Что такое проводники, полупроводники и диэлектрики.

Для того чтобы исследовать явления, которые происходят при введении различных веществ в электрическое поле, рассмотрим свойства этих веществ.

Определение

Проводник - тело, в объёме которого находится большое количество свободных зарядов, которые перемещаются по всему объёму этого тела. Различают проводники с электронной и ионной проводимостью. К первым относятся все металлы и сплавы. Ко вторым - электролиты, то есть водные растворы солей, щелочей, кислот и др.

Диэлектрик - тело, в объёме которого нет свободных зарядов. Диэлектрик состоит из нейтральных атомов или молекул. В нейтральном атоме все заряженные частицы тесно связаны друг с другом, в результате чего даже под воздействием электрического поля они не могут перемещаться по всему объёму тела. Поэтому диэлектрики практически не проводят электрический ток и имеют очень низкую электропроводность. К ним можно отнести стекло, смолы, лаки и т.д.

Сравнение

В проводниках в отличие от диэлектриков, высокая концентрация свободных электрических зарядов. В металлах таковыми являются свободные электроны, которые способны передвигаться по всему объёму вещества. Возникновение свободных электронов обусловлено тем, что валентные электроны в атомах металлов весьма плохо взаимодействуют с ядрами и легко теряют связь с ними.

У диэлектриков, напротив, электроны с атомами крепко связаны и не имеют возможности свободно перемещаться под воздействием электрического поля. И так как количество свободных заряженных носителей в диэлектриках ничтожно мало, из этого следует, что в них отсутствует электростатическая индукция, и напряжённость электрического поля внутри диэлектриков не превращается в ноль, а только уменьшается.

Напряжённость нельзя повышать безгранично, т. к. при определенной величине все заряды могут сместиться настолько, что произойдет изменение структуры материала, иными словами, произойдет пробой диэлектрика. В этом случае он потеряет свои изоляционные свойства.

Выводы сайт

  1. В проводнике свободные электроны, подвергающиеся влиянию сил электрического поля, перемещаются по всему объему.
  2. В отличие от проводника, в диэлектрике (изоляторе) нет свободных зарядов. Изоляторы состоят из нейтральных молекул или атомов. Заряды в нейтральном атоме друг с другом сильно связаны и не могут перемещаться под воздействием электрического поля по всему объёму диэлектрика.

В электротехнике применяются различные материалы. Электрические свойства веществ определяются количеством электронов на внешней валентной орбите. Чем меньше электронов находится на этой орбите, тем слабее они связаны с ядром, тем легче могут отправиться путешествовать.

Под воздействием температурных колебаний электроны отрываются от атома и перемещаются в межатомном пространстве. Такие электроны называют свободными, именно они и создают в проводниках электрический ток. А велико ли межатомное пространство, есть ли простор для путешествия свободных электронов внутри вещества?

Структура твердых тел и жидкостей кажется непрерывной и плотной, напоминающей по структуре клубок ниток. Но на самом деле даже твердые тела больше похожи на рыболовную или волейбольную сеть. На бытовом уровне этого конечно не разглядеть, но точными научными исследованиями установлено, что расстояния между электронами и ядром атомов намного превышают их собственные размеры.

Если размер ядра атома представить в виде шара размером с футбольный мяч, то электроны в такой модели будут размером с горошину, а каждая такая горошина расположена от «ядра» на расстоянии в несколько сотен и даже тысяч метров. А между ядром и электроном пустота - просто ничего нет! Если в таком же масштабе представить расстояния между атомами вещества, размеры получатся вообще фантастические, - десятки и сотни километров!

Хорошими проводниками электричества являются металлы . Например, атомы золота и серебра имеют на внешней орбите всего по одному электрону, поэтому именно они являются наилучшими проводниками. Железо тоже электричество проводит, но несколько хуже.

Еще хуже проводят электричество сплавы с высоким сопротивлением . Это нихром, манганин, константан, фехраль и другие. Такое многообразие высокоомных сплавов связано с тем, что они предназначены для решения различных задач: нагревательные элементы, тензодатчики, образцовые резисторы для измерительных приборов и многое другое.

Для того, чтобы оценить способность материала проводить электричество было введено понятие «удельная электропроводность» . Обратное значение - удельное сопротивление . В механике этим понятиям соответствует удельный вес.

