Большая энциклопедия нефти и газа. Полупроводниковые материалы

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.


Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

4 Электрические свойства "p-n" перехода "p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются. При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью. 5 Полупроводниковые приборы. Яркая зависимость электропроводимости полупроводников от температуры используется в приборах называемых термосопротивлениями или термисторами. Они используются для измерения температуры в различных машинах и агрегатах, для измерения температуры почвы на различной глубине, всюду, где необходимо поддерживать постоянную температуру. Чувствительные термисторы можно вводить непосредственно в кровеносный сосуд. Полупроводник с одним "p-n" переходом называется полупроводниковым диодом. При наложении эл.поля в одном направлении сопротивление полупроводника велико,в обратном - сопротивление мало.
Полупроводниковые диоды - основные элементы выпрямителей переменного тока В полупроводниковых транзисторах также используются свойства "р-n "переходов. - транзисторы используются в схемотехнике радиоэлектронных приборов. 6 Вопросы на закрепление изученной темы. - Какие вещества называются полупроводниками? Приведите примеры полупроводников. - Какова зависимость сопротивления полупроводника от температуры? - Как зонная теория объясняет различие в проводимости проводников, полупроводников и диэлектриков? - Объясните механизм собственной и примесной проводимости полупроводников. - Что такое термистор? фоторезистор? - Что такое р-n-переход? Каково его основное свойство? - Как устроен и где применяется полупроводниковый диод? .

2 Полупроводники «Имеется существенное различие между полупроводником, таким как германий, и хорошим проводником, таким как серебро… Электросопротивление хорошего проводника быстро уменьшается с понижением температуры, в то время как у «плохого» проводника оно возрастает и становится очень большим, когда температура приближается к абсолютному нулю» А. Х. Вильсон Электросопротивление (Ом*см):


2 Собственная проводимость Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (n) и дырок (p) равны Температурная область собственной проводимости – примеси не оказывают влияния в данной области. - При абсолютном нуле в зоне проводимости все уровни свободны (вакантны) - Зона проводимости отделена от заполненной валентной зоны энергетической щелью шириной E g. - Ширина энергетической щели равна разности между наиболее низкой точкой зоны проводимости и наиболее высокой точкой валентной зоны (края зон)


2 Собственная проводимость По мере возрастания T электроны валентной зоны вследствие термического возбуждения будут переходить в зону проводимости В валентной зоне будут образовываться дырки (вакантные состояния) Движение электронов и дырок в электрическом поле Е. Направления скоростей разные, но создаваемый ток имеет направление электрического поля


2 Собственная проводимость Температурная зависимость логарифма проводимости Ge - Примеси влияют на концентрацию носителей при низких температурах - При высоких Т концентрация определяется собственными свойствами п/п (380 – 800) К – собственная пр. (273 – 300) К – примесная пр. Ширина запрещенной зоны:


2 Запрещенная зона Ширина запрещенной зоны (i – непрямые переходы; d – прямые) Полупроводники, переход электрона в которых из зоны проводимости в валентную зону не сопровождается потерей импульса (прямой переход), называются прямозонными. Полупроводники, переход электрона в которых из зоны проводимости в валентную зону сопровождается потерей импульса (непрямой переход), называются непрямозонными






2 Закон действующих масс n(E g) - кол-во электронов, переходящих в рез- те возбуждения при Т в зону проводимости, как функцию хим. Потенциала Функция распределения Ферми-Дирака: Позволяет найти вероятность, с которой фермион занимает данный энерг. уровень.














2 Примесная проводимость Добавление примесей (легирование) Нарушенная стехиометрия Примесная проводимость превышает собственную. Примеси: донорные (отдающие) и акцепторные (принимающие) Примесными центрами могут быть: атомы или ионы химических элементов, внедренные в решетку полупроводника; избыточные атомы или ионы, внедренные в междоузлия решетки; различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.


