Какое вещество является субстратом для процесса дыхания? Анаэробное дыхание семян злаковых Субстратом дыхания являются.

У растений выделяют два пути окисления дыхательного субстрата: гликолиз и пентозофосфатный путь.

Гликолиз – это анаэробный процесс, происходящий в цитоплазме. С биологической оценки гликолиз весьма примитивный процесс, возникший до появления кислорода в атмосфере Земли и формирования клеточных органелл.

В сложной цепи гликолитического распада углеводов можно выделить два звена (9 реакций):

В первом звене – потребляется энергия АТФ; во втором – происходит разрыв шестиуглеродных соединений (фруктоза-1.6 дифосфат) с образованием триоз; в третьем, происходит запасание (выделение) энергии. Гидролизу подвергается не свободная молекула гликолиза, а активированная за счет АТФ. Такая активация именуется фосфорилированием.

В результате фосфорилирования образуется глюкозо-6-фосфат. Дальнейшее активирование гексозы достигается путем превращения глюкозо-6 фосфата во фруктозо-6 фосфат. На следующем этапе происходит присоединение к фруктозо-6 фосфату еще одного остатка фосфорной кислоты. Донором фосфорной кислоты и энергии необходимой для образования эфира служит молекула АТФ. Реакции переноса катализируются ферментом фосфогексокеназой. Результатом этой реакции является образование фруктозо-1.6-дифосфат.

Во втором звене: образовавшаяся молекула фруктозо-1.6-дифосфата разрывается на 3-фосфоглицериновый альдегид и *. Реакция разрыва катализируется ферментом альдолазой.

Дальнейшее участие в процессах гликолитического распада принимают только фосфоглицериновый альдегид. Фосфодиоксиацетон полностью преобразуется в фосфоглицериновый альдегид. Фосфоглицериновый альдегид окисляется с образованием 1.3дифосфоглицериновой кислоты.

В третьем звене: образовавшаяся 1.3дифосфоглицериновая кислота вступает в ферментативную реакцию с АДФ. В результате одна из её фосфорных групп переносится на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты.

Образование АТФ в цитоплазме в ходе ферментативных реакций называется субстратным фосфорилированием. 3ФГК превращается с помощью фермента * в 2ФГК. 2ФГК с помощью фермента энолазы превращается в 2 фосфоэнолпировиноградную кислоту.

При отнятии фосфорного остатка от ФСПВК образуется енолПВК, который в силу своей неустойчивости спонтанно превращается в кетокислоту ПВК.

Образование ПВК подвергается дальнейшему расщеплению как анаэробному так и аэробному в цикле ди- и трикарбоновых кислот. Анаэробное расщепление, т.е. без участия О 2 , ПВК может происходить по типу спиртового брожения или по типу молочнокислого брожения. При спиртовом брожении образуется этиловый спирт и СО 2 . Для мясистых сочных плодов спиртовое брожение является нормальным физиологическим процессом. Для целого растения или же для коневой системы длительное пребывание в условиях недостаточной аэрации, спиртовое брожение оказывает вредное действие, приводя к гибели.


Почему? Потому, что брожение сопровождается выделением небольшого количества энергии, которой недостаточно, чтобы длительно поддерживать жизнь, а накопление спирта приводит к отравлению организма. Анаэробное дыхание по типу брожения проявляется в условиях затопления.

В аэробных условиях ПВК в митохондриях окисляется полностью до СО 2 и Н 2 О. Это окисление как установлено английским биохимиком Кребсом, проходит последовательно ступенчато с образованием ди- и трикарбоновых кислот. Цикл Кребса можно разделить на три части.

В первой части происходит окисление ПВК до уксксной кислоты с образованием Ацетил КоА и ыделением СО 2 .

Вторая часть цикла начинается с реакции между ЩУК и Ацетил КоА, которая приводит к синтезу лимонной кислоты. Лимонная кислота в дальнейшем через ряд промежуточных соединений (изолимонную) превращается в щавелево-янтарную. Щавелево-янтарная подвергается декарбоксилированию в результате выделяется СО 2 и образуется Х-кетоглутаровая кислота. Х-кетоглутаровая вновь декарбоксилируется – выделяется СО 2 и образуется янтарная кислота. В этой части цикла уксусная кислота окисляется полностью (по выделению СО2) и на этом заканчивается окисление ПВК.