Изоляторы , в отличие от проводников, не склонны терять электроны. В них связь электрона с ядром очень прочная, и свободных электронов почти нет. Точнее есть, но очень мало. При этом в некоторых изоляторах их больше, а качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и бумагу. Поэтому изоляторы условно можно разделить на хорошие и плохие.

Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры изоляционные свойства ухудшаются, некоторым электронам все-таки удается оторваться от ядра.

Аналогично удельное сопротивление идеального проводника было бы равно нулю. Но такого проводника к счастью нет: представьте себе, как бы выглядел закон Ома ((I = U/R) с нулем в знаменателе!!! Прощай математика и электротехника.

И лишь при температуре абсолютного нуля (-273,2C°) тепловые колебания полностью прекращаются, а самый плохой изолятор становится достаточно хорошим. Для того, чтобы определить численно «это» плохой - хороший пользуются понятием удельного сопротивления. Это сопротивление в Омах кубика с длиной ребра в 1 см, размерность удельного сопротивления при этом получается в Ом/см. Удельное сопротивление некоторых веществ показано ниже. Проводимость это величина обратная удельному сопротивлению, - единица измерения Сименс, - 1См = 1 / Ом.

Хорошую проводимость или малое удельное сопротивление имеют: серебро 1,5*10^(-6), читать, как (полтора на десять в степени минус шесть), медь 1,78*10^(-6), алюминий 2,8*10^(-6). Намного хуже проводимость у сплавов с высоким сопротивлением: константан 0,5*10^(-4), нихром 1,1*10^(-4). Эти сплавы можно назвать плохими проводниками. После всех этих сложных цифр следует подставить Ом/см.

Далее в отдельную группу можно выделить полупроводники: германий 60 Ом/см, кремний 5000 Ом/см, селен 100 000 Ом/см. Удельное сопротивление этой группы больше, чем у плохих проводников, но меньше, чем у плохих изоляторов, не говоря уже о хороших. Наверное, с тем же успехом полупроводники можно было назвать полуизоляторами.

После такого короткого знакомства со строением и свойствами атома следует рассмотреть, как атомы взаимодействуют между собой, как атомы взаимодействуют между собой, как из них получаются молекулы, из которых состоят различные вещества. Для этого снова придется вспомнить об электронах на внешней орбите атома. Ведь именно они участвуют в связи атомов в молекулы и определяют физические и химические свойства вещества.

Как из атомов получаются молекулы

Любой атом находится в стабильном состоянии, если на его внешней орбите находится 8 электронов. Он не стремится забрать электроны у соседних атомов, но не отдает и свои. Чтобы убедиться в справедливости этого достаточно в таблице Менделеева посмотреть на инертные газы: неон, аргон, криптон, ксенон. Каждый из них на внешней орбите имеет 8 электронов, чем и объясняется нежелание этих газов вступать в какие - либо отношения (химические реакции) с другими атомами, строить молекулы химических веществ.

Совсем по-другому обстоит дело у тех атомов, у которых на внешней орбите нет заветных 8 электронов. Такие атомы предпочитают объединиться с другими, чтобы за счет них дополнить свою внешнюю орбиту до 8 электронов и обрести спокойное стабильное состояние.

Вот, например, всем известная молекула воды H2O. Она состоит из двух атомов водорода и одного атома кислорода, как показано на рисунке 1 .

Рисунок 1

В верхней части рисунка показаны отдельно два атома водорода и один атом кислорода. На внешней орбите кислорода находятся 6 электронов и тут же поблизости два электрона у двух атомов водорода. Кислороду до заветного числа 8 не хватает как раз двух электронов на внешней орбите, которые он и получит, присоединив к себе два атома водорода.

Каждому атому водорода для полного счастья не хватает 7 электронов на внешней орбите. Первый атом водорода получает на свою внешнюю орбиту 6 электронов от кислорода и еще один электрон от своего близнеца - второго атома водорода. На его внешней орбите вместе со своим электроном теперь 8 электронов. Второй атом водорода тоже комплектует свою внешнюю орбиту до заветного числа 8. Этот процесс показан в нижней части рисунка 1 .

На рисунке 2 показан процесс соединения атомов натрия и хлора. В результате чего получается хлористый натрий, который продается в магазинах под названием поваренная соль.

Рисунок 2 . Процесс соединения атомов натрия и хлора

Здесь тоже каждый из участников получает от другого недостающее количество электронов: хлор к своим собственным семи электронам присоединяет единственный электрон натрия, в то время, как свои отдает в распоряжение атома натрия. У обоих атомов на внешней орбите по 8 электронов, чем достигнуто полное согласие и благополучие.

