Теория юнга-гельмгольца. История создания трехцветной теории зрения

Теории цветового зрения - концепции, объясняющие способность человека различатьцвета, основанные на наблюдаемыхфактах, предположениях, ихэкспериментальнойпроверке.

Существует ряд различных теорий цветового зрения , такие как:

Теория света и цвета Ньютона Теория Т. Юнга

"Теория цвета" И. В. Гёт

Теория цветовосприятия Иоганнеса Мюллера Теория Э. Геринга

Психофизическая теория цветоощущения Г. Э. Мюллера Теории цветового зрения в ХХ веке

Трёхкомпонентная теория цветовосприятия Трехкомпонентная теория Юнга-Гельмгольца. и т.д.

Небольшим признанием пользуется трехкомпонентная теория . Она допускает существование в сетчатке трех типов различных цветовоспринимающих фоторецепторов - колбочек. О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована Т. Юнгом и Г. Гельмгольцем. Согласно этой теории колбочки содержат различные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие - к зеленому, третьи- к фиолетовому. Всякий цвет оказывает действие на все три вида цветоощущающих элементов, но в различной степени. Разложение светочувствительных веществ вызывает раздражение нервных окончаний. Возбуждения, дошедшие до коры мозга, суммируются и дают ощущение одного однородного цвета.

49. Слуховые ощущения

Особое значение слуха у человека связано с восприятием речи и музыки. Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, которые порождаются звучащим телом и представляют собой переменное сгущение и разрежение воздуха. Звуковые волны обладают, во - первых, различной амплитудой колебания. во - вторых, по частоте или продолжительности колебаний. в - третьих, формой колебаний, т. е. формой той периодической кривой, в которой абсциссы пропорциональны времени, а ординаты - удалениям колеблющейся точки от своего положения равновесия. Слуховые ощущения могут вызываться как периодическими колебательными процессами, так и непериодическими с нерегулярно изменяющейся неустойчивой частотой и амплитудой колебаний. Первые отражаются в музыкальных звуках, вторые - в шумах.

Возникновение слуховых ощущений возможно лишь тогда, когда интенсивность звука достигнет определенного минимума, зависящего от индивидуальной чувствительности уха к данному тону. Существует и верх ний предел интенсивности звука, выше которого в ухе возникает сначала осязание звука, а при дальнейшем повышении интенсивности - болевые ощущения.

50. ПАРАМЕТРЫ СЛУХОВЫХ ОЩУЩЕНИЙ И ИХ ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ: ГРОМКОСТЬ, ВЫСОТА, ТЕМБР .

Слуховое ощущение устанавливается не сразу. Любые звуки, длительность которых короче 5 мс, воспринимаются лишь как шум, щелчок. Слух не ощущает и нелинейных искажений, если их длительность не превышает 10 мс. Поэтому измерительный прибор должен регистрировать не все максимальные уровни сигнала, а лишь те из них, длительность которых превышает 5 - 10 мс. Для выполнения поставленной задачи вещательный сигнал выпрямляют и усредняют (интегрируют) за указанный - промежуток времени.

Слуховое ощущение продолжается еще некоторое время (50 - 60 мкс) после прекращения возбуждения. Поэтому звуки, разделенные промежутками во времени менее 60 - 70 мкс, слышатся без пауз. Слуховые ощущения, которые у нас вызывают различные звуки, во многом зависят от амплитуды звуковой волны и ее частоты. Амплитуда и частота являются физическими характеристиками звуковой волны. Этим физическим характеристикам соответствуют определенные физиологические характеристики, связанные с нашим восприятием звука. Такими физиологическими характеристиками являются громкость и высота звука.

Слуховой анализатор осуществляет очень дифференцированный анализ звуковых раздражителей. С помощью него мы получаем слуховые ощущения, которые позволяют различать высоту, громкость и тембр.