2 Примесные состояния Примесь As в кристалле Si. Мышьяк имеет 5 валентных электронов, а кремний – 4. Четыре электрона As образуют тетраэдрические ковалентные связи, подобные связям Si, а пятый электрон осуществляет проводимость. Атом мышьяка – донор, поскольку при ионизации отдает электрон в зону проводимости (полупроводник n-типа)


2 Примесные состояния Если в кристалле 4-валентного элемента (Si, Ge) часть атомов замещена атомами 3-валентного элемента (Ga, In), то для образования четырех ковалентных связей у примесного атома не хватает одного электрона. Электрон может быть получен от атома основного элемента полупроводника за счет разрыва ковалентной связи. Разрыв связи приводит к появлению дырки. Примеси, захватывающие валентные электроны, называют акцепторными. За счет ионизации атомов исходного материала часть валентных электронов становится свободной. Однако свободных электронов значительно меньше, чем дырок. Поэтому дырки в таких полупроводниках являются основными, а электроны неосновными подвижными носителями заряда. Такие полупроводники носят название полупроводников с дырочной электропроводностью или полупроводников p-типа.


2 Электронно-дырочные переходы Создадим контакт из двух полупроводников, n-типа и p-типа (p-n переход) Слева от перехода имеются свободные дырки, их концентрация равна концентрации отрицательно ионизованных акцепторных примесных атомов. Справа от перехода имеются свободные электроны, их концентрация равна концентрации положительно заряженных донорных примесных атомов. Толщина границы между p- и n-областью может быть порядка см


2 Электронно-дырочные переходы Носители тока находятся в тепловом равновесии с донорными и акцепторными примесями. Так же в тепловом равновесии будут находиться и неосновные носители с малой концентрацией. Неоднородность концентраций в кристалле будет вызывать диффузия дырок в n-область, а электронов в p-область. Это приведет к нарушению электрической нейтральности. В результате будет создаваться избыток отрицательно заряженных ионов акцепторных атомов в p-области и положительно заряженных в n-области. Образуется двойной слой разноименных зарядов, которые создадут электрическое поле, направленное от n- к p-области


2 Электронно-дырочные переходы Электростатический потенциал будет испытывать скачок в области перехода Электрохимический потенциал постоянен по всему объему Если концы кристалла соединить в цепь, а пучок света направить на переход, то потечет ток. Фотоны будут образовывать электроны и дырки. Когда пары электрон-дырка образуются в области перехода, электрическое поле двойного слоя будет перемещать дырки в p-область, а электроны в n-область. Ток потечет из n-области в p-область. Энергия фотонов будет превращаться в электрическую энергию


2 От песка до процессора Кремний (Si) и Песок (SiO 2) Восстановление: SiO 2 + 2C = Si + 2CO Технический кремний: % чистоты Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3): 3SiCl 4 + 2H 2 + Si 4SiHCl 3 2SiHCl 3 SiH 2 Cl 2 + SiCl 4 2SiH 2 Cl 2 SiH 3 Cl + SiHCl 3 2SiH 3 Cl SiH 4 + SiH 2 Cl 2 SiH 4 Si + 2H 2 99, %


2 От песка до процессора Фотолитография «свет-шаблон- фоторезист» На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом. Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон Удаление отработанного фоторезиста.


2 От песка до процессора Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски. Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент


2 От песка до процессора Для соединения логических элементов пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.


2 От песка до процессора Осталось хитрым способом соединить «остатки» транзисторов принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов».


Можно считать что полупроводник открыли в 1833 году, когда исследуя температурную зависимость удельной электропроводности - плохого проводника сульфида серебра, Фарадей заметил, что в отличие от хороших металлических проводников, у сульфида серебра при нагревании проводимость не снижалась, а, даже наоборот, увеличивалась. Чуть позже эта особенность была выявлена и у других полупроводников.