Валентность атомов

Атомы, у которых на внешней орбите содержится 6 или 7 электронов, стремятся присоединить к себе 1 или 2 электрона. Про такие атомы говорят, что они одно или двухвалентны. А вот если на внешней орбите атома 1, 2 или 3 электрона, то такой атом стремится их отдать. В этом случае атом считается одно, двух или трехвалентным.

Если на внешней орбите атома содержится 4 электрона, то такой атом предпочитает объединиться с таким же, у которого тоже 4 электрона. Именно так объединяются атомы германия и кремния, использующиеся в производстве транзисторов. В этом случае атомы называются четырехвалентными. (Атомы германия или кремния могут объединяться и с другими элементами, например, кислородом или водородом, но эти соединения в плане нашего рассказа неинтересны.)

На рисунке 3 показан атом германия или кремния, желающий объединиться с таким же атомом. Маленькие черные кружочки - это собственные электроны атома, а светлые кружки обозначают места, куда попадут электроны четырех атомов - соседей.

Рисунок 3 . Атом германия (кремния).

Кристаллическая структура полупроводников

Атомы германия и кремния в периодической таблице находятся в одной группе с углеродом (химическая формула алмаза C,- это просто большие кристаллы углерода, полученные при определенных условиях), и поэтому при объединении образуют алмазоподобную кристаллическую структуру. Образование подобной структуры показано, в упрощенном, конечно, виде на рисунке 4 .

Рисунок 4 .

В центре куба находится атом германия, а по углам расположены еще 4 атома. Атом, изображенный в центре куба, своими валентными электронами связан с ближайшими соседями. В свою очередь угловые атомы отдают свои валентные электроны атому, расположенному в центре куба и соседям, - атомам на рисунке не показанным. Таким образом, внешние орбиты дополняются до восьми электронов. Конечно, никакого куба в кристаллической решетке нет, просто он показан на рисунке, чтобы было понятно взаимное, объемное расположение атомов.

Но для того, чтобы максимально упростить рассказ о полупроводниках, кристаллическую решетку можно изобразить в виде плоского схематического рисунка, несмотря на то, что межатомные связи все-таки расположены в пространстве. Такая схема показана на рисунке 5 .

Рисунок 5 . Кристаллическая решетка германия в плоском виде.

В таком кристалле все электроны крепко привязаны к атомам своими валентными связями, поэтому свободных электронов здесь, видимо, просто нет. Выходит, что перед нами на рисунке изолятор, поскольку нет в нем свободных электронов. Но, на самом деле это не так.

Собственная проводимость

Дело в том, что под воздействием температуры некоторым электронам все же удается оторваться от своих атомов, и на некоторое время освободиться от связи с ядром. Поэтому небольшое количество свободных электронов в кристалле германия существует, за счет чего есть возможность проводить электрический ток. Сколько же свободных электронов существует в кристалле германия при нормальных условиях?

Таких свободных электронов всего не более двух на 10^10 (десять миллиардов) атомов, поэтому германий плохой проводник, или как принято говорить полупроводник. При этом следует заметить, что лишь в одном грамме германия содержится 10^22 (десять тысяч миллиардов миллиардов) атомов, что позволяет «получить» около двух тысяч миллиардов свободных электронов. Кажется, что достаточно для того, чтобы пропустить большой электрический ток. Чтобы разобраться с этим вопросом, достаточно вспомнить, что такое ток силой в 1 A.

Току в 1 A соответствует прохождение через проводник за одну секунду электрического заряда в 1 Кулон, или 6*10^18 (шесть миллиардов миллиардов) электронов в секунду. На этом фоне две тысячи миллиардов свободных электронов, да еще разбросанных по огромному кристаллу, вряд ли могут обеспечить прохождение больших токов. Хотя, благодаря тепловому движению, небольшая проводимость у германия существует. Это так называемая собственная проводимость.

Электронная и дырочная проводимость

При повышении температуры электронам сообщается дополнительная энергия, их тепловые колебания становятся более энергичными, в результате чего некоторым электронам удается оторваться от своих атомов. Эти электроны становятся свободными и при отсутствии внешнего электрического поля совершают хаотические движения, перемещаются в свободном пространстве.