Громкость . Громкость зависит от силы, или амплитуды, колебаний звуковой волны. Сила звука и громкость - понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость - качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Высота. Высота звука отражает частоту колебаний звуковой волны. Далеко не все звуки воспринимаются нашим ухом. Как ультразвуки (звуки с большой частотой), так и инфразвуки (звуки с очень медленными колебаниями) остаются вне пределов нашей слышимости. Нижняя граница слуха у человека составляет примерно 15 - 19 колебаний; верхняя - приблизительно 20000, причем у отдельных людей чувствительность уха может давать различные индивидуальные отклонения. Обе границы изменчивы, верхняя в особенности в зависимости от возраста; у пожилых людей чувствительность к высоким тонам постепенно падает. Область слухового восприятия охватывает свыше 10 октав и ограничена сверху порогом осязания, снизу порогом слышимости. Внутри этой области лежат все воспринимаемые ухом звуки различной силы и высоты. Высота звука, как она обычно воспринимается в шумах и звуках речи, включает два различных компонента - собственно высоту и тембровую характеристику.

Тембр. Под тембром понимают особый характер или окраску звука, зависящую от взаимоотношения его частичных тонов. Тембр отражает акустический состав сложного звука, т. е. число, порядок и относительную силу входящих в его состав частичных тонов (гармонических и негармонических). ембр, как и гармония, отражает звук, который в акустическом своем составе является созвучием. Поскольку это созвучие воспринимается как единый звук без выделения в нем слухом акустически в него входящих частичных тонов, звуковой состав отражается в виде тембра звука. Поскольку же слух выделяет частичные тоны сложного звука, возникает восприятие гармонии.

Согласно этой теории, в глазу имеются три вида приемников лучистой энергии (колбочек), воспринимающих соответственно красную (длинноволновую), желтую (средневолновую) и голубую (коротковолновую) части видимого спектра.

Все наши ощущения есть не что иное, как результат смешения в различных пропорциях этих трех цветов.

При одинаково сильном возбуждении трех видов колбочек создается ощущение белого цвета, при равном слабом - серого, а при отсутствии раздражения - черного. При этом глаз воспринимает яркость предметов путем суммирования ощущений, получаемых тремя видами колбочек, а цветность - как отношение этих ощущений.

Трехкомпонентная теория цветового зрения в настоящее время является почти общепринятой. Предполагается, что в каждом виде колбочек содержится соответствующий цветочувствительный пигмент (йодопсин), обладающий определенной спектральной чувствительностью (характеристикой поглощения). Химический состав пигментов еще не определен.

Но, рассмотрим вклад ученых разных стран в эту теорию:

Нидерландский механик, физик, математик, астроном и изобретатель Христиан Гюйгенс активно участвовал в современных ему спорах о природе света.

В 1678 году он выпустил «Трактат о свете» - набросок волновой теории света. Другое замечательное сочинение он издал в 1690 году; там он изложил качественную теорию отражения, преломления и двойного лучепреломления в исландском шпате в том самом виде, как она излагается теперь в учебниках физики.

Сформулировал так называемый принцип Гюйгенса, позволяющий исследовать движение волнового фронта, впоследствии развитый Френелем и сыгравший важную роль в волновой теории света, и теории дифракции.

Трёхсоставную теорию цветового зрения впервые высказал в 1756 году Михаил Ломоносов , когда писал «о трёх материях дна ока» в своём труде «О происхождении света».

На основе многолетних исследований и многочисленных опытов Ломоносов разработал теорию света, с помощью которой объяснил физиологические механизмы цветовых явлений. По мысли Ломоносова, цвета вызываются действием трёх родов эфира и трёх видов цветоощущающей материи, составляющей дно глаза.

Теория цвета и цветового зрения, с которой Ломоносов выступил в 1756 году, выдержала проверку временем и заняла должное место в истории физической оптики.

Шотландский физик, математик и астроном Сэр Дэвид Брюстер внес огромный вклад в развитие оптики. Он известен по всему миру, и не только в научных кругах, как изобретатель калейдоскопа.

Оптические исследования Брюстера не имеют теоретического и математического характера; тем не менее он открыл опытным путем точный математический закон, за которым осталось его имя, относящийся к явлениям поляризации света: луч света, косвенно падающий на поверхность стеклянной пластинки, частью преломляется, частью отражается. Луч, отраженный под углом полной поляризации, составляет прямой угол с направлением, которое принимает при этом преломленный луч; это условие приводит к другому, математическому выражению закона Брюстера, а именно - тангенс угла полной поляризации равен показателю преломления.

