хищники (консументы третьего порядка), которые питаются плотоядными животными, синтезируют только 1 кг своей биомассы.

Таким образом, суммарная биомасса, заключенная в ней энергия, а также численность особей прогрессивно уменьшаются по мере восхождения по трофическим уровням.

Эта закономерность получила название правила экологической пирамиды.

Данное явление впервые было изучено Ч.Элтоном (1927 г.) и названо им пирамидой чисел или пирамидой Элтона.

Экологическая пирамида - это графическое изображение соотношения между продуцентами и консументами разных порядков, выраженное в единицах биомассы(пирамида биомасс), числа особей (пирамида численности) или заключенной в массе живого вещества энергии (пирамида энергии) (рис.6).

Рис.6. Схема экологической пирамиды.

Экологическая пирамида выражает трофическую структуру экосистем в геометрической форме.

Различают три основных типа экологических пирамид: пирамида чисел (численности), пирамида биомассы и пирамиды энергии.

1) пирамиды чисел , основанные на подсчете организмов каждого трофического уровня; 2) пирамиды биомассы , в которых используется суммарная масса (обычно сухая) организмов на каждом трофическом уровне; 3) пирамиды энергии , учитывающие энергоемкость организмов каждого трофического уровня.

Пирамиды энергии считаются самыми важными, поскольку они непосредственно обращаются к основе пищевых отношений - потоку энергии, необходимой для жизнедеятельности любых организмов.

Пирамида чисел (численности)

Пирамида чисел (численности) или пирамида Элтона отражает численность отдельных организмов на каждом трофическом уровне.

Пирамида численности представляет собой наиболее простое приближение к изучению трофической структуры экосистемы.

При этом сначала подсчитывают число организмов на данной территории, сгруппировав их по трофическим уровням и представив в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема).

Пирамида численности может иметь правильную форму, т.е. суживаться кверху (правильная или прямая), а может быть и перевернутой вершиной вниз (перевернутая или обращенная) рис.7.

правильная (прямая) перевернутая (обращенная)

(пруд, озеро, луг, степь, пастбище и др.) (лес умеренного пояса летом и др.)

Рис.7. Пирамида численности (1 – правильная; 2- перевернутая)

Пирамида численности имеет правильную форму, т.е. сужается при продвижении от уровня продуцентов к более высоким трофическим уровням, для водных экосистем (пруд, озеро и др.) и наземных экосистем (луг, степь, пастбище и др.).

Например:

    тысяча особей фитопланктона в небольшом пруду может прокормить 100 особей мелких ракообразных – консументов первого порядка, которые в свою очередь прокормят 10 особей рыб – консументов второго порядка, которых будет достаточно, чтобы прокормиться 1 окуню – консументу третьего порядка.

Пирамида численности для некоторых экосистем, например для леса умеренного пояса, имеет перевернутую форму.

Например:

    в лесу умеренного пояса летом небольшое количество больших деревьев - продуцентов снабжает пищей огромное количество небольших по размеру насекомых-фитофагов и птиц - консументов первого порядка.

Однако в экологии пирамида численности употребляется редко, так как из-за большого числа особей на каждом трофическом уровне очень трудно отобразить структуру биоценоза в одном масштабе.

Пирамида биомассы

Пирамида биомассы отражает более полно пищевые взаимоотношения в экосистеме, так как в ней учитывается суммарная масса организмов (биомасса) каждого трофического уровня.

Прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема.

Пирамиды биомассы, так же, как и пирамиды численности, могут быть не только правильной формы, но и перевернутыми (обращенными) рис.8.

Консументы 3 порядка

Консументы 2 порядка

Консументы 1 порядка

Продуценты

правильная (прямая) перевернутая (обращенная)

(наземные экосистемы: (водные экосистемы: озеро,

луг, поле и др.) пруд и особенно морские

экосистемы)

Рис.7. Пирамида биомасс (1 – правильная; 2- перевернутая)

Для большинства наземных экосистем (луг, поле и др.) суммарная биомасса каждого последующего трофического уровня пищевой цепи уменьшается.

Это создает пирамиду биомасс, где существенно преобладают продуценты, а над ними располагаются постепенно уменьшающиеся трофические уровни консументов, т.е. пирамида биомасс имеет правильную форму.