Третья часть цикла представляет собой взаимное превращение двуосновных кислот с 4 атомами углерода - янтарная → фумаровая → яблочная → и заканчивается регенерацией ЩУК.

Непосредственно в цикле Кребса АТФ не синтезируется, исключая субстратное фосфорилирование Х-кетоглутаровой кислоты, но в цикле возникают пять молекул восстановленных нуклеотидов:

1. при лкислительном декарбоксилировании ПВК;

2. при дегидрировании изолимонной кислоты;

3. при окислении кетоглутаровой кислоты;

4. при окислении янтарной кислоты;

5. при окислении яблочной кислоты.

Каждая пара водородных атомов (Н + , е -) после отщепления проходит путь от субстрата к кислороду через ряд переносчиков, локализованных во внутренней мембране митохондрий. С переносом электронов по ЭТЦ сопряж6ен и синтез АТФ. Процесс образования АТФ, сопряженный с переносом электронов по ЭТЦ митохондрий получил название окислительного фосфорилирования. В конце цепи электроны захватываются кислородом и объединяются с протонами (ионом воздуха) с образованием молекулы воды.

Каков энергетический выход при окислении глюкозы? В процессе дыхания при функционировании гликолиза (субстратное фосфорилирование: 8 молекул АТФ) и цикла Кребса (окислительное фосфорилирование дает 30 молекул АТФ) образуется 38 молекул АТФ. Эффективность использования энергии через гликолиз и цикл Кребса составляет КПД=1596/2721*100%=58,6%.

В клетках растений наряду с гликолизом и циклом Кребса существует и другой путь окисления углеводов – пентозофосфатный. Окисление глюкозы в этом цикле связано с отщеплением первого (альдегидного) атома углерода в виде СО 2 . Исходным продуктом в пентозофосфатном цикле является глюкозо-6фосфат, который далее окисляется в 6-фосфоглюконовую кислоту.

В пентозофосфатном цикле АТФ используется для образования исходного продукта: для фосфорилирования глюкозо-6фосфата. Все реакции пентозофосфатного пути протекают в растворимой части цитоплазмы клеток, а также в протопластидах и хлоропластах. Ни в одной реакции этого цикла АТФ не образуется, но этот цикл является поставщиком водорода для ЭТЦ дыхания. Донором водорода для ЭТЦ дыхание служит НАДН. Энергетический выход ПФП составляет 36 молекул АТФ. Основное назначение ПФП состоит в участии не столько в энергетическом, сколько в пластическом обмене. Пентозофосфатный путь имеет большое значение как источник образования углеводов с различным числом углеродных атомов в цепи – от С 3 до С 7 . ПФП служит основным внехлоропластным и внемитохондриальным источником НАДФН, который необходим для синтеза жирных кислот.

Биологическая роль пентоз, необходимых для синтеза нуклеотидов, т.е. для синтеза рибозы и дезоксирибозы. Сдвиг в сторону пентозофосфатного пути происходит в тех случаях, когда клетке требуется большие количества пятиуглеродных сахаров и когда в качестве источника энергии для синтеза используется не НАДН, а НАДФН.

Дыхание растений
План лекции

1. Общая характеристика процесса дыхания.

2. Строение и функции митохондрий.

3. Структура и функции аденилатной системы.

4. Субстраты дыхания и дыхательный коэффициент.

5. Пути дыхательного обмена

1. Общая характеристика процесса дыхания.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается, - это дыхание и брожение .

Дыхание – это окислительно-восстановительный процесс в результате которого углеводы окисляются до углекислого газа, кислород восстанавливается до воды, а выделившаяся энергия преобразуется в энергию связей АТФ.

Брожение – это анаэробный процесс распада сложных органических соединений на более простые органические вещества, также сопровождаемый выделением энергии. При брожении степень окисления соединений, принимающих в нем участие, не меняется. В случае дыхания акцептором электрона служит кислород, в случае брожения – органические соединения.

Чаще всего реакции дыхательного обмена рассматривают на примере окислительного распада углеводов.

