Симметрия в природе и искусстве презентация. Презентация "симметрия в природе и технике"

«Примеры симметрии в природе» - Симметрия является фундаментальным свойством природы. Симметрия в природе. Дискретная симметрия. Симметрия в географии. Виды симметрии. Симметрия в геологии. Симметрия в биологии. Симметрия в физике. Природные объекты. Человек, многие животные и растения обладают двусторонней симметрией. Что такое симметрия.

«Зеркальная симметрия» - Построение изображения с помощью зеркальной симметрии сходно с отражением в зеркале. Плоскость симметрии. Очень известные, но иногда загадочные. Самые симметричные фигуры. Зеркальная симметрия – симметрия относительно плоскости. Зеркальная симметрия.

«8 класс симметрия» - Какие прямые называются параллельными? Какое преобразование называется центральной симметрией? Сколько и какие оси симметрии имеет квадрат? прямоугольник? окружность? Проверка домашнего задания: Каково взаимное расположение прямых на плоскости? Изучение нового материала. Какие прямые называются перпендикулярными?

«Понятие осевой симметрии» - Координаты точек. Полученные формулы. Осевая симметрия. Ось симметрии. Симметричная прямая. Отображение пространства на себя. Отображение пространства. Определение и теорема. Треугольник. Прямая, параллельная оси симметрии.

«Симметрия фигур» - Общее представление о преобразовании фигур. Точка Р симметрична сама себе относительно прямой с. Существует множество различных видов симметрии. Построить угол симметричный углу относительно точки О. Точки М и М1 симметричны относительно прямой с. Вершина угла. Опустим из точки A на прямую l перпендикуляр.

«Зеркальная симметрия в геометрии» - Сколько плоскостей симметрии имеют данные объекты? Зеркальная симметрия. Александринский театр. Верно ли высказывание: правильная четырехугольная пирамида имеет четыре плоскости симметрии. Сколько плоскостей симметрии имеет куб? Фигуры, симметричные относительно плоскости. Исаакиевский собор. Зеркальная симметрия в архитектуре г. Санкт- Петербурга.


Симметрия в природе. Геометрия природных форм. Слово «симметрия» в переводе с греческого означает «соразмерность». Своим развитием чисто геометрическое учение о симметрии обязано в первую очередь не математикам, а естествоиспытателям,углубленно изучавшим кристаллические образования. Объясняется это тем, что формы кристаллов с древнейших времен поражали глаз симметричностью. По выражению русского кристаллографа Е.С.Федорова, фигуры кристаллов «блещут своей симметрией». Хорошее знание геометрически закономерных кристаллических фигурок, созданных природой, часто позволяет распознавать минералы в полевых условиях. Тщательное их исследование в лаборатории открывает глаза на тончайшие свойства каменного материала.


Развитие учения о симметрии. Учение о симметрии развивалось крайне медленно и трудно.Поражающе правильные очертания кристаллов вызывали в древности суеверные представления. «Такое могли сотворить только ангелы или подземные духи», - утверждали наши предки, не догадываясь о том, что кристаллы растут в природе сами собой из растворов, расплавов,паров и в твердых каменных породах. Красота и гармония природной симметрии наталкивали даже испытанных мудрецов на самые фантастические мысли.


Всеобъемлющий закон природы. Принцип симметрии Пьера Кюри(1859-1906). Пьер Кюри разрабатывал теорию симметрии, отвечая на вопрос: как отражается влияние среды на формирующемся в ней объекте. Он считал, что симметрия порождающей среды как бы накладывается на симметрию тела,образующегося в этой среде. Получившаяся в результате форма тела сохраняет только те элементы собственной симметрии,которые совпадают с наложенными на него элементами симметрии среды. Итак, среда явственно налагает отпечаток на формирующийся в ней объект. При этом симметрия среды накладывается на симметрию объекта. В результате часть элементов симметрии этого объекта внешне исчезает (например, при размывании куска поваренной соли водой):его форма сохраняет только те элементы собственной симметрии, которые совпали с элементами симметрии среды. Кюри придавал особое значение исчезнувшим элементам собственной симметрии данного объекта («диссиметрии»). По его убеждению, для предсказывания новых явлений диссимметрия более существенна, чем сама симметрия: «Это она, диссиметрия, творит явления».