Например:

    в среднем из 1000 кг растений образуется 100 кг тела растительноядных животных – консументов первого порядка (фитофагов). Плотоядные животные – консументы второго порядка, поедающие растительноядных, могут синтезировать из этого количества 10 кг своей биомассы. А хищники – консументы третьего порядка, питающиеся плотоядными животными, синтезируют только 1 кг своей биомассы.

В водных экосистемах (озеро, пруд и др.) пирамида биомасс может быть перевернутой, где биомасса консументов преобладает над биомассой продуцентов.

Это объясняется тем, что в водных экосистемах продуцентом является микроскопический фитопланктон, быстро растущий и размножающийся), который в достаточном количестве непрерывно поставляет живую пищу консументам, намного медленно растущим и размножающимся. Зоопланктон (или другие животные, питающиеся фитопланктоном) накапливают биомассу годами и десятилетиями, тогда как фитопланктон имеет крайне короткий период жизни (несколько дней или часов).

Одним из видов взаимоотношений между организмами в экосистемах являются трофические связи. Они показывают, как в экосистемах перемещается энергия по цепям питания. Моделью, демонстрирующей изменение количества энергии в звеньях цепей питания, является экологическая пирамида.

Строение пирамиды

Пирамида - это графическая модель. Её изображение делится на горизонтальные уровни. Число уровней соответствует числу звеньев в цепях питания.

Все цепи питания начинаются с продуцентов - автотрофных организмов, образующих органические вещества. Совокупность автотрофов экосистемы - то, что находится в основании экологической пирамиды.

Рис. 1. Экологическая пирамида численности

Обычно пищевая пирамида содержит от 3 до 5 уровней.

Последними звеньями цепей питания всегда бывают крупные хищники или человек. Таким образом, численность особей и биомасса на последнем уровне пирамиды самые низкие.

ТОП-2 статьи которые читают вместе с этой

Суть экологической пирамиды - в изображении прогрессивного уменьшения биомассы в цепях питания.

Условность модели

Следует понимать, что модель показывает реальность обобщённо. В жизни всё сложнее. Любой крупный организм, включая человека, может быть съеден и его энергия будет задействована в экологической пирамиде нетипичным образом.

Часть биомассы экосистемы всегда приходится на редуцентов, - организмы, разлагающие мёртвую органику. Редуценты поедаются консументами, частично возвращая энергию в экосистему.

Такие всеядные животные, как бурый медведь, выступают и как консумент первого порядка (поедает растения), и как редуцент (питается падалью), и как крупный хищник.

Виды

В зависимости от того, какая количественная характеристика уровней используется, существует три вида экологических пирамид:

  • численности;
  • биомассы;
  • энергии.

Правило 10 %

Согласно расчётам экологов, на каждый последующий уровень экологической пирамиды переходит 10 % биомассы или энергии предыдущего уровня. Остальные 90 % расходуются на процессы жизнедеятельности организмов и рассеиваются в виде теплового излучения.

Эту закономерность называют правилом экологической пирамиды энергии и биомассы.

Рассмотрим примеры. Из одной тонны зелёных растений формируется около 100 кг массы тела травоядных животных. При потреблении травоядных мелкими хищниками их масса увеличивается на 10 кг. Если мелкие хищники поедаются крупными, то масса тела последних возрастает на 1 кг.

Рис. 2. Экологическая пирамида биомассы

Цепь питания: фитопланктон - зоопланктон - мелкие рыбы - крупные рыбы - человек. Здесь уже 5 уровней и, чтобы масса человека увеличилась на 1 кг, необходимо, чтоб на первом уровне было 10 т фитопланктона.

Рис. 3. Экологическая пирамида энергии

Преимущества вершины

Виды, стоящие на вершине экологической пирамиды, имеют значительно больше шансов эволюционировать. В древние эпохи именно животные, занимавшие высший уровень в трофических взаимоотношениях развивались быстрее.

В мезозое млекопитающие занимали средние уровни экологической пирамиды и активно истреблялись хищными рептилиями. Только благодаря вымиранию динозавров они смогли подняться на верхний уровень и занять господствующее положение во всех экосистемах.

Что мы узнали?

Различные типы экологических пирамид показывают соотношения между продуцентами и консументами в данном биоценозе. Согласно закону распределения энергии в экологической пирамиде, на каждый последующий уровень переходит 10 % массы предыдущего.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 202.