Он показал, что неравномерное охлаждение сообщает стеклу способность обнаруживать цвета в поляризованном свете - открытие, важное для физики частичных сил; вслед за тем он обнаружил подобные же явления во многих телах животного и растительного происхождения.

В 1816 г. Брюстер объяснил причину образования цветов, играющих на поверхности перламутровых раковин. До его времени алмаз считался представителем самого сильного преломления света, а лед - самого слабого в твердых телах; его измерения расширили эти пределы, показав, что хромо-кислая соль свинца преломляет сильнее алмаза, а плавиковый пшат - слабее льда. Явления поглощения света различными телами, обнаруживающиеся тем, что в спектре (солнечного) света, через них проходящего, обнаруживается множество темных линий, также были предметом исследований Брюстера. Он показал, что многие из линий солнечного спектра происходят от поглощения некоторых частей света земной атмосферой; подробно исследовал поглощение света газом азотноватого ангидрида и показал, что это вещество в жидком виде не образует спектра поглощения. Впоследствии Б. открыл, что некоторые светлые линии спектров искусственных источников света совпадают с темными, фраунгоферовыми, линиями солнечного спектра, и выразил мнение, что и эти последние, может быть, суть линии поглощения в солнечной атмосфере. Сопоставляя высказанные им в различное время мысли об этом предмете, можно видеть, что Брюстер был на пути к великому открытию спектрального анализа; но эта честь во всяком случае принадлежит Бунзену и Кирхгофу.

Брюстер много пользовался поглощающими свет веществами для другой цели, а именно, он старался доказать, что число основных цветов в спектре не семь, как думал Ньютон, а только три: красный, синий и желтый ("New analysis of solar light, indicating three primary colours etc." ("Edinb. Transact.", том XII, 1834). Его громадная экспериментальная опытность дала ему возможность как будто довольно убедительно доказать это положение, но вскоре оно было опровергнуто, в особенности опытами Гельмгольца, неопровержимо доказавшими, что зеленый цвет есть несомненно простой, и что надо принять по меньшей мере пять основных цветов.

Оптические наблюдения привели английского физика, механика, врача, астрона Томаса Юнга (Thomas Young) к мысли, что господствовавшая в то время корпускулярная теория света неверна. Он высказался в пользу волновой теории. Его идеи вызвали возражения английских учёных; под их влиянием Юнг отказался от своего мнения. Однако в трактате по оптике и акустике «Опыты и проблемы по звуку и свету» (1800) учёный вновь пришёл к волновой теории света и впервые рассмотрел проблему суперпозиции волн. Дальнейшим развитием этой проблемы явилось открытие Юнгом принципа интерференции (сам термин был введён Юнгом в 1802 году).

В докладе «Теория света и цветов», прочитанном Юнгом Королевскому обществу в 1801 году (опубликован в 1802 г.), он дал объяснение колец Ньютона на основе интерференции и описал первые опыты по определению длин волн света. В 1803 году в работе «Опыты и исчисления, относящиеся к физической оптике» (опубликована в 1804 г.) он рассмотрел явления дифракции. После классических исследований О. Френеля по интерференции поляризованного света Юнг высказал гипотезу о поперечности световых колебаний. Он разработал также теорию цветного зрения, основанную на предположении о существовании в сетчатой оболочке глаза трёх родов чувствительных волокон, реагирующих на три основных цвета.

Шотландец по происхождению, британский физик, математик и механик Джеймс Максвелл в 1854 году предложению редактора Макмиллана начал писать книгу по оптике (она так и не была закончена).

Однако главным научным интересом Максвелла в это время была работа по теории цветов. Она берёт начало в творчестве Исаака Ньютона, который придерживался идеи о семи основных цветах. Максвелл выступил как продолжатель теории Томаса Юнга, выдвинувшего идею трёх основных цветов и связавшего их с физиологическими процессами в организме человека. Важную информацию содержали свидетельства больных цветовой слепотой, или дальтонизмом. В экспериментах по смешиванию цветов, во многом независимо повторявших опыты Германа Гельмгольца, Максвелл применил «цветовой волчок», диск которого был разделён на окрашенные в разные цвета секторы, а также «цветовой ящик», разработанную им самим оптическую систему, позволявшую смешивать эталонные цвета. Подобные устройства использовались и раньше, однако лишь Максвелл начал получать с их помощью количественные результаты и довольно точно предсказывать возникающие в результате смешения цвета. Так, он продемонстрировал, что смешение синего и жёлтого цветов даёт не зелёный, как часто полагали, а розоватый оттенок.

