Биологический круговорот веществ на суше описание. Как происходит биологический круговорот? Смотреть что такое "биологический круговорот веществ" в других словарях

В данной работе предлагаем вам рассмотреть, что такое круговорот биологический. Каковы его функции и значение для нашей планеты. Также мы уделим внимание вопросу источника энергии для его осуществления.

Что еще нужно знать перед тем, как рассмотрим круговорот биологический, это то, что наша планета состоит из трех оболочек:

  • литосфера (твердая оболочка, грубо говоря, это земля, по которой мы ходим);
  • гидросфера (куда можно отнести всю воду, то есть моря, реки, океаны и так далее);
  • атмосфера (газообразная оболочка, воздух, которым мы дышим).

Между всеми слоями есть четкие границы, но они без какого-либо труда способны проникать друг в друга.

Круговорот веществ

Все эти слои составляют биосферу. Что такое круговорот биологический? Это когда вещества перемещаются по всей биосфере, а именно в почве, воздухе, в живых организмах. Это бесконечная циркуляция и называется биологическим круговоротом. Важно знать и то, что все начинается и заканчивается в растениях.

Под скрывается неимоверно сложный процесс. Какие-либо вещества из почвы и атмосферы попадают в растения, затем в другие живые организмы. Тогда в телах, которые их поглотили, начинают активно вырабатывать другие сложные соединения, после чего последние выбираются наружу. Можно сказать, что это процесс, в котором выражается взаимосвязь всего на нашей планете. Организмы взаимодействуют между собой, только так мы и существуем по сей день.

Атмосфера не всегда была такой, какой мы ее знаем. Ранее наша воздушная оболочка очень сильно отличалась от нынешней, а именно была насыщена углекислым газом и аммиаком. Как же тогда появились люди, которые для дыхания используют кислород? Нам стоит поблагодарить зеленые растения, которые смогли привести состояние нашей атмосферы в нужный для человека вид. Воздух и растения поглощаются травоядными животными, они же входят в меню хищников. Когда животные умирают, то их остатки перерабатывают микроорганизмы. Именно так получается гумус, необходимый для роста растений. Как видите, круг замкнулся.

Источник энергии

Круговорот биологический невозможен без энергии. Что или кто является источником энергии для организации этого взаимообмена? Конечно, наш источник тепловой энергии звезда Солнце. Биологический круговорот просто невозможен без нашего источника тепла и света. Солнце нагревает:

  • воздух;
  • почву;
  • растительность.

Во время нагрева происходит испарение воды, которая начинает скапливаться в атмосфере в виде облаков. Вся вода в итоге вернется на поверхность Земли в виде дождя или снега. После ее возвращения она пропитывает почву, и ее всасывают корни различных деревьев. Если вода успела проникнуть очень глубоко, то она пополняет запасы грунтовых вод, а некоторая часть и вовсе возвращается в реки, озера, моря и океаны.

Как известно, при дыхании мы поглощаем кислород, а выдыхаем углекислый газ. Так вот, солнечная энергия нужна деревьям и для того, чтобы переработать углекислый газ и вернуть в атмосферу кислород. Этот процесс имеет название фотосинтез.

Циклы биологического круговорота

Начнем этот раздел с понятия «биологический процесс». Он представляет собой повторяющееся явление. Мы можем наблюдать которые и состоят из биологических процессов, постоянно повторяющихся с определенными промежутками.

Биологический процесс можно увидеть везде, он присущ всем организмам, живущим на планете Земля. Также он является частью всех уровней организации. То есть и внутри клетки, и в биосфере мы можем эти процессы наблюдать. Мы можем выделить несколько видов (циклов) биологических процессов:

  • внутрисуточные;
  • суточные;
  • сезонные;
  • годичные;
  • многолетние;
  • многовековые.

Наиболее ярко выражены годичные циклы. Мы их наблюдаем всегда и везде, стоит только немного над этим вопросом задуматься.

Вода

Сейчас предлагаем вам рассмотреть биологический круговорот в природе на примере воды, самого распространенного соединения нашей планеты. Она обладает многими возможностями, что позволяет ей участвовать во многих процессах как внутри организма, так и за его пределами. От круговорота Н 2 О в природе зависит жизнь всего живого. Без воды нас бы не было, а планета была бы похожа на безжизненную пустыню. Она способна участвовать во всех жизненно важных процессах. То есть можно сделать такой вывод: всем живым существам планеты Земля просто необходима чистая вода.