Различают три способа составления экологических пирамид:

1. Пирамида численностей отражает численное соотношение особей разных трофических уровней экосистемы. Если организмы в пределах одного или разных трофических уровней сильно различаются между собой по размерам, то пирамида численностей дает искаженные представления об истинных соотношениях трофических уровней. Например, в сообществе планктона численность продуцентов в десятки и сотни раз больше численности консументов, а в лесу сотни тысяч консументов могут питаться органами одного дерева - продуцента.

2. Пирамида биомасс показывает количество живого вещества, или биомассы, на каждом трофическом уровне. В большинстве наземных экосистем биомасса продуцентов, т. е. суммарная масса растений наибольшая, а биомасса организмов каждого последующего трофического уровня меньше предыдущего. Однако в некоторых сообществах биомасса консументов I порядка бывает больше биомассы продуцентов. Например, в океанах, где основными продуцентами являются одноклеточные водоросли с высокой скоростью размножения, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы. Вместе с тем, вся образованная водорослями продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества. В связи с этим в океане пирамида биомасс имеет обратное соотношение, т. е. «перевернута». На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни хищников велика, скорость оборота их генераций, наоборот, мала, и в их теле задерживается значительная часть вещества, поступающего по цепям питания.

3. Пирамида энергии отражает величину потока энергии в цепи питания . На форму этой пирамиды не влияют размеры особей, и она всегда будет иметь треугольную форму с широким основанием внизу, как это диктуется вторым законом термодинамики. Поэтому пирамида энергии дает наиболее полное и точное представление о функциональной организации сообщества, о всех обменных процессах в экосистеме. Если пирамиды чисел и биомасс отражают статику экосистемы (количество и биомассу организмов в данный момент), то пирамида энергии -динамику прохождения массы пищи через цепи питания. Таким образом, основание в пирамидах чисел и биомасс может быть больше или меньше, чем последующие трофические уровни (в зависимости от соотношения продуцентов и консументов в различных экосистемах). Пирамида энергии всегда суживается кверху. Это обусловлено тем, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы. Поэтому каждый последующий уровень всегда будет меньше предыдущего. В наземных экосистемах уменьшение количества доступной энергии обычно сопровождается снижением численности и биомассы особей на каждом трофическом уровне. Вследствие таких больших потерь энергии на построение новых тканей и дыхание организмов цепи питания не могут быть длинными; обычно они состоят из 3-5 звеньев (трофических уровней).


Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение, поскольку продукция природных и искусственных сообществ (агроиенозов) является основным источником запасов пищи для человечества. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода необходимой для человека продукции.

Сукцессии и их виды.

Процесс, при котором сообщества видов растений и животных замещаются с течением времени другими, обычно более сложными сообществами, называется экологической сукцессией, или просто сукцессией.

Экологическая сукцессия обычно продолжается до тех пор, пока сообщество не станет стабильным и самообеспечивающимся. Экологи выделяют два вида экологических сукцессии: первичные и вторичные.

Первичная сукцессия - это последовательное развитие сообществ на участках, лишенных почв.

1-й этап – возникновение места, лишённого жизни;

2-ой этап – расселение на этом месте первых растительных, животных организмов;

3-ий этап – приживание организмов;

4-ый этап – конкуренция и вытеснение видов;

5-ый этап – преобразование организмами места обитания, постепенная стабилизация условий и отношений.

Широко известным примером первичной сукцессии является заселение застывшей лавыпосле извержения вулкана или склона после схода лавины, уничтожившей весь профиль почвы, участки открытой добычи полезных ископаемых, с которых снят верхний слой почвы и т.п. На таких бесплодных участках первичная сукцессия от голой скальной породы до зрелого леса может занять от сотен до тысяч лет.

Вторичная сукцессия - последовательное развитие сообществ в ареале, в котором естественная растительность была устранена или сильно нарушена, но почва не была уничтожена. Вторичная сукцессия начинается на месте разрушенного биоценоза (лес после пожара). Сукцессия происходит быстро, т.к. в почве сохраняются семена, части пищевых связей и происходит образование биоценоза. Если мы будем рассматривать сукцессию на брошенных землях, которые не используются в сельском хозяйстве, то можно видеть, что бывшие поля быстро покрываются разнообразными однолетними растениями. Сюда же могут попасть, преодолев иногда большие расстояния с помощью ветра или животных, семена древесных пород: сосны, ели, березы, осины. Вначале изменения происходят быстро. Затем, по мере появления растений, растущих более медленно, скорость сукцессии снижается. Всходы березы образуют густую поросль, которая затеняет почву, и даже если вместе с березой прорастают семена ели, ее всходы, оказавшись в весьма неблагоприятных условиях, сильно отстают от березовых. Березу называют «пионером леса», так как она почти всегда первой поселяется на нарушенных землях и обладает широким диапазоном приспособляемости. Березки в возрасте 2-3 лет могут достигать высоты 100-120 см, тогда как елочки в том же возрасте едва дотягивают до 10 см. Изменения касаются и животного компонента рассматриваемого биоценоза. На первых стадиях поселяются майские хрущи, березовые пяденицы, затем появляются многочисленные птицы: зяблики, славки, пеночки. Поселяются мелкие млекопитающие: землеройки, кроты, ежи. Изменение условий освещения начинает благоприятно сказываться на молодых елочках, которые ускоряют свой рост.

