Как получить водород из воды. К недостаткам этого способа относятся

Водород - широко распространенный элемент. Благодаря своей уникальности он может выступать в качестве окислителя и в качестве восстановителя. Существует несколько методов получения водорода .

Промышленный метод получения водорода.

1. Электролиз водных растворов солей (поваренная соль NaCl ).

2. Пропускание паров поды над раскаленным коксом (Т = 1000 °С):

H 2 O + C = H 2 + CO ,

Реакция обратима!

Смесь (Н 2 , СО и Н 2 О ) называется водяным газом.

А на 2-ой стадии водяной газ пропускают над оксидом железа (III) при температуре около 450°С:

СО + Н 2 О = СО 2 + Н 2 ,

Часто эту реакцию называют реакцией сдвига.

3. Получение из природного газа. Основа - конверсия метана (основной компонент природного газа, СН 4 ) с водяным паром. В итоге получается обратимая смесь, которая называется синтез-газом. Условия протекания процесса: никелевый катализатор и 1000°С:

СН 4 + Н 2 О = СО 2 + 3Н 2 ,

Эту реакцию часто используют для получения водорода для реакции Габера (синтез аммиака).

4. Крекинг нефтяных продуктов.

Лабораторный метод получения водорода.

1. Под воздействием разбавленных кислот на металлы, которые стоят в ряду напряжения левее водорода.

Zn + HCl = ZnCl 2 + H 2 ,

2. Электролиз растворов кислот, щелочей на катоде выделяется водород.

3. Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

4. Гидролиз гидридов:

NaH + H 2 O = NaOH + H 2 ,

5. Реакция кальция с водой:

Ca + 2H 2 O = Ca(ОН) 2 + H 2 .

Актуальность этого вопроса на сегодняшний день достаточно высока по причине того, что сфера использования водорода чрезвычайно обширна, а в чистом виде он практически нигде в природе не встречается. Именно поэтому было разработано несколько методик, позволяющих осуществлять добычу этого газа из других соединений посредством химических и физических реакций. Об этом и рассказывается в приведенной статье.

Способы получения водорода в промышленных условиях

Добыча путем конверсии метана . Вода в парообразном состоянии, предварительно нагретая до 1000 градусов по Цельсию, смешивается с метаном под давлением и в присутствии катализатора. Способ этот интересный и проверенный, также надо отметить, что он постоянно совершенствуется: ведется поиск новых катализаторов, более дешевых и эффективных.

Рассмотрим самый древний метод получения водорода - газификацию угля . При условии отсутствия доступа воздуха и температуре в 1300 градусов Цельсия, нагревают уголь и водяной пар. Таким образом, происходит вытеснение водорода из воды, и получается углекислый газ (водород будет наверху, углекислый газ, также получаемый в результате проводимой реакции, – внизу). Таким будет разделение газовой смеси, все очень просто.

Получение водорода путем электролиза воды считается самым простым вариантом. Для его осуществления необходимо залить в емкость раствор соды, поместить также туда два электрических элемента. Один будет заряжен положительно (анод), а второй – отрицательно (катод). При подаче тока водород отправится на катод, а кислород - на анод.

Electrolysis of Water

Получение водорода по методике частичного окисления . Для этого используется сплав алюминия и галлия. Его помещают в воду, что приводит к образованию водорода и оксида алюминия в процессе реакции. Галлий необходим для того, чтобы реакция произошла в полном объеме (этот элемент не позволит алюминию окислиться преждевременно).

В последнее время приобрела актуальность методика использования биотехнологий : при условии недостатка кислорода и серы, хламидомонады начинают интенсивно выделять водород. Очень интересный эффект, который сейчас активно изучается.


Chlamydomonas

Не стоит забывать и еще один старый, проверенный метод добычи водорода, который заключается в использовании разных щелочных элементов и воды. В принципе, эта методика осуществима в лабораторных условиях при наличии необходимых мер безопасности. Таким образом, в ходе реакции (она протекает при нагревании и с катализаторами) образуется оксид металла и водород. Остается только его собрать.

Получить водород путем взаимодействия воды и угарного газа можно только в промышленных условиях. Образуется углекислый газ и водород, принцип их разделения описан выше.