Опыты Максвелла показали, что белый цвет не может быть получен смешением синего, красного и жёлтого, как полагали Дэвид Брюстер и некоторые другие учёные, а основными цветами являются красный, зелёный и синий. Для графического представления цветов Максвелл, следуя Юнгу, использовал треугольник, точки внутри которого обозначают результат смешения основных цветов, расположенных в вершинах фигуры.

Серьёзный интерес Максвелла к проблеме электричества позволил ему свормулировать волновую теорию света - одну из теорий, объясняющих природу света. Основное положение теории заключается в том, что свет имеет волновую природу, то есть ведёт себя как электромагнитная волна (от длины которой зависит цвет видимого нами света).

Теория подтверждается многими опытами (в частности, опытом Т. Юнга), и данное поведение света (в виде электромагнитной волны) наблюдается в таких физических явлениях, как дисперсия, дифракция и интерференция света. Однако многие другие физические явления, связанные со светом, одной волновой теорией объяснить нельзя.

В июне 1860 года на съезде Британской ассоциации в Оксфорде Максвелл сделал доклад о своих результатах в области теории цветов, подкрепив их экспериментальными демонстрациями с помощью цветового ящика. Позже в том же году Лондонское королевское общество наградило его медалью Румфорда за исследования по смешению цветов и оптике. 17 мая 1861 года на лекции в Королевском институте (Royal Institution ) на тему «О теории трёх основных цветов» Максвелл представил ещё одно убедительное доказательство правильности своей теории - первую в мире цветную фотографию, идея которой возникла у него ещё в 1855 году. Вместе с фотографом Томасом Саттоном (англ. Thomas Sutton ) было получено три негатива цветной ленты на стекле, покрытом фотографической эмульсией (коллодий). Негативы были сняты через зелёный, красный и синий фильтры (растворы солей различных металлов). Освещая затем негативы через те же фильтры, удалось получить цветное изображение. Как было показано спустя почти сто лет сотрудниками фирмы «Кодак», воссоздавшими условия опыта Максвелла, имевшиеся фотоматериалы не позволяли продемонстрировать цветную фотографию и, в частности, получить красное и зелёное изображения. По счастливому совпадению, полученное Максвеллом изображение образовалось в результате смешения совсем иных цветов - волн в синем диапазоне и ближнем ультрафиолете. Тем не менее, в опыте Максвелла содержался верный принцип получения цветной фотографии, использованный спустя многие годы, когда были открыты светочувствительные красители.

Немецкий физик, врач, физиолог и психолог Герман Гельмгольц способствует признанию теории трёхцветового зрения Томаса Юнга.

Теория цветоощущения Гельмгольца (теория цветоощущения Юнга-Гельмгольца, трёхкомпонентная теория цветоощущения) -теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зелёного и синего цветов. Восприятие других цветов обусловлено взаимодействием этих элементов.

В 1959 году теория была экспериментально подтверждена Джорджом Уолдом и Полом Брауном из Гарвардского университета и Эдвардом Мак-Николом и Уильямом Марксом из Университета Джонса Гопкинса, которые обнаружили, что в сетчатке существует три (и только три) типа колбочек, которые чувствительны к свету с длиной волны 430, 530 и 560 нм, т. е. к фиолетовому, зелёному и жёлто-зелёному цвету.

Теория Юнга-Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки и не может объяснить все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

В 1868 году Леонард Гиршман занимался вопросами цветовосприятия, наименьшего угла зрения, ксантопсии при отравлении сантонином (болезнь, при которой человек видит все в желтом свете) и под руководством Гельмгольца защетил диссертацию "Материалы по физиологии цветоощущения".

