Реакция соединения в химии. Реакции между твердыми веществами

Понятие «реакции соединения» является антонимом понятия «реакции разложения». Попробуйте, используя приём противопоставления, дать определение понятия «реакции соединения». Верно! У вас получилась следующая формулировка.

Рассмотрим этот тип реакций с помощью ещё одной, новой для вас формы записи химических процессов - так называемых цепочек переходов, или превращений. Например, схема

показывает превращение фосфора в оксид фосфора (V) Р 2 O 5 , который, в свою очередь, затем превращается в фосфорную кислоту Н 3 РO 4 .

Число стрелок в схеме превращения веществ соответствует минимальному числу химических превращений - химических реакций. В рассматриваемом примере это два химических процесса.

1-й процесс. Получение оксида фосфора (V) Р 2 O 5 из фосфора. Очевидно, что это реакция соединения фосфора с кислородом.

Поместим немного красного фосфора в ложечку для сжигания веществ и подожжём его. Фосфор горит ярким пламенем с образованием белого дыма, состоящего из маленьких частичек оксида фосфора (V):

4Р + 5O 2 = 2Р 2 O 5 .

2-й процесс. Внесём ложечку с горящим фосфором в колбу. Она заполняется густым дымом из оксида фосфора (V). Вынем ложечку из колбы, прильём в колбу воду и взболтаем содержимое, предварительно закрыв горлышко колбы пробкой. Дым постепенно редеет, растворяется в воде и, наконец, исчезает совсем. Если к полученному в колбе раствору добавить немного лакмуса, он окрасится в красный цвет, что является доказательством образования фосфорной кислоты:

Р 2 O 5 + ЗН 2 O = 2Н 3 РO 4 .

Реакции, которые проводят для осуществления рассматриваемых переходов, протекают без участия катализатора, поэтому их называют некаталитическими. Рассмотренные выше реакции протекают только в одном направлении, т. е. являются необратимыми.

Проанализируем, сколько и каких веществ вступало в рассмотренные выше реакции и сколько и каких веществ в них образовалось. В первой реакции из двух простых веществ образовалось одно сложное, а во второй - из двух сложных веществ, каждое из которых состоит из двух элементов, образовалось одно сложное вещество, состоящее уже из трёх элементов.

Одно сложное вещество может также образоваться и в результате реакции соединения сложного и простого веществ. Например, при производстве серной кислоты из оксида серы (IV) получают оксид серы (VI):

Эта реакция протекает как в прямом направлении, т. е. с образованием продукта реакции, так и в обратном, т. е. происходит разложение продукта реакции на исходные вещества, поэтому в них вместо знака равенства ставят знак обратимости .

В этой реакции участвует катализатор - оксид ванадия (V) V 2 O 5 , который указывают над знаком обратимости:

Сложное вещество также может быть получено и в реакции соединения трёх веществ. Например, азотную кислоту получают по реакции, схема которой:

NO 2 + Н 2 O + O 2 → HNO 3 .

Рассмотрим, как подобрать коэффициенты для уравнивания схемы этой химической реакции.

Число атомов азота уравнивать не нужно: и в левой, и в правой частях схемы по одному атому азота. Уравняем число атомов водорода - перед формулой кислоты запишем коэффициент 2:

NO 2 + Н 2 O + O 2 → 2HNO 3 .

но при этом нарушится равенство числа атомов азота - в левой части остался один атом азота, а в правой их стало два. Запишем коэффициент 2 перед формулой оксида азота (IV):

2NO 2 + Н 2 O + O 2 → 2HNO 3 .

Подсчитаем число атомов кислорода: в левой части схемы реакции их семь, а в правой части - шесть. Чтобы уравнять число атомов кислорода (по шесть атомов в каждой части уравнения), вспомним, что перед формулами простых веществ можно записать дробный коэффициент 1/2:

2NO 2 + Н 2 O + 1/2O 2 → 2HNO 3 .

Сделаем коэффициенты целыми. Для этого перепишем уравнение, удвоив коэффициенты:

4NO 2 + 2Н 2 O + O 2 → 4HNO 3 .

Следует отметить, что почти все реакции соединения относятся к экзотермическим реакциям.

Лабораторный опыт № 15
Прокаливание меди в пламени спиртовки

    Рассмотрите выданную вам медную проволоку (пластину) и опишите её внешний вид. Прокалите проволоку, удерживая её тигельными щипцами, в верхней части пламени спиртовки в течение 1 мин. Опишите условие проведения реакции. Опишите признак, подтверждающий, что произошла химическая реакция. Составьте уравнение проведённой реакции. Назовите исходные вещества и продукты реакции.