Carbon monoxide

Возможно ли получить водород в лабораторных или домашних условиях?

Сделать это можно, однако лучше не стоит. Причиной тому является взрывоопасность водорода. Кроме того, все реакции с его выделением являются экзотермическими, то есть сопровождаются интенсивным выделением тепла. В том случае, если вы решили синтезировать водород в домашних условиях и отступать от своих намерений не собираетесь, то делать это надо будет на улице. Если возникнет аварийная ситуация, так меньше будет пострадавших. В лучшем случае вы отделаетесь только ожогами от тепла, которое возникнет в ходе химической реакции.

Для того чтобы добыть водород в домашних условиях, используется несколько реагентов: медный купорос, кухонная соль, алюминий и вода. Сам процесс включает в себя несколько этапов.

  1. Необходимо смешать раствор купороса с раствором хлорида натрия, в результате чего получится раствор зеленого цвета.
  2. В приготовленный раствор помещаем алюминий.
  3. Скопившиеся вокруг алюминия пузырьки – не что иное, как водород. Когда алюминиевая фольга покроется красным налетом, это будет свидетельствовать о том, что медь полностью вытеснена алюминием из раствора.

Опять-таки, если вы решили работать над получением водорода в домашних условиях, то необходимо позаботиться о том, чтобы в результате вашей деятельности не пострадали окружающие. показано, какие интересные и безопасные опыты с водородом можно провести дома.

В ограниченном масштабе применяют способ взаимодействия водяного пара с фосфором и термического разложения углеводородов:

СН 4 (1000 °С) = С + 2 Н 2 (выделяется в виде газа).

В некоторых случаях водород получают в результате каталитического расщепления метанола с водяным паром

СН 3 ОН + Н 2 О (250 °С) = СО 2 + 3 Н 2 ,

или в результате каталитического термического разложения аммиака

2 NH 3 (950 °С) --> N 2 + 3 H 2 .

Однако эти исходные соединения получают в больших масштабах из водорода; между тем получение из них водорода является особенно простым и может быть использовано в таких производствах, которые потребляют его в сравнительно малых количествах (менее 500 м 3 /сутки).

Важнейшие методы получения водорода.

1. Растворение цинка в разбавленной соляной кислоте

Zn + 2 HCl = ZnCl 2 + H 2

Этот способ чаще всего применяют в лабораториях.

Вместо соляной кислоты можно также использовать разбавленную серную кислоту; однако если концентрация последней слишком высока, то выделяющийся газ легко загрязняется SO 2 и H 2 S. При использовании не вполне чистого цинка образуются ещё и другие соединения, загрязняющие водород, например AsH 3 и PH 3 . Их присутствие и обусловливает неприятный запах получаемого этим способом водорода.

Для очистки водород пропускают через подкисленный раствор перманганата или бихромата калия, а затем через раствор едкого кали, а также через концентрированную серную кислоту или через слой силикагеля для освобождения от влаги. Мельчайшие капельки жидкости, захваченные водородом при его получении и заключённые в пузырьках газа, лучше всего устранять при помощи фильтра из плотно спрессованной обычной или стеклянной ваты.

Если приходится пользоваться чистым цинком, то к кислоте необходимо добавить две капли платинохлористоводородной кислоты или сернокислой меди, иначе цинк не вступает в реакцию.

2. Растворение алюминия или кремния в едкой щёлочи

2 Al + 2 NaOH + 6 H 2 O = 2 Na + 3 H 2

Si + 2 KOH + H 2 O = Na 2 SiO 3 + 2 H 2

Эти реакции применяли раньше для получения водорода в полевых условиях (для наполнения аэростатов). Для получения 1 м 3 водорода (при 0 °С и 760 мм рт. ст.) требуется только 0,81 кг алюминия или 0,63 кг кремния по сравнению с 2,9 кг цинка или 2,5 кг железа.

Вместо кремния также применяют ферросилиций (кремниевый метод). Смесь ферросилиция и раствора едкого натра, введённая в употребление незадолго до первой мировой войны во французской армии под названием гидрогенита, обладает свойством после поджигания тлеть с энергичным выделением водорода по следующей реакции:

Si + Ca(OH) 2 + 2 NaOH = Na 2 SiO 3 + CaO + 2 H 2 .