Еще два открытия касавшихся проводимости полупроводников были сделаныв 1873 и 1874 годах. В 1873 году Уиллоуби Смит обнаружил увеличение проводимости селена при его освещении внешним источником света, т.е. открыл внутренний фотоэффект, а в 1874 году другой исследователь Ф. Браун, работая с такими материалами, как сернистый свинец (PbS) и пирит (FeS), заметил выпрямление переменного тока при контакте этих веществ с металлом. В начале прошлого века появилось довольно много работ, посвящённых изучению свойств полупроводников. В основном это были сульфиды и оксиды металлов, а также кремний. Именно в это время и сформировался термин полупроводники.

Материал полупроводник, по своей удельной проводимости занимает промежуток между проводниками и диэлектриками и отличается от первых сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения.

Полупроводники это достаточно большая группа веществ, применяемых в радиоэлектроники: германий, кремний, селен, но для изготовления диодов и транзисторов применяют в основном кремний и германий.

По своим электротехническим свойствам они занимают среднее место между проводниками и непроводниками электрического тока.

У полупроводников, ширина запрещённой зоны составляет около нескольких электрон-вольт (эВ). Например,такой материал как алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. К числу полупроводников относятся также многие химические элементы (кремний, германий, селен, мышьяк теллур, и другие), огромное количество сплавов и химических соединений (например арсенид галлия). Почти все неорганические вещества окружающие нас это полупроводники. Самым распространенным полупроводником на нашей планете является кремний, составляющий около 30 % земной коры. В зависимости от того, захватывает ли примесной атом свободный электрон или наоборот отдает его, такие атомы называют акцепторными или донорными.

В первую очередь, надо отметить, что электропроводность при протекании тока полупроводников зависит от температуры. Например, при очень низкой температуре, -273°С, они не проводят его совсем, а с ростом температуры, их сопротивление электрическому току уменьшается.

Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Если на полупроводник навести источник света, то ток в полупроводниках начинает увеличиваться. Используя это свойство увидели этот мир множество фотоэлектрических приборов. Кроме того они способны преобразовывать световой поток воздействующий на полупроводник в электрический ток, например, принцип работы солнечных батарей строится как раз на этом эффекте, а это уже сегодня позволило снизить сжигание нефти и газа, а через некоторое время бензиновые двигатели авто уже будут историей. А при введении в полупроводник примесей различных веществ, их электропроводность резко возрастает.

Характер примеси в полупроводнике может существенно изменяться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Проводимость полупроводников сильно зависит от температуры. Около температуры абсолютного нуля полупроводники обладают характеристиками диэлектриков. Для понимания механизма возникновения проводимости в полупроводниках, нужно знать внутреннее строение полупроводниковых кристаллов и связей, удерживающих атомы возле друг друга. Напомним, что фактически у каждого электрона имеется своя собственная орбита и правильнее говорить в этом вопросе, не об одной внешней орбите, а о целом внешнем электронном слое, в котором бывает до восьми орбит.

Принцип строения атомов

Как я уже сказал выше германий и кремний это основные материалы используемые в полупроводниках, так как они имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия имеет в своем составе 32 электрона, а кремния 14. Но только 28 электронов атома германия и 10 кремния, находятся во внутренних слоях своих оболочек и прочно там удерживаются. А эти четыре валентных электрона могут стать свободными, да и то лишь временно. А если атом потеряет хотя бы один из них, то он сразу же превращается в положительный ион.

Внутри пластинки атомы располагаются в строгом порядке: каждый из них окружен 4 подобными атомами. Причем они размещены так близко друг к другу, что их валентные электроны имеют единые орбиты, движущиеся вокруг соседних атомов, тем самым переплетая атомы в единое целое вещество.

Представим взаимосвязь атомов в полупроводнике в виде простой плоской схемы. На схеме шарики с плюсом, условно, показывают ядра атомов - положительные ионы, а маленькие шарики это валентные электроны.

На картинки четко видно, что вокруг каждого атома имеются четыре других атома, а каждый из них имеет связь еще с четырьмя атомами и так далее. Любой из атомов скреплен с соседом двумя валентными электронами, причем один электрон свой собственный, а другой одолжен у соседнего атома. Такая связь из курса химии называется двухэлектронной или ковалентной.