    Объясните, изменилась ли масса медной проволоки (пластины) после окончания проведения опыта. Ответ обоснуйте, используя знания о законе сохранения массы веществ.

Ключевые слова и словосочетания

  1. Реакции соединения - антонимы реакций разложения.
  2. Каталитические (в том числе и ферментативные) и некаталитические реакции.
  3. Цепочки переходов, или превращений.
  4. Обратимые и необратимые реакции.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания


Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):

С +О 2 = СО 2 + Q

и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):

N 2 +О 2 = 2NО — Q.

Такие реакции относят к термохимическим .

Рассмотрим более подробно каждый из типов реакций.

Классификация по числу и составу реагентов и конечных веществ

1. Реакции соединения

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o
4HNO 3 = 2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга :

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена :

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена — реакции нейтрализации :

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

5. Реакции переноса.

При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

АВ + ВС = А + В 2 С,

А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .

Например:

2AgCl + SnCl 2 = 2Ag + SnCl 4 ,

H 2 O + 2NO 2 = HNO 2 + HNO 3 .

Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции

H 2 + Cl 2 2HCl.

2. Реакции в растворах

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

3. Реакции между твердыми веществами

t o
СаО(тв) +SiO 2 (тв) = СаSiO 3 (тв)

Классификация реакций по числу фаз.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса:

1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Классификация реакций по типу переносимых частиц

1. Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H + → Zn 2 + + H 2 ,

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

3. Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,

Fe + 5CO = ,

Al(OH) 3 + NaOH = .

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимые и необратимые химические реакции

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.

(фотохимические реакции), электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Взаимодействие молекул между собой происходит по цепному маршруту: ассоциация - электронная изомеризация - диссоциация , в котором активными частицами являются радикалы , ионы , координационно-ненасыщенные соединения. Скорость химической реакции определяется концентрацией активных частиц и разницей между энергиями связи разрываемой и образуемой.

Химические процессы, протекающие в веществе, отличаются и от физических процессов, и от ядерных превращений. В физических процессах каждое из участвующих веществ сохраняет неизменным свой состав (хотя вещества могут образовывать смеси), но могут изменять внешнюю форму или агрегатное состояние.

В химических процессах (химических реакциях) получаются новые вещества с отличными от реагентов свойствами, но никогда не образуются атомы новых элементов. В атомах же участвующих в реакции элементов обязательно происходят видоизменения электронной оболочки.

В ядерных реакциях происходят изменения в атомных ядрах всех участвующих элементов, что приводит к образованию атомов новых элементов.

Энциклопедичный YouTube

  • 1 / 5

    Существует большое количество признаков, по которым можно классифицировать химические реакции.

    1.По наличию границы раздела фаз все химические реакции подразделяются на гомогенные и гетерогенные

    Химическая реакция, протекающая в пределах одной фазы , называется гомогенной химической реакцией . Химическая реакция, протекающая на границе раздела фаз, называется гетерогенной химической реакцией . В многостадийной химической реакции некоторые стадии могут быть гомогенными, а другие - гетерогенными. Такие реакции называются гомогенно-гетерогенными .

    В зависимости числа фаз, которые образуют исходные вещества и продукты реакции, химические процессы могут быть гомофазными (исходные вещества и продукты находятся в пределах одной фазы) и гетерофазными (исходные вещества и продукты образуют несколько фаз). Гомо- и гетерофазность реакции не связана с тем, является ли реакция гомо- или гетерогенной . Поэтому можно выделить четыре типа процессов:

    • Гомогенные реакции (гомофазные) . В реакциях такого типа реакционная смесь является гомогенной, а реагенты и продукты принадлежат одной и той же фазе. Примером таких реакций могут служить реакции ионного обмена, например, нейтрализация раствора кислоты раствором щёлочи:
    N a O H + H C l → N a C l + H 2 O {\displaystyle \mathrm {NaOH+HCl\rightarrow NaCl+H_{2}O} }
    • Гетерогенные гомофазные реакции . Компоненты находятся в пределах одной фазы, однако реакция протекает на границе раздела фаз, например, на поверхности катализатора. Примером может быть гидрирование этилена на никелевом катализаторе:
    C 2 H 4 + H 2 → C 2 H 6 {\displaystyle \mathrm {C_{2}H_{4}+H_{2}\rightarrow C_{2}H_{6}} }
    • Гомогенные гетерофазные реакции . Реагенты и продукты в такой реакции существуют в пределах нескольких фаз, однако реакция протекает в одной фазе. Так может проходить окисление углеводородов в жидкой фазе газообразным кислородом.
    • Гетерогенные гетерофазные реакции . В этом случае реагенты находятся в разном фазовом состоянии, продукты реакции также могут находиться в любом фазовом состоянии. Реакционный процесс протекает на границе раздела фаз. Примером может служить реакция солей угольной кислоты (карбонатов) с кислотами Бренстеда:
    M g C O 3 + 2 H C l → M g C l 2 + C O 2 + H 2 O {\displaystyle \mathrm {MgCO_{3}+2HCl\rightarrow MgCl_{2}+CO_{2}\uparrow +H_{2}O} }

    2.По изменению степеней окисления реагентов

    В данном случае различают

    • Окислительно-восстановительные реакции , в которых атомы одного элемента (окислителя) восстанавливаются , то есть понижают свою степень окисления , а атомы другого элемента (восстановителя) окисляются , то есть повышают свою степень окисления . Частным случаем окислительно-восстановительных реакций являются реакции конпропорционирования, в которых окислителем и восстановителем являются атомы одного и того же элемента, находящиеся в разных степенях окисления.

    Пример окислительно-восстановительной реакции - горение водорода (восстановитель) в кислороде (окислитель) с образованием воды :

    2 H 2 + O 2 → 2 H 2 O {\displaystyle \mathrm {2H_{2}+O_{2}\rightarrow 2H_{2}O} }

    Пример реакции конпропорционирования - реакция разложения нитрата аммония при нагревании. Окислителем в данном случае выступает азот (+5) нитрогруппы, а восстановителем - азот (-3) катиона аммония:

    N H 4 N O 3 → N 2 O + 2 H 2 O (< 250 ∘ C) {\displaystyle \mathrm {NH_{4}NO_{3}\rightarrow N_{2}O\uparrow +2H_{2}O\qquad (<250{}^{\circ }C)} }

    Не относятся к окислительно-восстановительным реакции, в которых не происходит изменения степеней окисления атомов, например:

    B a C l 2 + N a 2 S O 4 → B a S O 4 ↓ + 2 N a C l {\displaystyle \mathrm {BaCl_{2}+Na_{2}SO_{4}\rightarrow BaSO_{4}\downarrow +2NaCl} }

    3.По тепловому эффекту реакции

    Все химические реакции сопровождаются выделением или поглощением энергии. При разрыве химических связей в реагентах выделяется энергия , которая в основном идёт на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить:

    • экзотермические реакции , которые идут с выделением тепла, (положительный тепловой эффект) например, указанное выше горение водорода
    • эндотермические реакции в ходе которых тепло поглощается (отрицательный тепловой эффект) из окружающей среды.

    Тепловой эффект реакции (энтальпию реакции, Δ r H), часто имеющий очень важное значение, можно вычислить по закону Гесса , если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продуктов меньше суммы энтальпий реагентов (Δ r H < 0) наблюдается выделение тепла , в противном случае (Δ r H > 0) - поглощение .

    4.По типу превращений реагирующих частиц

    Химические реакции всегда сопровождаются физическими эффектами: поглощением или выделением энергии , изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций.

    Реакция соединения -химическая реакция, в результате которой из двух или большего числа исходных веществ образуется только одно новое.В такие реакции могут вступать как простые, так и сложные вещества.

    Реакция разложения -химическая реакция, в результате которой из одного вещества образуется несколько новых веществ. В реакции данного типа вступают только сложные соединения, а их продуктами могут быть как сложные, так и простые вещества

    Реакция замещения -химическая реакция,в результате которой атомы одного элемента, входящие в состав простого вещества, замещают атомы другого элемента в его сложном соединении. Как следует из определения, в таких реакциях одно из исходных веществ должно быть простым, а другое сложным.