Но вода всегда в результате каких-либо процессов загрязняется. Как же тогда обеспечить себя неиссякаемым запасом чистой питьевой воды? Об этом побеспокоилась природа, нам стоит поблагодарить за это существование того самого круговорота воды в природе. Мы уже ранее рассмотрели, как это все происходит. Вода испаряется, собирается в облака и выпадает осадками (дождь или снег). Этот процесс принято называть «гидрологический цикл». Он основан на четырех процессах:

  • испарение;
  • конденсация;
  • выпадение осадков;
  • сток вод.

Можно выделить два вида круговорота воды: большой и малый.

Углерод

Теперь мы рассмотрим, как происходит биологический в природе. Важно знать и то, что он по процентному содержанию веществ занимает лишь 16-е место. Может встречаться в виде алмазов и графита. А процентное содержание его в каменном угле превышает девяносто процентов. Углерод даже входит в состав атмосферы, но его содержание очень мало, примерно 0,05 процента.

В биосфере благодаря углероду создается просто масса различных органических соединений, нужных всему живому на нашей планете. Рассмотрим процесс фотосинтеза: растения поглощают углекислоту из атмосферы и перерабатывают ее, в результате мы имеем разнообразные органические соединения.

Фосфор

Значение биологического круговорота достаточно велико. Даже если мы возьмем фосфор, то он содержится в большом количестве в костях, необходим для растений. Главный источник - это апатит. Его можно встретить в магматической породе. Живые организмы способны его доставать из:

  • почвы;
  • водных ресурсов.

Он содержится и в организме человека, а именно входит в состав:

  • белков;
  • нуклеиновой кислоты;
  • костной ткани;
  • лецитинов;
  • фитинов и так далее.

Именно фосфор необходим для накопления энергии в организме. Когда организм гибнет, то он возвращается в почву или в море. Это способствует образованию пород, богатых фосфором. Это имеет большое значение в биогенном цикле.

Азот

Сейчас мы рассмотрим круговорот азота. Перед этим мы отметим то, что он составляет порядка 80 % всего объема атмосферы. Согласитесь, эта цифра довольно внушительна. Кроме того что он является основой состава атмосферы, азот встречается в растительных и животных организмах. Мы его можем встретить в форме белков.

Что же касается круговорот азота, то можно сказать так: из атмосферного азота образуются нитраты, которые синтезируются растениями. Процесс создания нитратов принято называть фиксацией азота. Когда растение умирает и гниет, то азот, содержащийся в нем, попадает в почву в виде аммиака. Последний перерабатывается (окисляется) организмами, живущими в почвах, так появляется азотная кислота. Она способна вступить в реакцию с карбонатами, которыми насыщена почва. Кроме этого, нужно упомянуть и то, что азот выделяется и в чистом виде в результате гниения растений или в процессе горения.

Сера

Как и многие другие элементы, очень тесно связан с живыми организмами. Сера попадает в атмосферу в результате извержения вулканов. Сульфидную серу могут перерабатывать микроорганизмы, так на свет появляются сульфаты. Последние поглощаются растениями, сера входит в состав эфирных масел. Что касается организма, то серу мы можем встретить в:

  • аминокислотах;
  • белках.

Чтобы проследить взаимосвязь живой и неживой природы, необходимо понимать, как происходит круговорот веществ в биосфере.

Смысл

Круговорот веществ - это повторяющееся участие одних и тех же веществ в процессах, происходящих в литосфере, гидросфере и атмосфере.

Выделяют два типа круговорота веществ:

  • геологический (большой круговорот);
  • биологический (малый круговорот).

Движущей силой геологического круговорота веществ являются внешние (солнечная радиация, гравитация) и внутренние (энергия недр Земли, температура, давление) геологические процессы, биологического - деятельность живых существ.

Большой круговорот происходит без участия живых организмов. Под действием внешних и внутренних факторов формируется и сглаживается рельеф. В результате землетрясений, выветривания, извержения вулканов, движения земной коры образуются долины, горы, реки, холмы, формируются геологические слои.

Рис. 1. Геологический круговорот.

Биологический круговорот веществ в биосфере происходит при участии живых организмов, которые преобразуют и передают энергию по пищевой цепочке. Устойчивая система взаимодействия живого (биотического) и неживого (абиотического) веществ называется биогеоценозом.