Внешний слой оболочки каждого атома имеет восемь электронов: четыре собственных, и по одному, одолженному у четырех соседей. Здесь уже не возможно понять, какой из этих электронов в атоме свой, а какой чужой. При такой связи во всем объеме кристалла германия или кремния можно условно считать, что кристалл представляет из себя одну огромную молекулу.

Возьмем рисунок кристалла, где атомы обозначаются шариком с плюсом, а межатомные связи изображены двумя линиями.

При температуре абсолютного нулю наш кристалл не будет пропускать ток, так как в нем отсутствуют свободные электроны. Но с ростом температуры связь валентных электронов с ядрами становится слабее и отдельные электроны, вследствие постоянного движения, могут уходить от своих атомов. Становясь свободным, а там где электрон находился, появляется пустое место, которое придумали назвать дыркой.

С ростом температуры, растет количество свободных электронов и дырок. Давайте перейдем к следующей схеме, где схематично изображено явление появления электрического тока в кристалле полупроводника.

Если приложить напряжение к контактам кристалла «+» и «-», то в полупроводнике потечет электрический ток. Вследствие тепловых явлений, из межатомных связей получают свободу электроны, которые, притягиваясь плюсом источника питания, будут двигаться к нему, оставляя дырки, которые заполняются другими свободными электронами. То есть, под действием электрического поля носители заряда получают скорость направленного движения и тем самым генерируют ток.

Пока действует электрическое поле, процесс постоянен: нарушаются межатомные связи, появляются свободные электроны – генерируются дырки. Дырки принимают в себя электроны – восстанавливая одни межатомные связи, но нарушая другие, из которых убегают электроны заполняя следующие дырки

Отсюда, условно можно сказать, что электроны идут от минуса источника питания к плюсу, а дырки двигаются от плюса к минусу.

Рассмотрим вопрос, что такое проводимость полупроводника?

Чуть выше по полочкам мы разобрали механизм проводимости идеальных полупроводников. Проводимость при этих идеальных факторах называют собственной проводимостью полупроводников. Она в некоторых моментах сходна с проводимостью расплавов электролитов или водных растворов. В них также число свободных носителей заряда заметно растет с увеличением интенсивности теплового движения. Поэтому и у полупроводников, и у расплавов электролитов или водных растворов, хорошо заметно увеличение проводимости с увеличением температуры. Особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью появляется дополнительная, так называемая - примесная проводимость. Меняя концентрацию такой примеси, можно существенно регулировать число свободных носителей заряда любого знака. Благодаря этому можно получить полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителями.

Итак, в чистом кристалле полупроводника число свободных в определенный момент электронов равно числу дырок, поэтому электропроводность такого кристалла мала, так как он оказывает току достаточно большое сопротивление, и ее называют собственной. Но если в кристалл ввести немного примеси, точнее минимальное количество атомов других элементов, то электропроводность его увеличится в разы, и в зависимости от структуры добавленных атомов примесей элементов электропроводность будет называться электронной или дырочной.

Полупроводник с электронной проводимостью

Предположим, в кристалле атомы имеют 4-ре валентных электрона, мы поменяем один атом другим, у которого пять валентных частиц. Этот атом с четырьмя эл. соединится с 4 соседними атомами, а пятый останется «не удел» – то есть окажется полностью свободным. И чем выше их количество в кристалле, тем большее число свободных электронов, а значит, такой кристалл по своим свойствам, станет похож на металлический проводник, и чтобы через него потек ток, в нем не нужно рвать межатомные связи.

Кристаллы, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или n-типа. Здесь латинская буква n получила название от слова «negative» . Отсюда понятно, что в полупроводнике n-типа основные носители заряда – электроны, а не основные – дырки.