3. Действие натрия на воду

2 Na + 2 H 2 O = 2 NaOH + H 2

Ввиду того, что чистый натрий реагирует в этом случае слишком энергично, его чаще вводят в реакцию в виде амальгамы натрия; этот способ применяют преимущественно для получения водорода, когда им пользуются для восстановления "in statu nascendi". Аналогично натрию с водой реагируют и остальные щелочные и щелочноземельные металлы.

4. Действие гидрида кальция на воду

СaН 2 + 2 H 2 O = Сa(OH) 2 + 2 H 2

Этот метод является удобным способом получения водорода в полевых условиях. Для получения 1 м 3 водорода теоретически необходимо 0,94 кг СаН 2 и, кроме воды, не требуется никаких других реактивов.5. Пропускание водяного пара над раскалённым докрасна железом

4 Н 2 О + 3 Fe = Fe 3 O 4 + 4 H 2

При помощи этой реакции в 1783 г. Лавуазье впервые аналитически доказал состав воды. Образующийся при этой реакции оксид железа нетрудно восстановить до металлического железа, пропуская над ним генераторный газ так, что пропускание водяного пара над одним и тем же железом можно провести произвольное число раз. Этот метод долгое время имел большое промышленное значение. В небольших масштабах его применяют и в настоящее время.

6. Пропускание водяного пара над коксом.

При температуре выше 1000 °С реакция идёт главным образом по уравнению

Н 2 О + С = СО + Н 2 .

Вначале получают водяной газ, т. е. смесь водорода и монооксида углерода с примесью небольших количеств углекислого газа и азота. От углекислого газа легко освобождаются промыванием водой под давлением. Монооксид углерода и азот удаляют при помощи процесса Франка-Каро-Линде, т. е. сжижением этих примесей, что достигается охлаждением жидким воздухом до -200 °С. Следы СО удаляют, пропуская газ над нагретой натронной известью

СО + NaOH = HCOONa - формиат натрия.

Этот метод даёт очень чистый водород, который используют, например, для гидрогенизации жиров.

Чаще, однако, водяной газ в смеси с парами воды при температуре 400 °С пропускают над соответствующими катализаторами, например над оксидом железа или кобальта (контактный способ получения водяного газа). В этом случае СО реагирует с водой по уравнению

СО + Н 2 Опар = СО 2 + Н 2 ("конверсия СО").

Образующийся при этом СО 2 поглощается водой (под давлением). Остаток монооксида углерода (~1 об. %) вымывают аммиачным раствором однохлористой меди. Применяемый в этом способе водяной газ получают пропусканием водяного пара над раскалённым коксом. В последнее время всё больше используют взаимодействие водяного пара с пылевидным углём (превращение угольной пыли в газы). Полученный таким способом водяной газ содержит обычно большое количество водорода. Выделяемый из водяного газа водород (содержащий азот) применяют главным образом для синтеза аммиака и гидрирования угля.

7. Фракционное сжиженнее коксового газа.

Подобно получению из водяного газа, водород можно получать фракционным сжижением коксового газа, основной составной частью которого является водород.

Сначала коксовый газ, из которого предварительно удаляют серу, очищают от СО 2 промыванием водой под давлением с последующей обработкой раствором едкого натра. Затем постепенно освобождают от остальных примесей ступенчатой конденсацией, проводимой до тех пор, пока не остаётся только водород; от других примесей его очищают промыванием сильно охлаждённым жидким азотом. Этот метод применяют главным образом, чтобы получить водород для синтеза аммиака.

8. Взаимодействие метана с водяным паром (разложение метана).

Метан взаимодействует с водяным паром в присутствии соответствующих катализаторов при нагревании (1100 °С) по уравнению

СН 4 + Н 2 Опар + 204 кДж (при постоянном давлении).

Необходимое для реакции тепло следует подводить или извне, или применяя "внутреннее сгорание", т. е. подмешивая воздух или кислород таким образом, чтобы часть метана сгорала до диоксида углерода

СН 4 + 2 О 2 = СО 2 + 2 Н 2 Опар + 802 кДж (при постоянном давлении).