Стабильная стадия сукцессии, когда сообщество (биоценоз) сформировалось полностью и находится в равновесии с окружающей средой называется климакс. Климаксное сообщество способно к саморегуляции и может долго находиться в равновесном состоянии.

Таким образом происходит сукцессия, при которой вначале березовый, затем смешанный елово-березовый лес сменяется чистым ельником. Естественный процесс смены березняка ельником длится более 100 лет. Именно поэтому иногда процесс сукцессии называют вековой сменой.

18. Функции живого вещества в биосфере. Живое вещество – это совокупность живых организмов (биомассы Земли). Представляет собой открытую систему для которой характерны рост, размножение, распространение, обмен веществ и энергией с внешней средой, накопление энергии и передача её в цепях питания. Живое вещество выполняет 5 функций:

1. Энергетическая (способность поглощать солнечную энергию, превращать её в энергию химических связей и передавать по пищевым цепям)

2. Газовая (способность поддерживать постоянство газового состава биосферы в результате сбалансированности дыхания и фотосинтеза)

3. Концентрационная (способность живых организмов накапливать в своём теле определённые элементы окружающей среды, благодаря чему произошло перераспределение элементов и образование полезных ископаемых)

4. Окислительно-восстановительная (способность изменять степень окисления элементов и создавать разнообразие соединений в природе для поддержания разнообразия жизни)

5. Деструктивная (способность разлагать отмершее органическое вещество, благодаря чему осуществляется круговорот веществ)

  1. Водная функция живого вещества в биосфере связана с биогенным круговоротом воды, имеющим важное значение в круговороте воды на планете.

Выполняя перечисленные функции, живое вещество адаптируется к окружающей среде и приспосабливает её к своим биологическим (а если речь идёт о человеке, то и социальным) потребностям. При этом живое вещество и среда его обитания развиваются как единое целое, однако контроль над состоянием среды осуществляют живые организмы.

1. Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном : количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем . Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

2. Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов , где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.


Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

1. Уровень - травянистые растения,

2. Уровень - травоядные млекопитающие, например, зайцы

3. Уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород , а также АТФ . Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана , на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, - это пищевые связи хищника и жертвы: одни - поедающие, другие - поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т.п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

Пищевая цепь - это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе малой части высокоэффективной солнечной энергии, поступившей на Землю. В конечном итоге эта цепь возвращается в окружающую природную среду в виде низкоэффективной тепловой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.

Каждое звено пищевой цепи называют трофическим уровнем. Первый трофический уровень занимают автотрофы, иначе именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего - вторичными консументами и т.д. Обычно бывают четыре или пять трофических уровней и редко более шести (рис. 1).

Существуют два главных типа пищевых цепей - пастбищные (или «выедания») и детритные (или «разложения»).

Рис. 1. Пищевые цепи биоценоза по Н.Ф. Реймерсу : обобщенная (а) и реальная (б)

Стрелками на рисунке 1 показано направление перемещения энергии, а цифрами - относительное количество энергии, приходящей на трофический уровень.

В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй - пастбищные животные (термин «пастбищные» охватывает все организмы, питающиеся растениями), а третий - хищники.

Так, пастбищными пищевыми цепями являются:

РАСТИТЕЛЬНЫЙ МАТЕРИАЛ (например, нектар) => МУХА => ПАУК =>

=> ЗЕМЛЕРОЙКА => СОВА

СОК РОЗОВОГО КУСТА => ТЛЯ => БОЖЬЯ КОРОВКА => ПАУК =>

=> НАСЕКОМОЯДНАЯ ПТИЦА => ХИЩНАЯ ПТИЦА.