Симметрия органического мира. Формы и очертания живой природы не случайны, а закономерны. Листок склеен из двух более или менее одинаковых половинок, которые расположены зеркально относительно друг друга. Плоскость, разделяющая листок на 2 зеркально равные части, называется плоскостью «симметрии». Однако не только древесный листок обладает такой симметрией. Гусеница, бабочка, узор на ее крыльях, жук, мошка и сорванная ветка - все подчиняется той же «симметрии листка». В целом, у ромашки тоже есть плоскость симметрии, однако и вдоль каждого лепестка можно обнаружить плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, которые пересекаются в его центре. Эта симметрия называется «лучевой» или «радиальной» (к ней также относится подсолнечник, василек, колокольчик, столб паров над Везувием, фонтан и атомный гриб).


Итак, все то, что растет или движется по вертикали, т.е. Вверх или вниз относительно земной поверхности, подчиняется радиально - лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии - «симметрии листка»(одна плоскость симметрии). Итак, все то, что растет или движется по вертикали, т.е. Вверх или вниз относительно земной поверхности, подчиняется радиально - лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии - «симметрии листка»(одна плоскость симметрии). Этому всеобщему закону послушны не только цветы, животные, легкоподвижные жидкости и газы, но и твердые неподатливые камни. Известный советский кристаллограф Г.Г.Леммлейн установил, что кристаллы кварца, развивающиеся на дне хрусталеносной пещеры, имеют внешнюю радиальную симметрию. Все это - результат воздействия силы земного тяготения.


Симметрия в неорганическом мире. Когда мы смотрим на нагромождения камней у подножия горы, на неправильную линию холмов на горизонте, у нас может возникнуть мысль, что симметрия в неорганическом мире - нечастый гость. Конечно, груда камней весьма беспорядочна, но каждый камень является огромной колонией кристаллов, представляющих собой в высшей степени симметричные постройки из атомов и молекул, Именно кристаллы вносят в мир неживой природы очарование симметрии.


Каждая снежинка - это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. Твердые тела состоят из кристаллов. В большинстве случаев отдельные кристаллы очень малы, но если они вырастают до внушительных размеров, то предстают перед нами во всей геометрически правильной красоте. Симметрия внешней формы кристалла является следствием его внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов. Каждая снежинка - это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. Твердые тела состоят из кристаллов. В большинстве случаев отдельные кристаллы очень малы, но если они вырастают до внушительных размеров, то предстают перед нами во всей геометрически правильной красоте. Симметрия внешней формы кристалла является следствием его внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов.


О значении симметрии. Учет законов симметрии помогает человеку возводить прочные постройки, конструировать подвижные машины. Невыполнение требований, вытекающих из этих законов, приводит к тому, что крупные, но неправильно запроектированные сооружения бывают неустойчивыми. Большинство предметов в комнате имеет «симметрию листка» (стул, кресло, диван) или же радиально-лучевую (круглый стол, табурет, настольная лампа). Следовательно, эти предметы хорошо согласуются с симметрией поля земного тяготения и вполне устойчивы.

Работа может использоваться для проведения уроков и докладов по предмету "Геометрия"

Данный раздел сайта собрал все учебные презентации по геометрии. Готовые презентации по геометрии помогут учителям тратить меньше времени на черчение сложных геометрических фигур и больше работать с классом над решением самих задач. Презентации по геометрии будут полезны и учителям и родителям, которые помогают своим детям с объяснением домашнего задания. Вы можете скачать готовые презентации на уроки геометрии для 6,7,8,9,10,11 класса.

1 слайд

«Симметрия в живой природе» Подготовила ученица 10 «А» класса Волгоградской Гимназии №1 Дубоносовой Анны

2 слайд

Симметрия СИММЕТРИЯ, в геометрии - свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой плоскости (или прямой). Фигура (плоская или пространственная) симметрична относительно прямой (оси симметрии) или плоскости (плоскости симметрии), если ее точки попарно обладают указанным свойством. Фигура симметрична относительно точки (центр симметрии), если ее точки попарно лежат на прямых, проходящих через центр симметрии, по разные стороны и на равных расстояниях от него.