Атомы, потерявшие электроны, беспорядочных движений совершать не могут, а только слегка колеблются относительно своего нормального положения в кристаллической решетке. Такие атомы, потерявшие электроны, называется положительными ионами. Можно считать, что на месте электронов, вырванных из своих атомов, получаются свободные места, которые принято называть дырками.

В целом количество электронов и дырок одинаково, поэтому дырка может захватить электрон, оказавшийся поблизости. В результате атом из положительного иона вновь становится нейтральным. Процесс соединения электронов с дырками называется рекомбинацией.

С такой же частотой происходит и отрыв электронов от атомов, поэтому в среднем количество электронов и дырок для конкретного полупроводника равно, является величиной постоянной и зависимой от внешних условий, прежде всего температуры.

Если к кристаллу полупроводника приложить напряжение, то движение электронов станет упорядоченным, через кристалл потечет ток, обусловленный его электронной и дырочной проводимостью. Эта проводимость называется собственной, о ней уже было упомянуто чуть выше.

Но полупроводники в чистом виде, обладающие электронной и дырочной проводимостью, для изготовления диодов, транзисторов и прочих деталей непригодны, поскольку основой этих приборов является p-n (читается «пэ-эн») переход.

Чтобы получить такой переход, необходимы полупроводники двух видов, двух типов проводимости (p — positive — положительный, дырочный) и (n — negative — отрицательный, электронный). Такие типы полупроводников получаются путем легирования, добавления примесей в чистые кристаллы германия или кремния.

Хотя количество примесей очень мало, их присутствие в немалой степени изменяет свойства полупроводника, позволяет получить полупроводники разной проводимости. Об этом будет рассказано в следующей части статьи.

Борис Аладышкин,

Все вещества состоят из молекул, молекулы из атомов, атомы из положительно заряженных ядер вокруг которых располагаются отрицательные электроны. При определенных условиях электроны способны покидать свое ядро и передвигаться к соседним. Сам атом при этом становится положительно заряженным, а соседний получает отрицательный заряд. Передвижение отрицательных и положительных зарядов под действием электрического поля получило название электрического тока.

В зависимости от свойства материалов проводить электрический ток их делят на:

  1. Полупроводники.

Свойства проводников

Проводники отличаются хорошей электропроводностью . Это связано с наличием у них большого количества свободных электронов не принадлежащих конкретно ни одному из атомов, которые под действием электрического поля могут свободно перемещаться.

Большинство проводников имеют малое удельное сопротивление и проводят электрический ток с очень небольшими потерями. В связи с тем, что идеально чистых по химическому составу элементов в природе не существует, любой материал в своем составе содержит примеси. Примеси в проводниках занимают места в кристаллической решетке и, как правило, препятствуют прохождению свободных электронов под действием приложенного напряжения.

Примеси ухудшают свойства проводника. Чем больше примесей, тем сильнее они влияю на параметры проводимости.

Хорошими проводниками с малым удельным сопротивлением являются такие материалы:

  • Золото.
  • Серебро.
  • Медь.
  • Алюминий.
  • Железо.

Золото и серебро – хорошие проводники, но из-за высокой стоимости применяются там, где необходимо получить хорошие качественные проводники с малым объемом. Это в основном электронные схемы, микросхемы, проводники высокочастотных устройств у которых сам проводник изготовлен из дешевого материала (медь), который сверху покрыт тонким слоем серебра или золота. Это дает возможности при минимальном расходе драгоценного металла хорошие частотные характеристики проводника.

Медь и алюминий — более дешевые металлы. При незначительном снижении характеристик этих материалов, их цена на порядки ниже, что дает возможность для их массового применения. Применяют в электронике, в электротехнике. В электронике – это дорожки печатных плат, ножки радиоэлементов, радиаторы и др. В электротехнике очень широко применяется в обмотках двигателей, для прокладки электрических сетей высокого и низкого напряжения, разводку электричества в квартирах, домах, в транспорте.

Параметр проводимости очень сильно зависит от температуры самого материала. При увеличении температуры кристалла, колебания электронов в кристаллической решетке увеличивается, препятствуя свободному прохождению свободных электронов. При снижении – наоборот, сопротивление уменьшается и при некотором значении близком к абсолютному нулю, сопротивление становится нулевым и возникает эффект сверхпроводимости.