Полупроводник с дырочной проводимостью

В другом случае в том же кристалле, поменяем атом на другой с тремя свободными электрона, которыми он свяжется только с тремя соседними атомами, а для сцепки с четвертым атомом у него появится дефицит одного электрона. В итоге получается "бублик" или дырка. Понятно, что она примет в себя любой другой свободный электрон, схваченный рядом, И чем больше будет добавлено в кристалл таких атомов, тем выше будет число дырок.

Чтобы в таком случае могли высвобождаться и перемещаться свободные электроны, обязательно надо прорывать валентные связи между атомами. Но электронов все равно не хватит, так как количество дырок всегда будет превышать количество электронов в любой момент.

Такие кристаллы называют полупроводниками с дырочной проводимостью или p-типа, что с латинского значит «positive». То есть, электрический тока в кристалле p-типа обусловлен непрерывным появлением и исчезновением положительных зарядов или дырок. А это говорит о том, что в кристалле p-типа основными носителями заряда будут дырки, а не основными – электроны.

Давайтк рассмотрим полупроводник, правая часть которого содержит донорные примеси и поэтому является кристаллом n-типа, а левая акцепторные и представляет собой типовой полупроводник р-типа. Место соединения двух полупроводников называют р-n переходом. Подключим такой полупроводник к источнику питания и посмотрим его работу при разных подключениях. Сначала соединим так, чтобы потенциал полупроводника р-типа был соединен с плюсом, а n типа с минусом. При этом ток через полупроводник, а точнее его р-n переход будет генерироваться основными носителями: из области n в область р электронами, а из области р в n дырками.

Проводимость в целом будет достаточно большой, а сопротивление - малым. Показанный на рисунке переход называют прямым. Если переключить полюса источника питания, то проводимость образца оказывается малой, а сопротивление большим. Так как образуется запирающий слой. Подробней работа устройства с одним p-n переходом описана в разделе работа диода, нашего сайта.

Здравствуйте уважаемые читатели сайта . На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник . Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается .

Если на полупроводник навести свет , то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона .

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом .

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны .

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной .

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному , заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу . На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов . Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным », а там где он находился до этого, образуется пустое место, которое условно называют дыркой .

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике .

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений , в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки , которые будут заполняться другими освободившимися электронами . То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток .

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку . Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки , находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле , этот процесс непрерывен : нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному .

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала , так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной .

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним » – то есть свободным. И чем больше больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи .

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n », или полупроводники n -типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n -типа основными носителями заряда являются – электроны , а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка . Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами . Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p -типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p -типа основными носителями заряда являются дырки , а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1 . Борисов В.Г. — Юный радиолюбитель. 1985г.
2 . Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.

Понравилась статья - поделитесь с друзьями:

10 комментариев


Полупроводниковый кристалл представляет собой систему, состоящую из атомных ядер и электронов, в большей или меньшей степени связанных с ядрами.  

Полупроводниковый кристалл или комплект кристаллов, на которых реализуется центральный процессор ЭВМ (С. Обязательными компонентами микропроцессора являются арифметико-логическое устройство (А. Они характеризуются скоростью, длиной слова (внутренней и внешней), архитектурой (А. Эффективность микропроцессора определяется сочетанием этих характеристик, а не только временем цикла. Большинство микропроцессоров имеет фиксированную систему команд. Микропрограммируемые процессоры оснащаются управляющим запоминающим устройством, в котором хранится микропрограмма или встроенные программы, определяющие набор реализуемых команд. Такие процессоры могут быть однокристальными или разрядно-модульными (В.  

Полупроводниковые кристаллы отличаются от диэлектрических большими значениями показателя преломления (до - 9), что требует во многих случаях нанесения просветляющих покрытий. Оптические свойства полупроводников весьма сильно зависят от температуры. Полупроводниковые кристаллы являются перспективными оптическими материалами ввиду возможности синтеза большего числа полупроводниковых соединений с самыми различными оптическими характерист иками.  