3 слайд

Основные понятия теории симметрии Какие тела обычно считают равными? Такие, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два лепестка на рисунке а. Однако в теории симметрии помимо такого совместимого равенства выделяют еще два вида равенства - зеркальное и совместимо-зеркальное. При зеркальном равенстве левый лепесток рисунка б, можно точно совместить с правым лепестком, лишь отразив его предварительно в зеркале. Если же два тела можно совместить друг с другом как до, так и после отражения в зеркале, это совместимо-зеркальное равенство. Лепестки на рисунке, в равны друг другу и совместимо и зеркально. Но наличия одних равных частей в фигуре еще недостаточно, чтобы признать фигуру симметричной: на рисунке, г лепестки венчика цветка расположены хаотично, незакономерно и фигура несимметрична, внизу д лепестки расположены однообразно, закономерно и венчик симметричен. Такое закономерное, однообразное расположение равных частей фигуры относительно друг друга и называют симметрией.

4 слайд

Двусторонняя симметрия Под отражениями понимают любые зеркальные отражения - в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркальные половины, называется плоскостью симметрии. Каждая из изображенных на рисунке фигур - рак, бабочка, лист растения - обладает лишь одной плоскостью симметрии, делящей ее на две зеркально равные части. Поэтому данный вид симметрии в биологии называется или билатеральной.

5 слайд

Нульмерная симметрия Нульмерная симметрия, присуща телам, бесконечно вытянутым ни в одном особенном направлении. Очевидно, такова симметрия отдельной буквы А, отдельного атома углерода (С), листа растения, моллюска, человека, молекулы углекислого газа (СО2), воды (Н2О), Земли, Солнечной системы. Сюда же относятся некоторые исключительно симметричные примитивные организмы.Теоретически возможно бесчисленное множество видов нульмерной симметрии. Любопытно, что двусторонняя симметрия m в неживой природе не имеет преобладающего значения, но зато чрезвычайно богато представлена в живой природе. Она характерна для внешнего строения тела человека, млекопитающих, птиц, пресмыкающихся, земноводных, рыб, многих моллюсков, ракообразных, насекомых, червей, а также многих растений, например цветков львиного зева.

6 слайд

Одномерная симметрия Одномерная симметрия присуща телам, во-первых, вытянутым в одном каком-либо особенном направлении, во-вторых, вытянутым в этом направлении благодаря монотонному повторению - «размножению» одной и той же части. Из биологических объектов такую симметрию имеют наиболее важные для обмена веществ полимерные цепные молекулы белков, нуклеиновых кислот, целлюлозы, крахмала; вирусы табачной мозаики, побеги традесканции, отрезки тела полихет и многих других животных

7 слайд

Двумерная симметрия Двумерной симметрией обладают тела, во-первых, вытянутые в двух взаимно перпендикулярных направлениях, во-вторых, вытянутые в этих направлениях благодаря «размножению» одной и той же части. Такова, например, симметрия бесконечного шахматного поля, построенного бесконечным повторением черного и белого квадратиков в двух направлениях, перпендикулярных друг другу. Из биологических объектов такую симметрию имеют плоские орнаменты граней кристаллов ферментов, чешуи рыб, клеток в биологических срезах, мозаичного взаиморасположения листьев, «электронных картин» поперечного среза мышечной фибриллы, однородных сообществ организмов, складчатых слоев полипептидных цепей.

8 слайд

Трехмерная симметрия Трехмерная симметрия присуща телам, во-первых, вытянутым в трех взаимно перпендикулярных направлениях, во-вторых, вытянутым в этих трех направлениях благодаря монотонному повторению одной и той же части. Такова симметрия биологических кристаллов, построенных «бесконечным» повторением одних и тех же кристаллических ячеек - в длину, ширину и высоту

9 слайд

Дисимметрические объекты Объекты, симметрия которых исчерпывается лишь простыми (круговыми), или (и) переносными (трансляционными), или (и) винтовыми осями симметрии, называются дисимметрическими, т. е. расстроенной симметрии. К таким объектам относятся и тела аксиальной симметрии. От всех остальных объектов дисимметрические отличаются, в частности, очень своеобразным отношением к зеркальному отражению. Если тело речного рака после зеркального отражения совсем не изменяет своей формы, то аксиальный цветок анютиных глазок), асимметрическая винтовая раковина моллюска, кристалл кварца, асимметрическая молекула после зеркального отражения изменяют свою фигуру, приобретая ряд противоположных признаков. Так, винтовая раковина брюхоногого моллюска, расположенного перед зеркалом, закручена слева вверх направо, а зеркального - справа вверх налево и т. д.