Суммарное уравнение реакции окисления углеводов при дыхании можно представить следующим образом:

С6 Н12 О6 + 6О2 → 6СО2 + 6 Н2 О + ~ 2874 кДж

2. Строение и функции митохондрий.

Митохондрии – цитоплазматические органеллы, которые являются центрами внутриклеточного окисления (дыхания). Они содержат ферменты цикла Кребса, дыхательной цепи переноса электронов, окислительного фосфорилирования и многие другие.

Митохондрии на 2/3 состоят из белка и на 1/3 из липидов, среди которых половина приходится на фосфолипиды.

Функции митохондрий:

1. Осуществляют химические реакции, являющиеся источником электронов.

2. Переносят электроны по цепи компонентов, синтезирующих АТФ.

3. Катализируют синтетические реакции, идущие с использованием энергии АТФ.

4. Регулируют биохимические процессы в цитоплазме.

3. Структура и функции аденилатной системы.

Обмен веществ, происходящий в живых организмах, состоит из множества реакций, идущих как с потреблением энергии, так и с ее выделением. В некоторых случаях эти реакции взаимосвязаны. Однако чаще всего процессы, в которых энергия выделяется, отделены в пространстве и во времени от тех, в которых она потребляется. В связи с этим у всех живых организмов выработались механизмы хранения энергии в форме соединений, обладающих макроэргическими (богатыми энергией) связями. Центральное место в энергообмене клеток всех типов принадлежит аденилатной системе. Эта система включает аденозинтрифосфорную кислоту (АТФ), аденозиндифосфорную кислоту (АДФ), - 5-монофосфат аденозина (АМФ), неорганический фосфат (Р i ) и ионы магния.

4. Субстраты дыхания и дыхательный коэффициент

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении этого вопроса большое значение имеет определение дыхательного коэффициента.

Дыхательный коэффициент (ДК) – это объемное или молярное отношение углекислого газа (СО2), выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени кислороду (О2). Дыхательный коэффициент показывает, за счет каких продуктов осуществляется дыхание.

В качестве дыхательного материала в растениях, кроме углеводов, могут использоваться жиры, белки и аминокислоты, органические кислоты.

5. Пути дыхательного обмена

Необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена.

Существуют два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) Гликолиз + цикл Кребса (гликолитический)

2) пентозофосфатный (апотомический)

Гликолитический путь дыхательного обмена

Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз.

Первая фаза – анаэробная (гликолиз), локализована в цитоплазме.

Вторая фаза – аэробная , локализована в митохондриях.

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты (ПВК):

С6 Н12 О6 → 2 С3 Н4 О3 + 2Н2

Вторая фаза дыхания – аэробная - требует присутствия кислорода. В эту фазу вступает пировиноградная кислота. Общее уравнение этого процесса можно представить так:

2ПВК + 5 О2 + Н2 О → 6СО2 + 5Н2 О

Энергетический баланс процесса дыхания.

В результате гликолиза глюкоза распадается на две молекулы ПВК и накапливаются две молекулы АТФ, также образуются две молекулы НАДН2, вступая в ЭТЦ дыхания они высвобождают шесть молекул АТФ. В аэробной фазе дыхания образуется 30 молекул АТФ.

Таким образом: 2АТФ + 6 АТФ + 30 АТФ = 38 АТФ

Пентозофосфатный путь дыхательного обмена

Существует еще не менее распространенный путь окисления глюкозы – пентозофосфатный. Это анаэробное окисление глюкозы, которое сопровождается выделением углекислого газа СО2 и образованием молекул НАДФН2 .

Цикл состоит из 12 реакций, в которых участвуют только фосфорные эфиры сахаров.

Субстраты дыхания

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И. П. Бородина было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании. В выяснении данного вопроса большое значение имеет определение дыхательного коэффициента. Дыхательный коэффициент (ДК) -- это объемное или молярное отношение СО2, выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени О2. При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыханий используются углеводы, то процесс идет согласно уравнению С6Н12С6 + 6О2 = 6СО2 + 6Н2О. В этом случае ДК равен единице.