В 1870 году немецкий физиолог Эвальд Геринг сформулировал так называемую оппонентную гипотезу цветового зрения , известную также как теория обратного процесса или Теория Геринга. Он опирался не только на существование пяти психологических ощущений, а именно ощущение красного, жёлтого, зелёного, синего и белого цветов, но также и на тот факт, что они по-видимому, действуют в противоположных парах, одновременно дополняя и исключая друг друга. Суть её заключается в том, что некоторые «разные» цвета образуют при смешении промежуточные, например зелёный и синий, жёлтый и красный. Другие пары промежуточных цветов образовать не могут, зато дают новые цвета, например красный и зелёный. Красно-зелёного цвета нет, есть жёлтый.

Вместо того, чтобы постулировать три типа реакций колбочек, как в теории Юнга-Гельмгольца, Геринг постулирует наличие трёх типов противоположных пар процессов реакции на чёрный и белый, жёлтый и синий, красный и зелёный цвета. Эти реакции происходят на пострецепторной стадии действия зрительного механизма. Теория Геринга выдвигает на первый план психологические аспекты цветового зрения. Когда три пары реакций идут в направлении диссимиляции, возникают тёплые ощущения белого, жёлтого и красного цветов; когда они протекают ассимилятивно, им сопутствуют холодные ощущения чёрного, синего и голубого цветов. Использование четырёх цветов при синтезе цвета дает больше возможностей, чем использование трёх.

Гуревич и Джеймсон развили теорию противоположных процессов Геринга при цветовом зрении до степени, когда различные явления цветового зрения могут быть количественно объяснены как для наблюдателя с нормальным цветовым зрением, так и аномальным цветовым зрением.

Теория Геринга, развитая Гуревичем и Джеймсоном, известна также как оппонентная теория . В ней сохраняется три системы рецепторов: красно-зеленые, желто-голубые и черно-белые. Предполагается, что каждая система рецепторов функционирует, как антагонистическая пара. Как и в теории Юнга – Гельмгольца, считается, что каждый из рецепторов (или пар рецепторов) чувствителен к свету волн разной длины, но максимально чувствителен к волнам определенной длины.

Существует ряд различных теорий цветового зрения . Небольшим признанием пользуетсятрехкомпонентная теория . Она допускает существование в сетчатке трех типов различных цветовоспринимающих фоторецепторов - колбочек.

О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована Т. Юнгом и Г. Гельмгольцем. Согласно этой теории колбочки содержат различные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие - к зеленому, третьи- к фиолетовому. Всякий цвет оказывает действие на все три вида цветоощущающих элементов, но в различной степени. Разложение светочувствительных веществ вызывает раздражение нервных окончаний. Возбуждения, дошедшие до коры мозга, суммируются и дают ощущение одного однородного цвета.

Трехкомпонентная теория получила в последнее время подтверждение в электрофизиологических исследованиях. В экспериментах на животных Р. Гранит отводил с помощью микроэлектродов импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными спектральными цветами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей видимого света любой длины волны. Так реагирующие элементы сетчатки названы доминаторами. В других же ганглиозных клетках сетчатки импульсы возникали лишь при освещении лучами только определенной длины волны.

Так реагировали элементы сетчатки, которые получили название модуляторов. По Р. Граниту, существуют 7 модуляторов, реагирующих на лучи, имеющие разную длину волны (от 400 до 600 ммк), Р. Гранит считает, что 3 компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в результате усреднения кривых спектральной чувствительности модуляторов. Последние могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.

Согласно другой теории цветового зрения, предложенной Э. Герингом, в сетчатке существуют 3 гипотетических светочувствительных вещества: 1) бело-черное. 2) красно-зеленое, 3) желто-синее. Распад этих веществ (диссимиляция) происходит под влиянием световых лучей, при этом раздражаются нервные окончания и получается ощущение белого, красного или желтого цвета. Другие световые лучи вызывают синтез (ассимиляцию) этих гипотетических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.

По теории Э. Геринга лучи, соответствующие тому или иному участку спектра, вызывают ассимиляцию или диссимиляцию красно-зеленого или желто-синего вещества и одновременно с этим диссимиляцию бело-черного вещества. Комбинацией указанных 4 цветов можно получить все остальные цвета. Если 2 каких-либо цвета вызывают одновременно и диссимиляцию и ассимиляцию одного и того же вещества и притом в равной степени, то, очевидно, оба эти процесса взаимно уравновешиваются и остается диссимиляция только бело-черного вещества, что вызывает ощущение белого цвета.