10 слайд

Формы дисимметрических объектов Дисимметрические объекты могут существовать в двух разновидностях: в виде оригинала и зеркального отражения (руки человека, раковины моллюсков, венчики анютиных глазок, кристаллы кварца). При этом одна из форм (неважно какая) называется правой - П, а другая левой - Л. Здесь очень важно уяснить себе, что правыми и левыми называются не только руки или ноги человека, но и любые дисимметрические тела - винты с правой и левой резьбой, организмы, неживые тела. Обнаружение и в живой природе П- и Л-форм поставило перед биологией ряд новых и очень важных вопросов, многие из которых сейчас решаются сложными математическими и физико-химическими методами.

11 слайд

Биологическая изомерия Самое главное достижение - создание теории строения П- и Л-биообъектов. На ее основе было предсказано много совершенно новых типов и классов изомерии, предсказана и открыта советскими учеными биологическая изомерия. Изомерия - это множество объектов различного строения, но при одном и том же наборе составляющих эти объекты частей. На рисунке показана изомерия венчиков, предсказанная, а затем и обнаруженная на многих десятках тысяч экземпляров венчиков цветков около 60 видов растений. Здесь для каждого случая число лепестков одно и то же - 5, различно лишь их взаимное расположение.

12 слайд

Частота встреч П- и Л-формы биообъектов. Как часто встречаются П- и Л-формы биообъектов? Найдено, что частота встречаемости этих форм (Е) подчиняется следующей общей для всей живой природы закономерности: либо ЕП = ЕЛ, либо ЕП > ЕЛ, либо ЕП < ЕЛ форм - соответственно для одних, других, третьих биообъектов. Например, ЕH форм листьев бегонии и традесканции равна ЕЛ их форм. Нарцисс, ячмень, рогоз и многие другие растения - правши: их листья встречаются только в П-винтовой форме. Зато фасоль - левша, листья первого яруса до 2,3 раза чаще бывают Л-формы. Задняя часть тела волков и собак при беге несколько заносится вбок, поэтому их разделяют на право- и левобегающих. Птицы-левши складывают крылья так, что левое крыло накладывается на правое, а правши - наоборот. Некоторые голуби при полете предпочитают кружиться вправо, а другие - влево. За это голубей издавна в народе делят на «правухов» и «левухов». Раковина моллюска фрутицикола лантци встречается главным образом в П-закрученной форме. Замечено, что при питании морковью преобладающие П-формы этого моллюска прекрасно растут, а их антиподы - Л-моллюски резко теряют в весе. Инфузория-туфелька из-за спирального расположения ресничек на ее теле передвигается в капельке воды, как и многие другие простейшие, по левозавивающемуся штопору. Инфузории, вбуравливающиеся в среду по правому штопору, встречаются редко.

13 слайд

Свойства П- и Л-форм. Основное достижение - это открытие дисимметрии жизни (СССР). Оказывается, ряд свойств П- и Л-форм биообъектов качественно различаются. Вот некоторые примеры. Широкоизвестный антибиотик пенициллин вырабатывается грибком только в П-форме; искусственно приготовленная Л-форма его антибиотически неактивна. В аптеках продается антибиотик левомицетин, а не его антипод - правомицетин, так как последний по своим лечебным свойствам значительно уступает первому. В табаке содержится алкалоид Л-никотин. Он в несколько раз более ядовит, чем искусственно приготовленный П-никотин. Чаще встречающиеся винтообразные Л-корнеплоды сахарной свеклы содержат на 0,5- 1 % больше сахара, чем П-корнеплоды. Чаще встречающиеся (на 2-3%) левовинтовые по расположению листьев кокосовые пальмы более урожайны (в среднем на 12%), чем П-пальмы. Семена Л-растений подсолнечника более масличны (на 1,4%), чем семена П-растений. Коробочки льна, полученные с различных по изомерии венчиков цветков, различаются и количественно и качественно по содержанию жирных кислот.

14 слайд

Причина свойств П- и Л-форм Никакой теории, отвечающей на этот вопрос, пока не существует. Предложенные гипотезы исходят из молекулярно-химической обусловленности П- и Л-модификаций организмов и их органов. В частности, было установлено, что, выращивая микроорганизмы бациллюс микоидес на агар-агаре с П- и Л-соединениями (сахарозой, винной кислотой, аминокислотами), Л-формы его можно превратить в П-формы, а П-формы в Л-формы. В ряде случаев эти изменения носили длительный, возможно, наследственный характер. Эти опыты говорят о том, что внешняя П- или Л-форма организмов зависит от обмена веществ и участвующих в этом обмене П- и Л-молекул.