Однако если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше единицы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэффициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке углеводов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного питательного вещества содержатся жиры или белки. В этом случае дыхательный коэффициент становится меньше единицы. При использовании в качестве дыхательного материала жиров происходит их расщепление до глицерина и жирных кислот.

Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

Анаэробное дыхание семян злаковых

Анаэробное окисление углеводов идёт по пути гликолиза. Гликолиз - это анаэробный процесс, приводящий к распаду одной молекулы глюкозы на две молекулы пировиноградной кислоты. При этом высвобождается энергия, которую организм аккумулирует в форме АТФ. Реакции гликолиза протекают в цитозоле, без потребления кислорода.

Полная цепь реакций гликолиза была выявлена трудами Л.А. Иванова, С.П. Костычева, А.Н. Лебедева, Г. Эмбдена, Я.О. Парнаса и О. Мейергофа к середине 30-х годов ХХ века. Гликолиз протекает в две стадии.

Первая стадия - подготовительная, или собирательная. Различные гексозы вовлекаются в гликолиз, главным образом, глюкоза, а также фруктоза и манноза. При этом инертные молекулы гексоз активируются, фосфорилируются за счёт АТФ, превращаются в глюкозо-6-фосфат. Этап заканчивается образованием глицеральдегид-3-фосфата.

Вторая стадия - окислительная. Глицеральдегид-3-фосфат окисляется до пировиноградной кислоты (пируват). Энергия окисления накапливается в АТФ, образуются восстановительные эквиваленты НАД Н2.

Суммарное уравнение гликолиза:

С6Н12О6 + 2 НАД+ + 2 Н3РО4 + 2 АДФ > 2 СН3 - СО - СООН + 2 АТФ + 2 НАД Н2 + 2 Н2О.

В дальнейшем пировиноградная кислота в зависимости от условий и специфических особенностей данного организма может подвергаться различным превращениям.

Роль гликолиза у семян злаковых

Роль гликолиза как анаэробной фазы дыхания заключается в извлечении из углеводов свободной энергии и аккумуляции её в легко используемой форме молекулах АТФ, а также в образовании многих высоко реакционноспособных соединений. Они используются в разнообразных метаболических реакциях. Значение гликолиза особенно велико в тканях и органах, где ограничен доступ кислорода или возможно внезапное и резкое возрастание скорости потребления АТФ.

Вопрос о веществах, используемых в процессе дыхания, издавна занимал фи­зиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсив­ность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении данного вопроса большое значение имеет определение дыхательного коэффи­циента. Дыхательный коэффициент (ДК) - это объемное или молярное отно­шение СО 2 , выделившегося в процессе дыхания, к поглощенному за этот же про­межуток времени О 2 . При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то про­цесс идет согласно уравнению С 6 Н 12 О 6 +6О 2 → 6СО 2 + 6Н 2 О. В этом случае ДК равен единице: 6СО 2 /6О 2 = 1. Однако если разложению в процессе дыхания под­вергаются более окисленные соединения, например органические кислоты, по­глощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше едини­цы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэф­фициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке угле­водов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного пита­тельного вещества содержатся жиры или белки. В этом случае дыхательный ко­эффициент становится меньше единицы. При использовании в качестве дыха­тельного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

Существуют две основные системы и два основных пути превращения дыхатель­ного субстрата, или окисления углеводов: 1) гликолиз + цикл Кребса (гликолитический); 2) пентозофосфатный (апотомтеский). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Расти­тельный организм не имеет приспособлений к регуляции температуры, поэтому

В процесс дыхания осуществляется при температуре от -50 до +50°С. Нет при­способлений у растений и к поддержанию равномерного распределения кисло­рода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разно­образных путей дыхательного обмена и к еще большему разнообразию фер­ментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути ды­хательного обмена приводит к глубоким изменениям во всем метаболизме рас­тений.

Дыхание растений
План лекции

1. Общая характеристика процесса дыхания.

2. Строение и функции митохондрий.

3. Структура и функции аденилатной системы.

4. Субстраты дыхания и дыхательный коэффициент.

5. Пути дыхательного обмена

1. Общая характеристика процесса дыхания.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается, - это дыхание и брожение .