Детритная пищевая цепь начинается с детрита по схеме:

ДЕТРИТ-> ДЕТРИТОФАГ -> ХИЩНИК

Характерными детритными пищевыми цепями являются:

ЛИСТОВАЯ ПОДСТИЛКА ЛЕСА => ДОЖДЕВОЙ ЧЕРВЬ => ЧЕРНЫЙ ДРОЗД =>

=> ЯСТРЕБ-ПЕРЕПЕЛЯТНИК

МЕРТВОЕ ЖИВОТНОЕ => ЛИЧИНКИ ПАДАЛЬНОЙ МУХИ => ТРАВЯНАЯ ЛЯГУШКА => ОБЫКНОВЕННЫЙ УЖ.

Концепция пищевых цепей позволяет в дальнейшем проследить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого-то одного типа, в природе встречаются редко.

Реальные пищевые связи намного сложнее, ибо животное может питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно характерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми цепями иллюстрирует предложенная Ю. Одумом модель потока энергии (рис. 2).

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

Рис. 2. Схема пастбищной и детритнои пищевых цепей (по Ю. Одуму)

Правило Линдемана (10%)

Сквозной поток энергии, проходя через трофические уровни биоценоза, постепенно гасится. В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10%, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент - консумент - редуцент) в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергии более низкими ее уровнями, например, от животных к растениям, намного слабее - не более 0,5% (даже 0,25%) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.

Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех ценозов. В водных биоценозах накопление многих токсичных веществ, в том числе хлорорганических пестицидов, коррелирует с массой жиров (липидов), т.е. явно имеет энергетическую подоснову.

Мангры

Пищевые цепи можно разделить на два типа. Пастбищная цепь начинается от зеленого растения и идет далее к пасущимся растительноядным животным и затем - к хищникам. Примеры пастбищных цепей приведены на иллюстрациях к параграфу 4.2. Детритная цепь идет от мертвого органического вещества (детрита) к микроорганизмам-редуцентам и животным, поедающим мертвые остатки (детритофагам), и затем - к хищникам, питающимся этими животными и микробами. На этом рисунке показан пример детритной пищевой цепи из тропиков; это цепь, начинающаяся от опадающих листьев мангров - деревьев и кустарников, растущих на периодически затопляемых приливами морских побережьях и в устьях рек. Их листья падают в солоноватые воды, заросшие мангровыми деревьями, и разносятся течением по обширной площади заливов. В воде на опавших листьях развиваются грибы, бактерии и простейшие, которых вместе с листьями поедают многочисленные организмы: рыбы, моллюски, крабы, рачки, личинки насекомых и круглые черви - нематоды. Этими животными питаются мелкие рыбы (например, гольяны), а их в свою очередь, поедает крупная рыба и хищные рыбоядные птицы.

ПИЩЕВАЯ ЦЕПЬ (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища - потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) через консументов (потребителей) к редуцентам (преобразователям мёртвой органики в неорганические вещества, усваиваемые продуцентами).

Различают 2 типа пищевых цепей - пастбищную и детритную. Пастбищная цепь начинается с зелёных растений, идёт к пасущимся растительноядным животным (консументы 1-го порядка) и затем к хищникам, добывающим этих животных (в зависимости от места в цепи - консументы 2-го и последующих порядков). Детритная цепь начинается с детрита (продукт распада органики), идёт к микроорганизмам, которые им питаются, а затем к детритофагам (животные и микроорганизмы, вовлечённые в процесс разложения отмирающей органики).

Примером пастбищной цепи может служить многоканальная её модель в африканской саванне. Первичными продуцентами являются травостой и деревья, консументами 1-го порядка - растительноядные насекомые и травоядные животные (копытные, слоны, носороги и др.), 2-го порядка - хищные насекомые, 3-го - плотоядные пресмыкающиеся (змеи и др.), 4-го - хищные млекопитающие и хищные птицы. В свою очередь детритофаги (жуки-скарабеи, гиены, шакалы, грифы и т. д.) на каждом из этапов пастбищной цепи разрушают туши погибших животных и остатки пищи хищников. Количество особей, включённых в пищевую цепь, в каждом её звене последовательно уменьшается (правило экологической пирамиды), т. е. число жертв всякий раз существенно превышает число их потребителей. Пищевые цепи не изолированы одна от другой, а переплетаются друг с другом, образуя пищевые сети.

Содддержание жизнедеятельности организмов и круговорот вещества в экосистемах, т. е. существование экосистем, зависит от постоянного притока энергии, необходимой всем организмам для их жизнедеятельности и самовоспроизведения (рис. 12.19).