Г. Хартридж в недавнее время выдвинул полихроматическую теорию, допускающую наличие в сетчатке 7 типов рецепторов, реагирующих на различные цвета. Количество рецепторов, которое предполагается Картриджем, совпадает с числом модуляторов, описанных Гранитом, хотя отношение к лучам спектра этих рецепторов не точно соответствует кривым поглощения световых лучей модуляторами Гранита.

Наибольшим признанием пользуется трехкомпонентная теория. Она впрочем, как и другие перечисленные теорий цветового зрения , объясняет много фактов из физиологии и патологии цветного зрения. Однако некоторые факты не получают удовлетворительного разъяснения на основе всех этих теории.

Это прежде всего факт бинокулярного смешения цветов. Если, например, одним глазом смотреть через красный светофильтр, а другим через зеленый, то возникает ощущение желтого цвета, а не белого, как при монокулярном смешении. Желтый же и синий цвета при бинокулярном так же, как и при монокулярном, смешении дают бесцветное ощущение. По-видимому, процессы, определяющие ощущение цвета, протекают не только в сетчатке, но и в центральной нервной системе, что заставило некоторых исследователей построить более сложные теории цветоощущения, которые принимают во внимание, кроме процессов, протекающих в сетчатке, процессы, происходящие в нервных центрах.

Последовательные цветные образы. Если долго смотреть на окрашенный предмет, а затем перевести взор на белую поверхность, то виден тот же предмет, но окрашенный в дополнительный цвет.

По теории Гельмгольца, при длительном смотрении на какой-либо цвет происходит утомление одного какого либо компонента цветового восприятия; вследствие этого соответствующий цвет вычитается из последующего белого цвета; в итоге получается ощущение дополнительного цвета. По теории Геринга, усиленная диссимиляция одного из цветочувствительных веществ сменяется усиленной его ассимиляцией, когда на глаза начинает действовать бесцветный фон.

Колебания основания стремени сопровождаются перемещением перилимфы от окна преддверия к окну улитки. Движение жидкости в улитке вызывает колебание основной мембраны и расположенного на ней спи­рального органа. При этих колебаниях волоски слуховых клеток подвергаются сдавливанию или натяжению покровной мембраны, что является началом звукового восприятия. В этот момент физическая энергия колебания трансформируется в нервный процесс.

При изучении механизмов рецепции звуков, а также функции нерв­ных проводников и центров органа слуха до настоящего времени всё ещё возникают большие трудности. Для объяснения происходящих во внутреннем ухе процессов были предложены различные гипотезы.

Резонансная теория Гельмгольца.

Кратко суть его теории сводится к следующему. Основная мембрана состоит из волокон различной длинны: самые короткие волокна распо­ложены у основания улитки, самые длинные - на верхушке. Каждое во­локно имеет резонанс, т.е. частоту, при которой оно вибрирует мак­симально. Звуки низкой частоты вызывают вибрацию длинных волокон, звуки высокой частоты - коротких волокон. Соответственно той или иной частоте звука вибрацию испытывают леди лишь определённые груп­пы волокон, которые вызывают возбуждение находящихся на них волосковых клеток. Таким образом, вследствие резонанса волокон основной мембраны спиральный орган осуществляет частотный анализ звука.

Теорию резонанса Гельмгольца в 1923 - 1925 гг подтвердил сво­ими опытами на собаках Л.А.Андреев. Он пользовался методом услов­ных рефлексов, вызывая звуковыми раздражителями секрецию слюнной железы. После прочной выработки слюноотделения на звуковые раздражители Л.А. Андреев разрушал улитку животного на одной стороне. Эта операция не отражалась на условнорефлекторной реакции животного. Тогда автор последовательно разрушал отдельные части улитки соба­ки на другой стороне и получал выпадение слуха и условной реакции, соответствующее резонансной теории Гельмгольца, то есть выпадение высоких звуков у основания улитки, низких - у верхушки и средних - в средней части.

Более поздние исследования В.Ф. Ундрица подтвердили опыты Л.А. Андреева. Ундриц, последовательно разрушая отдельные части улитки, получал выпадение или ослабление биотоков, соответствующее резонансной теории Гельмгольца.