Свойства диэлектриков

Диэлектрики в своей кристаллической решетке содержат очень мало свободных электронов , способных переносить заряде под действием электрического поля. В связи с этим при создании разности потенциалов на диэлектрике, ток, проходящий через него такой незначительный, что считается равным нулю — диэлектрик не проводит электрический ток. Наряду с этим, примеси, содержащиеся в любом диэлектрике, как правило, ухудшают его диэлектрические свойства. Ток, проходящий через диэлектрик под действием приложенного напряжения в основном определяется количеством примесей.

Наибольшее распространение диэлектрики получили в электротехнике там, где необходимо защитить обслуживающий персонал от вредного воздействия электрического тока. Это изолирующие ручки разных приборов, устройств измерительной техники. В электронике – прокладки конденсаторов, изоляция проводов, диэлектрические прокладки необходимые для теплоотвода активных элементов, корпуса приборов.

Полупроводники – материалы, которые проводят электричество при определенных условиях, в другом случае ведут себя как диэлектрики.

Таблица: чем отличаются проводники и диэлектрики?

Диэлектрик
Наличие свободных электронов Присутствуют в большом количестве Отсутствуют, или присутствуют, но очень мало
Способность материалов проводить электрический ток Хорошо проводит Не проводит, или ток незначительно мал
Что происходит при увеличении приложенного напряжение Ток, проходящий через проводник, увеличивается согласно закону Ома Ток, проходящий через диэлектрик изменяется незначительно и, при достижения определенного значения, происходит электрический пробой
Материалы Золото, серебро, медь и ее сплавы, алюминий и сплавы, железо и другие Эбонит, фторопласт, резина, слюда, различные пластмассы, полиэтилен и другие материалы
Сопротивление от 10 -5 до 10 -8 степени Ом/м 10 10 – 10 16 Ом/м
Влияние посторонних примесей на сопротивление материала Примеси ухудшают свойство проводимости материала, что ухудшает его свойства Примеси улучшают проводимость материала, что ухудшает его свойства
Изменение свойств при изменении температуры окружающей среды При увеличении температуры – сопротивление увеличивается, при снижении – уменьшается. При очень низких температурах – сверхпроводимость. При увеличении температуры – сопротивление уменьшается.

В электронных приборах используются самые разные материалы. Основными элементами, применяемыми для этих устройств, является проводниковая и полупроводниковая продукция. Для более эффективного их использования, необходимо точно знать, чем отличаются проводники от полупроводников. Свойства каждого элемента, применяемые в комплексе, позволяют создавать приборы, обладающие уникальными качествами и характеристиками.

Свойства проводников и полупроводников

Очень многие вещества способны проводить электрический ток. Они могут находиться в твердом, жидком или газообразном состоянии. Основными проводниками, применяемыми в электротехнике, являются различные виды металлов или их сплавов. Они отличаются высокими качествами проводимости и электрическим сопротивлением, характерным для каждого материала.

В электротехнике металлы применяются в качестве проводников, конструкционных и контактных материалов, а также для спаивания между собой любых видов проводников. Основным свойством проводников является наличие в них свободных электронов, обеспечивающих прохождение электрического тока.

К категории полупроводников относятся вещества, занимающие промежуточное место между . Эти границы достаточно условны, поскольку под влиянием различных факторов, полупроводники могут иметь свойства и проводников и изоляторов. Например, под влиянием низких температур, они становятся диэлектриками, а при повышении температуры, в них начинают появляться свободные носители зарядов. Это связано с тем, что при росте температуры, возрастают и колебания кристаллической решетки, разрывая определенные валентные связи и образуя свободные электроны, проводящие электрический ток.

Проводники и полупроводники: основные отличия

Для того, чтобы правильно использовать те или иные материалы в электронике и электротехнике, необходимо, прежде всего, знать, чем отличаются проводники от полупроводников. В проводниках всегда имеются свободные электроны, от которых зависит движение тока. В полупроводниках образование свободных электронов происходит только при наличии определенных условий. Это дает возможность технологического управления свободными носителями полупроводника.

Одним из основных отличий является более высокая проводимость проводников в сравнении с полупроводниками. Кроме того, если при повышении температуры проводимость полупроводника резко возрастает, то в проводнике, наоборот, происходит уменьшение этого показателя с одновременным ростом электрического сопротивления. Наличие примесей также оказывает неодинаковое действие: в проводниках они снижают проводимость, а в полупроводниках она повышается. Все эти свойства рационально используются в электронных приборах, позволяя добиваться их максимальной эффективности.