При этом соотношение компонентов выбирают с таким расчётом, чтобы реакция в целом была экзотермичной

12 СН 4 + 5 Н 2 Опар + 5 О 2 = 29 Н2 + 9 СО + 3 СО 2 + 85,3 кДж.

Из монооксида углерода посредством "конверсии СО" также получают водород. Удаление диоксида углерода производят вымыванием водой под давлением. Получаемый методом разложения метана водород используют главным образом при синтезе аммиака и гидрировании угля.

9. Взаимодействие водяного пара с фосфором (фиолетовым).

2 Р + 8 Н 2 О = 2 Н 3 РО 4 + 5 Н 2

Обычно процесс проводят таким образом: пары фосфора, получающиеся при восстановлении фосфата кальция в электрической печи, пропускают вместе с водяным паром над катализатором при 400-600 °С (с повышением температуры равновесие данной реакции смещается влево). Взаимодействие образовавшейся вначале Н 3 РО 4 с фосфором с образованием Н 3 РО 3 и РН 3 предотвращают быстрым охлаждением продуктов реакции (закалка). Этот метод применяют прежде всего, если водород идёт для синтеза аммиака, который затем перерабатывают на важное, не содержащее примесей удобрение - аммофос (смесь гидро- и дигидрофосфата аммония).

10. Электролитическое разложение воды.

2 H 2 O = 2 H 2 + O 2

Чистая вода практически не проводит тока, поэтому к ней прибавляются электролиты (обычно КОН). При электролизе водород выделяется на катоде. На аноде выделяется эквивалентное количество кислорода, который, следовательно, в этом методе является побочным продуктом.

Получающийся при электролизе водород очень чист, если не считать примеси небольших количеств кислорода, который легко удалить пропусканием газа над подходящими катализаторами, например над слегка нагретым палладированным асбестом. Поэтому его используют как для гидрогенизации жиров, так и для других процессов каталитического гидрирования. Водород, получаемый этим методом довольно дорог.

Применение водорода.

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

Имя изобретателя: Ермаков Виктор Григорьевич
Имя патентообладателя: Ермаков Виктор Григорьевич
Адрес для переписки: 614037, Пермь, ул.Мозырская, д.5, кв.70 Ермакову Виктору Григорьевичу
Дата начала действия патента: 1998.04.27

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550 o C . Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В ) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом.

Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода.

Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500 o C , описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977) . Этот способ сложен, энергоемок и трудноосуществим.

Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981) .

К недостаткам этого способа относятся:

    невозможность получения водорода в больших количествах;

    энергоемкость;

    сложность устройства и использование дорогих материалов;

    невозможность осуществления этого способа при использовании технической воды, т. к. при температуре насыщенного пара на стенках устройства и на катализаторе будут образовываться отложения и накипь, что приведет к ее быстрому выходу из строя;

    для сбора полученных водорода и кислорода используются специальные сборные емкости, что делает способ пожаро- и взрывоопасным.

Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла.

Это достигается тем , что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550 o C и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода .

ПРЕДЛОЖЕННЫЙ СПОСОБ ОСНОВАН НА СЛЕДУЮЩЕМ

    Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.

    Температура воспламенения водорода от 580 до 590 o C , разложение воды должно быть ниже порога зажигания водорода.

    Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам.

    Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве.

    Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов.

Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок .

Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.

Первый вариант
Работа и устройство установки первого варианта (схема 1 ).

Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с .

Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.

Один литр воды содержит 124 л водорода и 622 л кислорода , в пересчете на калории составляет 329 ккал .

Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/.

Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C , свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.

В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В . Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм .

Труба - электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.

Выход водорода по отношению к кислороду 1:5 .

Второй вариант
Работа и устройство установки по второму варианту (схема 2 ).

Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС /.

Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения - "пуск" и "работа".

Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1 / до 550 o C . Теплообменник /То / - труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.

Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.

Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, - образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:

2H 2 + O 2 = 2H 2 O + тепло

В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС .

После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения "пуск" переводится в положение "работа", после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.

Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.

Недостаток силовых установок для ВЭС - это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1 /, 227 котлов /К2 /. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС , дешевой электрической энергии и тепле.

Третий вариант
3-й вариант силовой установки (схема 3 ).

Это точно такая же силовая установка, как и вторая.

Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C . Давление пара 250 ат . Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч .

Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м . Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА - 380 х 6000 В .

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

    Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.

    Небольшой расход воды при получении электроэнергии и тепла.

    Простота способа.

    Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.

    Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.

    Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.

    В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.

    Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое - воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды , включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 - 550 o C , пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Ученые из университета Глазго (University of Glasgow, UoG) разработали новый метод расщепления воды на кислород и водород, который представляет собой топливо для источников экологически чистой энергии, таких, как водородные топливные элементы. Но самое интересное заключается в том, что этот новый процесс не только более безопасен, но и способен обеспечить в 30 раз большую производительность по водороду, нежели другие существующие на сегодняшний день методы. И столь привлекательные показатели нового процесса позволяют рассматривать его в качестве решения вопроса хранения и транспортировки энергии, получаемой из возобновляемых источников, которая может храниться в виде водорода сколь угодно длительное время.

В природе вода расщепляется на составные части под воздействием солнечного света в результате процесса фотосинтеза. Выделяющийся при этом водород, вступая в реакцию с углекислым газом из атмосферы, образует цепочки органических соединений, из которых формируются ткани растущего растения. Получающийся при этом кислород является побочным продуктом и выбрасывается в окружающую среду, что дает возможность дышать всему живому на нашей планете. Процесс электрического расщепления воды, используемый для искусственного получения водорода, более энергоемок и опасен, нежели процесс естественного фотосинтеза. При проведении традиционного процесса электролиза (proton exchange membrane electrolyze, PEME) существует высокая вероятность смешивания водорода и кислорода, образующих взрывоопасный гремучий газ, и при этом требуются существенные дополнительные затраты энергии, идущей на разделение газов и очитку водорода от остаточных следов кислорода.

Процесс, разработанный исследовательской группой профессора Ли Кронина (Lee Cronin), лишен большинства вышеописанных недостатков традиционных процессов электролиза. В этом процессе не используются дорогостоящие катализаторы на базе драгоценных или редкоземельных металлов, эту роль выполняет жидкая «губка», так называемый окислительно-восстановительный посредник (redox mediator). Эта губка полностью поглощает выделяющийся свободный водород и образует полностью безопасное водородосодержащее неорганическое соединение. В ходе этого процесса выделяется лишь чистый свободный кислород, который без проблем сбрасывается в атмосферу.

Раствор окислительно-восстановительный посредника, химический состав которого по понятным причинам держится в тайне, изначально имеет синий цвет. При подаче на электроды устройства-электролизера электрического тока посредник начинает поглощать выделяющийся водород и его цвет, по мере насыщения, начинает сдвигаться к желтому цвету. А при полном насыщении посредника водородом он практически теряет каталитические свойства, что приводит к автоматическому прекращению процесса электролиза. Высвобождается связанный посредником водород достаточно просто, для этого требуется лишь поместить в раствор насыщенного посредника специальный катализатор. При этом скорость выделения чистого водорода в 30 раз превышает скорость выделения водорода в процессе традиционного PEME-электролиза.

Следует отметить, что получаемый в результате описанного выше процесса водород можно хранить и транспортировать в абсолютно безопасном виде, в виде концентрированного раствора насыщенного вещества-посредника. Также достаточно просто выделять связанный посредником водород и точно регулировать его количество, опуская в раствор катализатор, имеющий определенную площадь. К сожалению, некоторые характеристики, такие, как долговечность вещества-посредника, самопроизвольное выделение связанного водорода и т.п., вышеописанных процессов еще не до конца установлены и это требует проведения дополнительных исследований.

Профессор Кронин оценивает, что для доведения разработанных его группой технологий до уровня практического использования может потребоваться еще несколько лет исследований. И сейчас эта группа ищет заинтересованные организации, которые готовы вложить свои средства в эту перспективную разработку.

Select rating Плохо Ниже среднего Нормально Хорошо Отлично