    Реакции обмена - реакция, в результате которой два сложных вещества обмениваются своими составными частями

    5.По признаку направления протекания химические реакции делятся на необратимые и обратимые

    Необратимыми называют химические реакции, протекающие лишь в одном направлении("слева направо "), в результате чего исходные вещества превращаются в продукты реакции. О таких химических процессах говорят, что они протекают "до конца".К ним относят реакции горения , а также реакции, сопровождающиеся образованием малорастворимых или газообразных веществ Обратимыми называются химические реакции, протекающие одновременно в двух противоположных направлениях("слева направо" и "справа налево").В уравнениях таких реакций знак равенства заменяется двумя противоположно направленными стрелками.Среди двух одновременно протекающих реакций различают прямую(протекает "слева направо") и обратную (протекает "справа налево").Поскольку в ходе обратимой реакции исходные вещества одновременно и расходуются и образуются, они не полностью превращаются в продукты реакции.Поэтому об обратимых реакциях говорят, что они протекают "не до конца". В результате всегда образуется смесь исходных веществ и продуктов взаимодействия.

    6. По признаку участия катализаторов химические реакции делятся на каталитические и некаталитические

    Каталитическими называют реакции, протекающие в присутствии катализаторов.В уравнениях таких реакций химическую формулу катализатора указывают над знаком равенства или обратимости, иногда вместе с обозначением условий протекания(температура t, давление p).К реакциям данного типа относятся многие реакции разложения и соединения.

    Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


    27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


    Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


    Рассмотрим классификацию химических реакций по различным признакам.

    I. По числу и составу реагирующих веществ

    Реакции, идущие без изменения состава веществ.


    В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


    С (графит) ↔ С (алмаз)
    S (ромбическая) ↔ S (моноклинная)
    Р (белый) ↔ Р (красный)
    Sn (белое олово) ↔ Sn (серое олово)
    3O 2 (кислород) ↔ 2O 3 (озон)


    В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


    1. Изомеризация алканов.


    Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


    2. Изомеризация алкенов.


    3. Изомеризация алкинов (реакция А. Е. Фаворского).


    CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

    этилацетилен диметнлацетилен


    4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

    5. Изомеризация цианита аммония при нагревании.



    Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

    Реакции, идущие с изменением состава вещества

    Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


    1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


    В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


    1. Получение оксида серы (IV):


    S + O 2 = SO - из двух простых веществ образуется одно сложное.


    2. Получение оксида серы (VI):


    SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


    3. Получение серной кислоты:


    SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


    Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


    4NО 2 + O 2 + 2Н 2 O = 4НNO 3


    В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


    1. Реакция гидрирования - присоединения водорода:


    CH 2 =CH 2 + Н 2 → Н 3 -СН 3

    этен → этан


    2. Реакция гидратации - присоединения воды.


    3. Реакция полимеризации.


    2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


    В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


    1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


    2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


    3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


    В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


    1. Реакция дегидратации (отщепления воды) этанола:


    С 2 H 5 OH → CH 2 =CH 2 + H 2 O


    2. Реакция дегидрирования (отщепление водорода) этана:


    CH 3 -CH 3 → CH 2 =CH 2 + H 2


    или СН 3 -СН 3 → 2С + ЗН 2


    3. Реакция крекинга (расщепления) пропана:


    CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


    3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


    В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


    1. Взаимодействие щелочных или щелочноземельных металлов с водой:


    2Na + 2Н 2 O = 2NаОН + Н 2


    2. Взаимодействие металлов с кислотами в растворе:


    Zn + 2НСl = ZnСl 2 + Н 2


    3. Взаимодействие металлов с солями в растворе:


    Fе + СuSO 4 = FеSO 4 + Сu


    4. Металлотермия:


    2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


    Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



    С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

    бензол → бромбензол


    Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


    В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


    4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


    Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


    В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


    1. Реакция нейтрализации, идущая с образованием соли и воды.


    2. Реакция между щелочью и солью, идущая с образованием газа.


    3. Реакция между щелочью и солью, идущая с образованием осадка:


    СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


    или в ионном виде:


    Сu 2+ + 2OН - = Сu(ОН) 2


    В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


    1. Реакция, идущая с образованием слабого электролита - Н 2 O:


    СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


    2. Реакция, идущая с образованием газа:


    2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


    3. Реакция, идущая с образованием осадка:


    2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



    2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

    II. По изменению степеней окисления химических элементов, образующих вещества

    По этому признаку различают следующие реакции:


    1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


    К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

    1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



    2. 2Mg 0 + O 0 2 = Mg +2 O -2



    Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


    2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



    В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


    1. Они восстанавливаются в соответствующие спирты:




    Альдекиды окисляются в соответствующие кислоты:




    2. Реакции, идущие без изменения степеней окисления химических элементов.