Рис. 12.19. Поток энергии в экосистеме (по Ф. Рамаду, 1981)

В отличие от веществ, непрерывно циркулирующих по разным блокам экосистемы, которые всегда могут повторно использоваться, входить в круговорот, энергия может быть использована только раз, т. е. имеет место линейный поток энергии через экосистему.

Одностороний приток энергии как универсальное явление природы происходит в результате действия законов термодинамики. Первый закон гласит, что энергия может превращаться из одной формы (например, света) в другую (например, потенциальную энергию пищи), но не может быть создана или уничтожена. Второй закон утверждает, что не может быть ни одного процесса, связанного с превращением энергии, без потерь некоторой ее части. Определенное количество энергии в таких превращениях рассеивается в недоступную тепловую энергию, а следовательно, теряется. Отсюда не может быть превращений, к примеру, пищевых веществ в вещество, из которого состоит тело организма, идущих со 100-процентной эффективностью.

Таким образом, живые организмы являются преобразователями энергии. И каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конечном итоге вся энергия, поступающая в биотический круговорот экосистемы, рассеивается в виде тепла. Живые организмы фактически не используют тепло как источник энергии для совершения работы — они используют свет и химическую энергию.

Пищевые цепи и сети, трофические уровни

Внутри экосистемы содержащие энергию вещества создаются автотрофными организмами и служат пищей для гетеротрофов. Пищевые связи — это механизмы передачи энергии от одного организма к другому.

Типичный пример: животное поедает растения. Это животное, в свою очередь, может быть съедено другим животным. Таким путем может происходить перенос энергии через ряд организмов — каждый последующий питается предыдущим, поставляющим ему сырье и энергию (рис. 12.20).

Рис. 12.20. Биотический круговорот веществ: пищевая цепь

(по А. Г. Банникову и др., 1985)

Такая последовательность переноса энергии называется пищевой (трофической) цепью, или цепью питания. Место каждого звена в цепи питания является трофическим уровнем. Первый трофический уровень, как уже было отмечено ранее, занимают автотрофы, или так называемые первичные проду-з центы. Организмы второгого трофического уровня называются первичными консументами, третьего — вторичными консументами и т. д.

Обычно различают три типа пищевых цепей. Пищевая цепь хищников начинается с растений и переходит от мелких организмов к организмам все более крупных размеров. На суше пищевые цепи состоят из трех-четырех звеньев.

Одна из простейших пищевых цепей имеет вид (см. рис. 12.5):

растение ® заяц ® волк

продуцент ® травоядное ® плотоядное

Широко распространены и такие пищевые цепи:

растительный материал (например, нектар) ® муха ® паук ®

землеройка ® сова.

сок розового куста ® тля ® божья (тлевая) коровка ®

® паук ® насекомоядная птица ® хищная птица.

- (приносится течением - озеро, море; вносится человеком - сельскохозяйственные угодья, переносится ветром или осадками - растительные остатки на эродированных склонах гор).

Различия между экосистемой и биогеоценозом можно свести к следующим положениям:

1) биогеоценоз - понятие территориальное, относится к конкретным участкам суши и имеет определенные границы, совпадающие с границами фитоценоза. Характерная особенность биогеоценоза, на которую указывают Н.В. Тимофеев-Ресовский, А.Н. Тюрюканов (1966) - через территорию биогеоценоза не проходит ни одна существенная биоценотическая, почвенно-геохимическая, геоморфологическая и микроклиматическая граница.

Понятие экосистемы шире, чем понятие биогеоценоза; оно применимо к биологическим системам разной сложности и размеров; экосистемы часто не имеют определенного объема и строгих границ;

2) в биогеоценозе органическое вещество всегда продуцируют растения, поэтому основной компонент биогеоценоза - фитоценоз ;

В экосистемах органическое вещество не всегда создается живыми организмами, нередко поступает извне.

(приносится течением - озеро, море; вносится человеком - сельскохозяйственные угодья, переносится ветром или осадками - растительные остатки на эродированных склонах гор).

3) биогеоценоз потенциально бессмертен ;

Существование экосистемы может закончиться с прекращением прихода в нее вещества или энергии.

4) экосистема может быть и наземным и водным образованием;

Биогеоценоз всегда наземная или мелководная экосистема.

5) - в биогеоценозе всегда должен быть единый эдификатор (эдификаторная группировка или синузия), определяющий всю жизнь и строй системы.