ТОП-3 статьи которые читают вместе с этой

Чтобы происходил круговорот веществ, необходимо выполнение нескольких условий:

  • наличие примерно 40 химических элементов;
  • присутствие солнечной энергии;
  • взаимодействие живых организмов.

Рис. 2. Биологический круговорот.

У цикла веществ нет определённой отправной точки. Процесс непрерывный и одна стадия неизменно перетекает в другую. Можно начать рассматривать цикл из любой точки, суть останется прежней.

Общий круговорот веществ включает следующие процессы:

  • фотосинтез;
  • метаболизм;
  • разложение.

Растения, являющиеся продуцентами в пищевой цепочке, преобразуют солнечную энергию в органические вещества, которые поступают с пищей в организм животных - редуцентов. После смерти происходит разложение растений и животных с помощью консументов - бактерий, грибов, червей.

Рис. 3. Пищевая цепочка.

Круговорот веществ

В зависимости от расположения веществ в природе выделяют два типа круговорота:

  • газовый - происходит в гидросфере и атмосфере (кислород, азот, углерод);
  • осадочный - происходит в земной коре (кальций, железо, фосфор).

Круговорот веществ и энергии в биосфере на примере нескольких элементов описан в таблице.

Вещество

Цикл

Значение

Большой круговорот. Испаряется с поверхности океана или суши, задерживается в атмосфере, выпадает в виде осадков, возвращаясь в водоёмы и на поверхность Земли

Формирует природные и климатические условия планеты

На суше - малый круговорот веществ. Получают продуценты, передают редуцентам и консументам. Возвращается в виде углекислого газа. В океане - большой круговорот. Задерживается в виде осадочных пород

Является основой всех органических веществ

Азотфиксирующие бактерии, находящиеся в корнях растений, связывают свободный азот из атмосферы и закрепляют в растениях в виде растительного белка, который передаётся дальше по пищевой цепочке

Входит в состав белков и азотистых оснований

Кислород

Малый круговорот - поступает в атмосферу в процессе фотосинтеза, потребляется аэробными организмами. Большой круговорот - образуется из воды и озона под действием ультрафиолета

Участвует в процессах окисления, дыхания

Находится в атмосфере и почве. Усваивают бактерии и растения. Часть оседает на морском дне

Необходима для построения аминокислот

Большой и малый круговороты. Содержится в горных породах, потребляется растениями из почвы и передаётся по цепи питания. После разложения организмов возвращается в почву. В водоёме усваивается фитопланктоном и передаётся рыбам. После отмирания рыб часть остаётся в скелете и оседает на дно

Вещества поступают к живым организмам из почвы, воздуха, воды. Вода испаряется из океанов, поднимается к слоям атмосферы, образуя дождь. Зеленые растения пользуются поступившей в почву водой. Поддерживая свою жизнедеятельность, они одновременно выделяют необходимый для жизни кислород. В то же время, без воздействия кислорода не могли бы происходить процессы разложения и гниения растений. Как называется этот замкнутый круг, обеспечивающий возможность жизни на Земле, и в чем состоят его особенности?

Главное понятие экологии

Биологический круговорот - это обращение химических элементов, возникшее одновременно с зарождением жизни на нашей планете, и которое происходит при участии живых организмов.

Закономерности, присущие круговороту веществ, решают основные задачи поддержания жизни на Земле. Ведь запасы питательных веществ на всей поверхности Земли не безграничны, хотя и являются огромными. Если бы эти запасы только потреблялись живыми существами, то в один момент жизнь должна была бы подойти к своему концу. Ученый Р. Вильямс писал: «Единственный метод, который позволяет ограниченному количеству иметь свойство бесконечного, - это сделать так, чтобы оно вращалось по траектории замкнутой кривой линии». Сама жизнь распорядилась так, чтобы на Земле был использован этот метод. Органические вещества создаются зелеными растениями, а незеленые подвергают его разрушению.

В биологическом круговороте каждый вид живых существ занимает свое место. Основной парадокс жизни заключается в том, что она поддерживается при помощи процессов деструкции и постоянного распада. Сложные органические соединения рано или поздно разрушаются. Этот процесс сопровождается выделением энергии, потерей свойственной живому организму информации. Огромное значение в биологическом круговороте веществ и развитии жизни играют микроорганизмы - именно с их участием любая форма жизни включается в биотический круговорот.