    К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


    НСООН + CHgOH = НСООСН 3 + H 2 O

    III. По тепловому эффекту

    По тепловому эффекту реакции делят на экзотермические и эндотермические.


    1. Экзотермические реакции протекают с выделением энергии.


    К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


    Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


    2. Эндотермические реакции протекают с поглощением энергии.


    Очевидно, что к ним будут относиться почти все реакции разложения, например:


    1. Обжиг известняка


    2. Крекинг бутана


    Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


    Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


    N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

    IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

    По агрегатному состоянию реагирующих веществ различают:


    1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


    2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

    V. По участию катализатора

    По участию катализатора различают:


    1. Некаталитические реакции, идущие без участия катализатора.


    2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

    VI. По направлению

    По направлению различают:


    1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


    2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


    В органической химии признак обратимости отражают названия - антонимы процессов:


    Гидрирование - дегидрирование,


    Гидратация - дегидратация,


    Полимеризация - деполимеризация.


    Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

    VII. По механизму протекания различают:

    1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


    Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


    Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


    Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
    Аналогично протекает и реакция замещения между хлором и метаном:



    По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

    2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

    Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


    По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

    VIII. По виду энергии,

    инициирующей реакцию, различают:


    1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


    Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


    К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


    2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


    Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


    С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


    Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


    3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


    4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


    Рассмотренная выше классификация химических реакций отражена на схеме.


    Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


    Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.


    Виды реакций :Все химические реакции подразделяют на простые и сложные. Простые химические реакции, в свою очередь, обычно подразделяют на четыре типа: реакции соединения , реакции разложения , реакции замещения и реакции обмена .

    Д. И. Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Примером химической реакции соединения может служить нагревание порошков железа и серы, - при этом образуется сульфид железа: Fe+S=FeS. К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода,...) на воздухе. Например, углерод горит на воздухе С+О 2 =СО 2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Реакции горения всегда сопровождаются выделением тепла - являются экзотермическими.

    Химические реакции разложения , по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ - большее их число. Примером реакции разложение меже служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО 3 → СаО+СО 2 . Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы - эндотермические, т. е. протекают с поглощением теплоты.

    В реакциях двух других типов число реагентов равно числу продуктов. Если взаимодействуют простое вещество и сложное -то эта химическая реакция называется химической реакцией замещения : Например опустив стальной гвоздь в раствор медного купороса получаем железный купорос (здесь железо вытеснило медь из её соли) Fe+CuSO 4 → FeSO 4 +Cu.

    Реакции между двумя сложными веществами, при которых они обмениваются своими частями, относят к химическим реакциям обмена . Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью: NaOH+HCl→ NaCl+Н 2 О. Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде

    Типы реакций и их механизмы приведены в таблице:

    химические реакции соединения

    Пример:
    S + O 2 → SO 2

    Из нескольких простых или сложных веществ образуется одно сложное

    химические реакции разложения

    Пример:
    2HN 3 → H 2 + 3N 2

    Из сложного вещества образуется несколько простых или сложных веществ

    химические реакции замещения

    Пример:
    Fe + CuSO 4 → Cu + FeSO 4

    Атом простого вещества замещает один из атомов сложного

    химические реакции ионного обмена

    Пример:
    H 2 SO 4 + 2NaCl→ Na 2 SO 4 + 2HCl

    Сложные вещества обмениваются своими составными частями

    Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно - восстановительные реакции , например:

    2KMnO 4 +10NaI+8H 2 SO 4 → 2MnSO 4 +K 2 SO 4 +5Na 2 SO 4 +5I 2 +8H 2 O.

    Признаки химических реакций

    Признаки химических реакций . По ним можно судить, прошла ли химическая реакция между реагентами или нет. К таким признакам принято относить следующие:

    Изменение цвета (например, светлое железо покрывается во влажном воздухе бурым налётом оксида железа - химическая реакция взаимодействия железа с кислородом).
    - Выпадение осадка (например, если через известковый раствор (раствор гидроксида кальция) пропустить углекислый газ, выпадет белый нерастворимый осадок карбоната кальция).
    - Выделение газа (например, если капнуть лимонной кислотой на пищевую соду, то выделится углекислый газ).
    - Образование слабодиссоциированных веществ (например, реакции, при которых одним из продуктов реакции является вода).
    - Свечение раствора.
    Примером свечения раствора может служить реакция с использованием такого реагента как раствор люминола (люминол- это сложное химическое вещество, которое может излучать свет при химических реакциях).