В экосистеме их может быть несколько.

На ранних стадиях развития экосистема склона - это будущий лесной ценоз. Она состоит из группировок организмов с разными эдификаторами и довольно неоднородными условиями среды. Лишь в будущем на одну и ту же группировку могут оказывать влияние не только её эдификатор, но и эдификатор ценоза. И второй будет основным.

Таким образом, не каждая экосистема является биогеоценозом, но каждый биогеоценоз - экосистема , полностью соответствующая определению Тенсли.

Экологическая структура биогеоценоза

Каждый биогеоценоз слагается из определенных экологических групп организмов, соотношение которых отражает экологическую структуру сообщества, складывающуюся в течение длительного времени в определенных климатических, почвенно-грунтовых и ландшафтных условиях строго закономерно. Например, в биогеоценозах разных природных зон закономерно изменяется соотношение фитофагов (животных, питающихся растениями) и сапрофагов. В степных, полупустынных и пустынных районах фитофаги преобладают над сапрофагами, а в лесных сообществах, наоборот, сильнее развита сапрофагия. В глубинах океана основным типом питания является хищничество, тогда как на освещенной поверхности водоема преобладают фильтраторы, потребляющие фитопланктон, либо виды со смешанным питанием.

Зачастую изучение экологических пирамид вызывает большие затруднения у учащихся. На самом деле даже самые примитивные и легкие экологические пирамиды начинают изучать еще дошкольники и школьники в начальных классах. Экологии как науке в последние годы начали уделять большое количество внимания, поскольку эта наука в современном мире играет значимую роль. Экологическая пирамида - это часть экологии как науки. Для того чтобы разобраться, что это, необходимо прочитать данную статью.

Что такое экологическая пирамида?

Экологическая пирамида - это такой графический рисунок, который чаще всего изображают в форме треугольника. Такие модели изображают трофическую структуру биоценоза. Это значит, что экологические пирамиды отображают число особей, их биомассу или же количество той энергии, которая в них заключена. Каждая из них может демонстрировать какой-либо один показатель. Соответственно, это значит, что экологические пирамиды могут быть нескольких типов: пирамида, которая отображает число особей, пирамида, отражающая количество биомассы представленных особей, а также последняя экологическая пирамида, которая наглядно демонстрирует количество энергии, заключенной в этих особях.

Что такое пирамиды чисел?

Пирамида чисел (или же численностей) демонстрирует количество организмов на каждом трофическом уровне. Такая экологическая графическая модель может использоваться в науке, но крайне редко. Звенья в экологической пирамиде численностей можно изображать практически до бесконечности, то есть структуру биоценоза в одной пирамиде изобразить крайне трудно. Помимо этого на каждом трофическом уровне присутствует множество особей, из-за которых порой практически невозможно продемонстрировать цельную структуру биоценоза в одном, полном масштабе.

Пример построения пирамиды чисел

Для того чтобы понять пирамиду чисел и ее построение, необходимо выяснить, каких особей и какие взаимодействия между ними включает в себя данная экологическая пирамида. Примеры сейчас рассмотрим подробно.

Пусть основанием фигуры станет 1000 тонн травы. Этой травой, допустим за 1 год, смогут прокормиться в естественных условиях выживания порядка 26 миллионов особей кузнечиков или других насекомых. Кузнечики в данном случае будут находиться выше растительности и составлять уже второй трофический уровень. Третьим трофическим уровнем станут 90 тысяч лягушек, которые за год употребят в пищу расположенных ниже насекомых. Около 300 форелей смогут употребить этих лягушек за год, соответственно, они будут расположены на четвертом трофическом уровне в пирамиде. Взрослый человек будет расположен уже на вершине экологической пирамиды, он станет пятым и завершающим звеном в этой цепочке, то есть последним трофическим уровнем. Это произойдет потому, что за год человек сможет употребить в пищу порядка 300 форелей. В свою очередь, человек является высшим звеном в соответственно, уже его в пищу употребить не сможет никто. Как показано на примере, недостающие звенья в экологической пирамиде чисел невозможны.

Она может иметь самые разнообразные структуры в зависимости от экосистемы. Например, эта пирамида для экосистем суши может выглядеть практически так же, как и пирамида энергии. Это значит, что пирамида биомасс будет построена таким образом, что количество биомассы будет уменьшаться с каждым последующим трофическим уровнем.