По мнению Л.Е. Комендантова, теория резонанса Гельмгольца не вскрывает истинную природу физиологических процессов. Трудно себе представить колебания изолированного волокна, поскольку эти волокна составляют одну соединительнотканную пластинку.

На основании изучения теории Гельмгольца можно сделать три вы­вода:

1) улитка является тем звеном слухового анализатора, где воз­никает первичный анализ звуков;

2) каждому простому звуку присущ оп­ределённый участок на основной мембране;

3) низкие звуки приводят в колебательное движение участки основной мембраны, расположенные у верхушки улитки, а высокие - у её основания.

Таким образом, теория Гельмгольца впервые позволила объяснить основные свойства уха, то есть определение высоты, силы и тембра. До сих пор эта теория считается классической. Действительно вывод Гельмгольца о том, что в улитке происходит первичный анализ звуков, полностью соответствует теории И.П. Павлова о способности к первич­ному анализу как концевых приборов афферентных нервов, так ив осо­бенности сложных рецепторных образований.

Резонансная теория Гельмгольца получила подтверждение и в клинике. Гистологическое исследование улиток умерших людей, страдавших островковыми выпадениями слуха, позволило обнаружить изменения кортиева органа в участках, соответствующих утраченной части слуха. Вместе с тем современные знания не требуют более точного объяснения пространственной рецепции звуков в улитке.

Теория цветоощущения Гельмгольца (теория цветоощущения Юнга-Гельмгольца, трёхкомпонентная теория цветоощущения) теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зелёного и синего цветов. Восприятие других цветов обусловлено взаимодействием этих элементов. Сформулирована Томасом Юнгом и Германом Гельмгольцем. Чувствительность палочек (пунктирная линия) и трёх типов колбочек к излучению с разной длиной волны.

В 1959 году теория была экспериментально подтверждена Джорджом Уолдом и Полом Брауном из Гарвардского университета и Эдвардом Мак-Николом и Уильямом Марксом из Университета Джонса Гопкинса, которые обнаружили, что в сетчатке существует три (и только три) типа колбочек, которые чувствительны к свету с длиной волны 430, 530 и 560 нм, т. е. к фиолетовому, зелёному и жёлто-зелёному цвету.

Теория Юнга Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, и не может объяснить все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию. теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зеленого и фиолетового цветов; восприятие других цветов обусловлено взаимодействием этих элементов.

15. Теория Эвальта Геринга

Эвальд Геринг предложил теорию оппонентных процессов. Он предположил, что три первичных цвета обрабатываются зрительной системой как антагонистические или оппонентные пары: красный/зеленый, желтый/синий и белый/черный. Стимуляция одного из оппонентов вызывает возбуждение (или торможение), тогда как стимуляция другого - противоположные эффекты (торможение или возбуждение, соответственно). Следовательно, когда стимулы сбалансированы (например, поступает соответствующее количество красного и зеленого цветов), разные компоненты такого канала отключаются, и система формирует ощущение желтого цвета. Такая обработка информации начинается, по-видимому, еще в сетчатке, но затем продолжается в НКТ (наружном коленчатом теле) и зрительной коре. Ограничиваясь пока сетчаткой, заметим, что доказано присутствие ганглиозных клеток с оппонентными свойствами в сетчатке кошки. В случае, приведенном на рис. 16.22 , показаны две ганглиозные клетки, одна из которых имеет концентрическое РП с центром ON-типа для красного и окружением, дающим OFF-ответ на зеленый, а другая - ON-ответ в центре на зеленый и OFF-ответ на красный на периферии. Клетки такого типа не дают мозгу слишком точной информации - рис. 16.22 показывает, что мозгу трудно будет различить маленькое яркое белое пятнышко в центре РП и большое зеленое пятно, покрывающее все поле. Связи в сетчатке, ответственные за цветовую оппонентность того типа, что показана на рис. 16.22 , продолжают изучаться. Понятно, однако, что субъективное ощущение цвета, которое представляется столь непосредственным и очевидным, возникает в результате сложных взаимодействий не только в сетчатке, но и на более высоких уровнях зрительной системы.