Полупроводниковые кристаллы, используемые в этих диодах, не претерпели каких-либо существенных конструктивных изменений, однако отсутствие герметичного корпуса требует особенно тщательной их защиты от воздействия окружающей среды. Для этого используют окисные или другие диэлектрические пленки, которые получают в процессе изготовления полупроводникового активного элемента в сочетании с последующим нанесением лаков или смол, служащих также и для защиты кристаллов от случайных механических воздействий, а также герметизацию всей схемы. Надо отметить также сложность монтажа диодов с круглым керамическим держателем в схему, так как трудно добиться полного совмещения полоски на держателе с полоской на подложке, в результате чего в передающем тракте возникают ступеньки, увеличивающие потери в схеме. В связи с тем, что теплопроводность материалов, применяемых для изготовления подложек микросхем, значительно ниже (за исключением бериллиевой керамики), чем у металлов, мощность рассеяния у приборов с керамическим теплоотводом меньше, чем у диодов в корпусах с металлическими кристал-лодержателями.  

Полупроводниковый кристалл представляет собой систему, состоящую из огромного числа атомных ядер и электронов.  

Полупроводниковые кристаллы выращивают в горизонтальных лодочках по тому или иному варианту метода Бриджмена - Стокбаргера.  

Полупроводниковый кристалл с прямоугольным поперечным сечением 1X2 мм2 и длиной 2 см содержит 10 см-3 акцепторов. Затем этот кристалл легируется донорами с концентрацией 5 - Ю16 см-3.  

Полупроводниковый кристалл способен заменить не одну лампу, а целый ламповый блок со множеством различных деталей, стать основой для аппаратуры принципиально нового типа, где функции электронных приборов выполняют небольшие группы различных молекул.  

Полупроводниковый кристалл чаще всего изготавливается из кремния. Благодаря сложной технологической обработке кристалла в нем создаются электронные молекулы, соединенные в электрическую схему. Это позволяет в одном кристалле (размером примерно 5x5 мм) создавать сотни тысяч взаимосвязанных электронных молекул, выполняющих сложные преобразования информации. Стремление исследователей создать еще более компактные интегральные схемы приводит к поискам решений, в которых элементами этих схем будут молекулы вещества в обычном их понимании.  

Прямозонные полупроводниковые кристаллы обладают очень высоким однофотонным поглощением при зона-зонном переходе. Поэтому необходимо очень точно подстраивать частоту излучения, чтобы потери, вносимые межзонным поглощением, не погубили процесс четырехволнового поглощения. В настоящее время в прямозонных полупроводниках наиболее часто используются процессы многофотонного, в частности двухфотоиного, поглощения, например, в кристаллах CdS и CdSe. При этом коэффициент поглощения определяется мощностью падающего излучения и может регулироваться за счет ее изменения. Возникающая же плазма свободных носителей по-прежнему приводит к изменению показателя преломления.  

Пьезоэлектрические полупроводниковые кристаллы типа А2В6 и А3В5 (ZnS, CdS, ZnO, GaAs и др.) представляют особый интерес из-за удачного сочетания пьезоэлектрических и полупроводниковых свойств.  

Использовался полупроводниковый кристалл, на заднюю грань которого было нанесено высокоотражаюшее покрытие 3i, а передняя грань была просветлена. Излучение лазера объективом / направлялось в кристалл BaTiOa (пятно с d 1 мм), после прохождения которого оно с помощью зеркал Зг и Зз формировало петлю накачки и вновь попадало в кристалл.  

Рассмотрим полупроводниковый кристалл с шириногс запрещенной зоны ДЕ и выясним, какова природа первого возбужденного состояния в нем. IB валентной зоне заняты электронами, а зона проводимости совершенно пуста.  

Некоторые изолирующие и полупроводниковые кристаллы обладают способностью изменять свою проводимость под действием ядерных излучений. Это свойство используют на практике в так называемых кристаллических детекторах. Различают два типа кристаллических детекторов: диэлектрические кристаллические счетчики и полупроводниковые кристаллические счетчики.