Дыхание – это окислительно-восстановительный процесс в результате которого углеводы окисляются до углекислого газа, кислород восстанавливается до воды, а выделившаяся энергия преобразуется в энергию связей АТФ.

Брожение – это анаэробный процесс распада сложных органических соединений на более простые органические вещества, также сопровождаемый выделением энергии. При брожении степень окисления соединений, принимающих в нем участие, не меняется. В случае дыхания акцептором электрона служит кислород, в случае брожения – органические соединения.

Чаще всего реакции дыхательного обмена рассматривают на примере окислительного распада углеводов.

Суммарное уравнение реакции окисления углеводов при дыхании можно представить следующим образом:

С6 Н12 О6 + 6О2 → 6СО2 + 6 Н2 О + ~ 2874 кДж

2. Строение и функции митохондрий.

Митохондрии – цитоплазматические органеллы, которые являются центрами внутриклеточного окисления (дыхания). Они содержат ферменты цикла Кребса, дыхательной цепи переноса электронов, окислительного фосфорилирования и многие другие.

Митохондрии на 2/3 состоят из белка и на 1/3 из липидов, среди которых половина приходится на фосфолипиды.

Функции митохондрий:

1. Осуществляют химические реакции, являющиеся источником электронов.

2. Переносят электроны по цепи компонентов, синтезирующих АТФ.

3. Катализируют синтетические реакции, идущие с использованием энергии АТФ.

4. Регулируют биохимические процессы в цитоплазме.

3. Структура и функции аденилатной системы.

Обмен веществ, происходящий в живых организмах, состоит из множества реакций, идущих как с потреблением энергии, так и с ее выделением. В некоторых случаях эти реакции взаимосвязаны. Однако чаще всего процессы, в которых энергия выделяется, отделены в пространстве и во времени от тех, в которых она потребляется. В связи с этим у всех живых организмов выработались механизмы хранения энергии в форме соединений, обладающих макроэргическими (богатыми энергией) связями. Центральное место в энергообмене клеток всех типов принадлежит аденилатной системе. Эта система включает аденозинтрифосфорную кислоту (АТФ), аденозиндифосфорную кислоту (АДФ), - 5-монофосфат аденозина (АМФ), неорганический фосфат (Р i ) и ионы магния.

4. Субстраты дыхания и дыхательный коэффициент

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении этого вопроса большое значение имеет определение дыхательного коэффициента.

Дыхательный коэффициент (ДК) – это объемное или молярное отношение углекислого газа (СО2), выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени кислороду (О2). Дыхательный коэффициент показывает, за счет каких продуктов осуществляется дыхание.

В качестве дыхательного материала в растениях, кроме углеводов, могут использоваться жиры, белки и аминокислоты, органические кислоты.

5. Пути дыхательного обмена

Необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена.

Существуют два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) Гликолиз + цикл Кребса (гликолитический)

2) пентозофосфатный (апотомический)

Гликолитический путь дыхательного обмена

Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз.

Первая фаза – анаэробная (гликолиз), локализована в цитоплазме.

Вторая фаза – аэробная , локализована в митохондриях.

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты (ПВК):

С6 Н12 О6 → 2 С3 Н4 О3 + 2Н2

Вторая фаза дыхания – аэробная - требует присутствия кислорода. В эту фазу вступает пировиноградная кислота. Общее уравнение этого процесса можно представить так:

2ПВК + 5 О2 + Н2 О → 6СО2 + 5Н2 О

Энергетический баланс процесса дыхания.

В результате гликолиза глюкоза распадается на две молекулы ПВК и накапливаются две молекулы АТФ, также образуются две молекулы НАДН2, вступая в ЭТЦ дыхания они высвобождают шесть молекул АТФ. В аэробной фазе дыхания образуется 30 молекул АТФ.

Таким образом: 2АТФ + 6 АТФ + 30 АТФ = 38 АТФ

Пентозофосфатный путь дыхательного обмена

Существует еще не менее распространенный путь окисления глюкозы – пентозофосфатный. Это анаэробное окисление глюкозы, которое сопровождается выделением углекислого газа СО2 и образованием молекул НАДФН2 .

Цикл состоит из 12 реакций, в которых участвуют только фосфорные эфиры сахаров.