Звенья биоцепочки

Микроорганизмы имеют два свойства, которые позволяют им занимать столь важное место в круге жизни. Во-первых, они очень быстро могут приспосабливаться к меняющимся условиям окружающей среды. Во-вторых, для пополнения запасов энергии они могут использовать самые разнообразные вещества, а также углерод. Такими свойствами не обладает ни один из высших организмов. Они существуют лишь как надстройка над фундаментальным основанием царства микроорганизмов.

Особи и виды различных биологических классов являются звеньями круговорота веществ. Они также взаимодействуют между собой при помощи различных типов связей. Круговорот веществ планетарного масштаба включает в себя частные биологические круговороты в природе. Они осуществляются, главным образом, по пищевым цепочкам.

Опасные обитатели домашней пыли

Немалую роль в биологическом круговороте играют и сапрофиты - постоянные «жители» домашней пыли. Они питаются разнообразными веществами, которые входят в состав домашней пыли. При этом сапрофиты выделяют довольно токсичные фекалии, которые провоцируют возникновение аллергии.

Кем же являются эти невидимые для человеческого глаза создания? Сапрофиты принадлежат к семейству паукообразных. Они сопровождают человека на протяжении всей жизни. Ведь пылевые клещи питаются домашней пылью, в состав которой также входит человеческая кожа. Ученые полагают, что когда-то сапрофиты были жителями птичьих гнезд, а затем «перебрались» в жилище человека.

Пылевые клещи, играющие большую роль в биологическом обороте, имеют очень малые размеры - от 0,1 до 0,5 мм. Но они настолько активны, что всего лишь за 4 месяца один пылевой клещ может отложить порядка 300 яиц. Один грамм домашней пыли может содержать несколько тысяч клещей. Невозможно представить, сколько пылевых клещей может быть в доме, ведь считается, что за один год в человеческом жилище может накапливаться до 40 кг пыли.

Круговорот в лесу

В лесу биологический круговорот обладает наибольшей мощностью по причине проникновения корней деревьев в глубины почвы. Первым звеном в этом обороте обычно считается так называемое ризосферное звено. Ризосферой называется тонкий (от 3 до 5 мм) слой почвы вокруг дерева. Почва вокруг корней дерева (или «ризосферная почва»), как правило, очень богата корневыми выделениями и различными микроорганизмами. Ризосферное звено представляет собой своеобразные ворота между живой природой и неживой.

Звено потребления находится в корнях, которые поглощают минеральные вещества из почвы. Некоторая часть веществ смывается осадками обратно в почву, однако большей частью возврат питательных веществ осуществляется во время двух процессов - опада и отпада.

Роль опада и отпада

Опад и отпад имеют разное значение в биологическом круговороте веществ. Опад включает в себя шишки деревьев, ветки, листья, остатки от травы. Исследователи не включают в опад деревья - они относятся к категории отпада. Разложение отпада может происходить в течение десятков лет. Иногда отпад может служить материалом для питания других древесных пород - но только по достижении определенной стадии разложения. Отпад содержит много веществ, относящихся к классу зольных. Они медленно поступают в почву и используются растениями для дальнейшей жизнедеятельности.

От чего зависит опад?

Опад имеет несколько иное значение в биологическом круговороте. В течение года весь его объем переходит в слой подстилки и подвергается полному разложению. Элементы золы гораздо быстрее поступают в биотический оборот. Однако фактически опад является частью биологического оборота уже когда листья находятся на дереве. Показатель опада зависит от многих факторов: климата, погоды в текущем и предыдущем годах, количества насекомых. В лесотундре она достигает нескольких центнеров, в лесах измеряется тоннами. Самое большое количество опада в лесах приходится на весну и осень. Различается этот показатель и в зависимости от года.

Что касается органического состава хвои и листьев, то в процессе круговорота они подвергаются одинаковым изменениям. В отличие от опада, зеленые листья обычно богаты фосфором, калием, азотом. Опад же, как правило, богат кальцием. На биологический круговорот большое влияние оказывают насекомые и животные. Например, листогрызущие насекомые могут значительно ускорить его. Однако самое большое влияние на скорость круговорота оказывают животные в процессе разложения опада. Личинки и черви поедают и измельчают опад, перемешивают с верхними слоями почвы.