Вообще пирамиды биомасс изучают главным образом студенты, потому что для понимания их необходимы некоторые знания в сферах биологии, экологии и зоологии. Данная экологическая пирамида - это такой графический рисунок, который представляет соотношение между процудентами (то есть производителями органических веществ из неорганических) и консументами (потребителями этих органических веществ).

и процуденты?

Для того чтобы наверняка понять принцип построения пирамиды биомасс, необходимо разобраться, кто такие консументы и процуденты.

Процудентами являются производители органических веществ из неорганических. Это растения. Например, листья растений используют углекислый газ (неорганическое вещество), а производят в результате фотосинтеза органическое вещество.

Консументы - потребители данных органических веществ. В экосистеме суши ими являются животные и люди, а в водных экосистемах - различные морские животные и рыбы.

Обращенные пирамиды биомасс

Обращенная пирамида биомасс имеет построение перевернутого вниз треугольника, то есть его основание уже, чем вершина. Такую пирамиду называют обращенной или перевернутой. Экологическая пирамида имеет данное построение в том случае, если биомасса процудентов (производителей органических веществ) меньше, чем биомасса консументов (потребителей органических веществ).

Как мы знаем, экологическая пирамида - это графическая модель той или иной экосистемы. Одной из важных экологических моделей является графическое построение потока энергии. Пирамида, которая отражает скорость и время прохождение пищи через называется пирамидой энергий. Она была сформулирована благодаря знаменитому американскому ученому, который являлся экологом и зоологом, - Реймонду Линдеману. Реймонд сформулировал закон (правило экологической пирамиды), который утверждал, что при переходе с низшего трофического уровня на последующий через представленные пищевые цепи проходит порядка 10 % (более или менее) энергии, которая поступила на предыдущий уровень в экологической пирамиде. А оставшаяся часть энергии, как правило, тратится на процесс жизнедеятельности, на воплощение этого процесса. А в результате самого процесса обмена в каждом звене организмы теряют порядка 90 % своей энергии.

Закономерность пирамиды энергий

На самом деле закономерность состоит в том, что через верхние трофические уровни проходит намного меньше (в несколько раз) энергии, чем через нижние. Именно по этой причине больших хищных зверей намного меньше, чем, к примеру, лягушек или насекомых.

Рассмотрим для примера такого хищного зверя, как медведь. Он может находиться на вершине, то есть на самом последнем трофическом уровне, потому что трудно найти зверя, который бы им питался. В случае если бы в большом количестве существовали звери, который потребляли бы в пищу медведей, они бы уже вымерли, потому что не смогли бы прокормиться, поскольку медведи немногочисленны. Это и доказывает пирамида энергий.

Пирамида природных равновесий

Ее начинают изучать школьники в 1-х или 2-х классах, потому что она вполне легка для понимания, но в то же время очень важна как составляющая науки экологии. Пирамида природного равновесия действует в разных экосистемах, как в наземной природе, так и в подводной. Часто ее используют для ознакомления школьников с важностью каждого существа на земле. Для того чтобы понять пирамиду природных равновесий, необходимо рассмотреть примеры.

Примеры построения пирамиды природных равновесий

Пирамиду природных равновесий может наглядно демонстрировать взаимодействие реки и леса. Например, графический рисунок может показывать следующее взаимодействие природных ресурсов: на берегу реки рос лес, который уходил далеко вглубь. Река была очень полноводной, а на ее берегу росли цветы, грибы, кустарники. В ее водах было множество рыбы. В этом примере наблюдается экологический баланс. Река отдает свою влагу деревьям, деревья же создают тень, не позволяют воде из реки испаряться. Рассмотрим и обратный пример природного равновесия. Если с лесом что-то случится, деревья сгорят или их вырубят, то река сможет высохнуть, не получая защиты. Это и есть пример разрушения

То же самое может произойти с животными и растениями. Рассмотрим сов, и желуди. Желуди являются основанием в экологической пирамиде природного равновесия, потому что они ничем не питаются, но при этом питают грызунов. Вторым составляющим в следующем трофическом уровне станут лесные мыши. Они питаются желудями. На вершине пирамиды будут совы, потому что они питаются мышами. Если пропадут желуди, которые растут на дереве, то мышам нечем будет питаться и они, скорее всего, умрут. Но тогда и совам некого будет есть, и весь их вид погибнет. Это и есть пирамида природного равновесия.

Благодаря этим пирамидам экологи могут следить за состоянием природы, животного мира и делать соответствующие выводы.