    Окислительно-восстановительные реакции

    Окислительно-восстановительные реакции - составляют особый класс химических реакций. Их характерной особенностью является изменение степени окисления, по крайней мере, пары атомов: окисление одного (потеря электронов) и восстановление другого (присоединение электронов).

    Сложные вещества , понижающие свою степень окисления - окислители , а повышающие степень окисления - восстановители . Например:

    2Na + Cl 2 → 2NaCl,
    - здесь окислитель - хлор (он присоединяет к себе электроны), а восстановитель - натрий (он отдаёт электроны).

    Реакция замещения NaBr -1 + Cl 2 0 → 2NaCl -1 + Br 2 0 (характерна для галогенов) тоже относится к окислительно -восстановительным реакциям. Здесь хлор - окислитель (принимает 1 электрон), а бромид натрия (NaBr) - восстановитель (атом брома отдаёт электрон).

    Реакция разложения дихромата аммония ((NH 4) 2 Cr 2 O 7) тоже относится к окислительно-восстановительным реакциям:

    (N -3 H 4) 2 Cr 2 +6 O 7 → N 2 0 + Cr 2 +3 O 3 + 4H 2 O

    Ещё одна из распространённых классификаций химических реакций - это их разделение по тепловому эффекту. Разделяют эндотермические реакции и экзотермические реакции . Эндотермические реакции - химические реакции, сопровождающиеся поглощением окружающего тепла (вспомните охлаждающие смеси). Экзотермические (наоборот) - химические реакции, сопровождающиеся выделением тепла (например - горение).

    Опасные химические реакции :"БОМБА В РАКОВИНЕ"- забавно или не очень?!

    Существуют некоторые химические реакции, которые протекают спонтанно при смешивании реагентов. При этом образуются достаточно опасные смеси, которые могут взрываться, воспламеняться или отравлять. Вот одна и них!
    В некоторых американских и английских клиниках наблюдались странные явления. Время от времени из раковин раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась сливная трубка. К счастью, никто не пострадал. Расследование показало, что виновником всего этого был очень слабый (0,01%) раствор азида натрия NaN 3 , который использовали в качестве консерванта физиологических растворов.

    Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковины - иногда до 2 л в день.

    Сам по себе азид натрия - соль азидоводородной кислоты HN 3 - не взрывается. Однако азиды тяжёлых металлов (меди, серебра, ртути, свинца и др.) - весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды! Азид свинца Pb(N 3) 2 используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов Pb(N 3) 2 . Это соединение более взрывчато, чем нитроглицерин, а скорость детонации (распространения взрывной волны) при взрыве достигает 45 км/с - в 10 раз больше, чем у тротила.

    Но откуда в клиниках могли взяться азиды тяжёлых металлов? Оказалось, во всех случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки легко гнутся, особенно после нагревания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковины раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди. Пришлось менять трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твёрдым веществом. Специалисты, которые занимались «разминированием», чтобы не рисковать, подорвали эти трубки на месте, сложив их в металлический бак массой 1 т. Взрыв был настолько силён, что сдвинул бак на несколько сантиметров!

    Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. В химической литературе также не удалось найти описания этого процесса. Но можно предположить, исходя из сильных окислительных свойств HN 3 , что имела место такая реакция: анион N-3, окисляя медь, образовал одну молекулу N2 и атом азота, который вошёл в состав аммиака. Это соответствует уравнению реакции: 3NaN 3 +Cu+3Н 2 О→ Cu(N 3) 2 +3NaOH+N 2 +NH 3 .

    С опасностью образования бомбы в раковине приходится считаться всем, кто имеет дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органическом синтезе, в качестве порообразователя (вспенивающего агента для производства газонаполненных материалов: пенопластов, пористой резины и т. п.). Во всех подобных случаях надо проследить, чтобы сливные трубки были пластмассовыми.

    Сравнительно недавно азиды нашли новое применение в автомобилестроении. В 1989 г. в некоторых моделях американских автомобилей появились надувные подушки безопасности. Такая подушка, содержащая азид натрия, в сложенном виде почти незаметна. При лобовом столкновении электрический запал приводит к очень быстрому разложению азида: 2NaN 3 =2Na+3N 2 . 100 г порошка выделяют около 60 л азота, который примерно за 0,04 с надувает подушку перед грудью водителя, спасая тем самым ему жизнь.