Фотосинтез в природе

Растения для пополнения запасов энергии умеют использовать солнечный свет. Они делают это в два этапа. На первом этапе происходит улавливание света листьями; на втором энергия используется для процесса связывания углерода и образования органических веществ. Биологи называют зеленые растения автотрофами. Они являются основой для жизни на всей планете. Автотрофы имеют огромное значение в фотосинтезе и биологическом круговороте. Энергия солнечного света превращается ими в запасенную посредством образования углеводов. Самым главным из них является сахар глюкоза. Процесс этот получил название фотосинтеза. Живые организмы других классов могут получать доступ к солнечной энергии, употребляя в пищу растения. Таким образом появляется пищевая цепь, обеспечивающая круговорот веществ.

Закономерности фотосинтеза

Несмотря на важность процесса фотосинтеза, долгое время он оставался неизученным. Лишь в начале XX века английский ученый Фредерик Блэкман поставил несколько экспериментов, при помощи которых удалось установить этот процесс. Ученый выявил и некоторые закономерности фотосинтеза: оказалось, что он запускается при слабом освещении, постепенно усиливаясь с потоками света. Однако это происходит только до определенного уровня, после которого усиление света уже не ускоряет фотосинтез. Блэкман также установил, что постепенное повышение температуры при усилении освещения способствует фотосинтезу. Повышение температуры при слабом освещении не ускоряет этот процесс, как и усиление освещения при низкой температуре.

Процесс преобразования света в углеводы

Фотосинтез начинается с процесса попадания фотонов солнечного света в молекулы хлорофилла, расположенные в листьях растений. Именно хлорофилл придает растениям зеленый цвет. Улавливание энергии происходит в два этапа, которые биологи называют Фотосистема I и Фотосистема II. Интересно, что номера этих фотосистем отражают порядок их открытия учеными. Это одна из странностей в науке, так как вначале реакции происходят во второй фотосистеме, и лишь затем - в первой.

Фотон солнечного света сталкивается с 200-400 молекулами хлорофилла, находящимися в листе. При этом энергия резко возрастает и передается молекуле хлорофилла. Этот процесс сопровождается химической реакцией: хлорофилловая молекула теряет при этом два электрона (их, в свою очередь, принимает так называемый «акцептор электронов», другая молекула). А также при столкновении фотона с хлорофиллом происходит образование воды. Цикл, при котором солнечный свет превращается в углеводы, называется циклом Калвина. Значение фотосинтеза и биологического круговорота веществ нельзя недооценить - именно благодаря этим процессам на земле имеется кислород. Получаемые человеком полезные ископаемые - торф, нефть - также являются носителями запасенной в процессе фотосинтеза энергии.

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.

Все вещества на планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризуется двумя важными моментами: он осуществляется на протяжении всего геологического развития Земли и представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и разрушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и химических элементов. Значительную роль в этих процессах играли и продолжают играть термические свойства поверхности суши и воды: поглощение и отражение солнечных лучей, теплопроводность и теплоемкость. Неустойчивый гидротермический режим поверхности Земли вместе с планетарной системой циркуляции атмосферы обусловливал геологический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и современных геосфер. Со становлением биосферы в большой круговорот включились продукты жизнедеятельности организмов. Геологический круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и другие - участвуют в большом круговороте, проходя от глубинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации

магмы, поступив на поверхность литосферы из глубин Земли, подвергается разложению, выветриванию в области биосферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глубину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис. 32).

Рис. 32. Геологический (большой) круговорот веществ

Наиболее интенсивному и быстрому круговороту подвергаются легкоподвижные вещества - газы и природные воды, составляющие атмосферу и гидросферу планеты. Значительно медленнее совершает круговорот материал литосферы. В целом каждый круговорот любого химического элемента является частью общего большого круговорота веществ на Земле, и все они тесно связаны между собой. Живое вещество биосферы в этом круговороте выполняет огромную работу по перераспределению химических элементов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.


Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, грибами, микроорганизмами и почвой. Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических веществ и их разрушения. Начальный этап возникновения органических веществ обусловлен фотосинтезом зеленых растений, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, магния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I порядка) поглощают соединения этих элементов уже в виде пищи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потребляя пищу более сложного состава, включающую белки, жиры, аминокислоты и другие вещества. В процессе разрушения микроорганизмами (редуцентами) органических веществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следующий виток биологического круговорота (рис. 33).