15 слайд

Интересный факт Много интересных фактов может сообщить наука о симметрии и о человеке. Как известно, в среднем на земном шаре примерно 3 % левшей (99 млн.) и 97 % правшей (3 млрд. 201 млн.). Интересно отметить, что центры речи в головном мозгу у правшей расположены слева, а у левшей - справа (по другим данным - в обоих полушариях). Правая половина тела управляется левым, а левая - правым полушарием, и в большинстве случаев правая половина тела и левое полушарие развиты лучше. У людей, как известно, сердце на левой стороне, печень - на правой. Но на каждые 7-12 тыс. человек встречаются люди, у которых все или часть внутренних органов расположены зеркально, т. е. наоборот. Но самое важное в этой области открытие было сделано на молекулярно-химическом уровне. Знаменитый французский ученый Л. Пастер и многие другие ученые обнаружили, что клетки организмов состоят в основном только или преимущественно из Л-аминокислот, Л-белков, П-нуклеиновых кислот, П-сахаров, Л-алкалоидов. Такую особенность протоплазмы Пастер назвал дисимметрией протоплазмы.

17 слайд

Содержание Титульный лист Симметрия Основные понятия теории симметрии Двусторонняя симметрия Нульмерная симметрия Одномерная симметрия Двумерная симметрия Трехмерная симметрия Дисимметрические объекты Формы дисимметрических объектов Биологическая изомерия Частота встреч П- и Л-формы биообъектов. Свойства П- и Л-форм Причина свойств П- и Л-форм Интересный факт Заключение






Трудно найти человека, который не имел бы какого-то представления о симметрии. «Симметрия»-слово греческого происхождения. Оно, как и слово «гармония», означает соразмерность, наличие определенного порядка, закономерности в расположении частей. В математике рассматриваются различные виды симметрии. Каждый из них имеет свое название: осевая симметрия (симметрия относительно прямой), центральная симметрия (симметрия относительно точки) и зеркальная симметрия (симметрия относительно плоскости).


Природа удивительный творец и мастер. Всё живое в природе обладает свойством симметрии. Если сверху посмотреть на любое насекомое и мысленно провести посередине прямую (плоскость), то левые и правые половинки насекомых будут одинаковыми и по расположению, и по размерам, и по окраске.


Ведь мы ни разу не видели, чтобы у жука или стрекозы, у любого другого насекомого лапы слева были бы ближе к голове, чем справа, а правое крыло бабочки или божьей коровки было бы больше чем левое. Такого в природе не бывает, иначе бы насекомые не смогли летать.




Если преобразование симметрии относительно плоскости переводит фигуру (тело) в себя, то фигура называется симметричной относительно плоскости, а данная плоскость – плоскостью симметрии этой фигуры. В некоторых источниках такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта. Примерами фигур – зеркальных отражений одна другой – могут служить правая и левая рука человека, правый и левый винты, части архитектурных форм, некоторые природные кристаллы и орнаменты. В некоторых источниках такую симметрию называют зеркальной. А зеркало не просто копирует объект, но и меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта. Примерами фигур – зеркальных отражений одна другой – могут служить правая и левая рука человека, правый и левый винты, части архитектурных форм, некоторые природные кристаллы и орнаменты.




Однако симметрия существует и там где её не видно на первый взгляд. Физик сказал, что всякое твердое тело – кристалл. Знаменитый кристаллограф Евграф Степанович Фёдоров сказал: «Кристаллы блещут симметрией». Химик скажет, что все тела состоят из атомов. А многие атомы располагаются в пространстве по принципу симметрии.




Человеческое творчество во всех своих проявлениях тяготеет к симметрии. Известный французский архитектор Ле Корбюзье сказал: «Человеку необходим порядок: без него все его действия теряют согласованность, логическую взаимосвязь. Чем совершеннее порядок, тем спокойнее и увереннее чувствует себя человек.» Нагляднее всего видна симметрия в архитектуре. Особенно блистательно использовали симметрию в архитектурных сооружениях древние зодчие. Акрополь. Древняя Греция Симметрия в искусстве, архитектуре, музыке, литературе. Наиболее ярко симметрия проявляется в античных сооружениях Древней Греции, предметах роскоши и орнаментов, украшавших их. С тех пор и до наших дней симметрия в сознании человека стала объективным признаком красоты.


Соблюдение симметрии является первым правилом архитектора при проектировании любого сооружения. Стоит только посмотреть на великолепное произведение А.Н.Воронихина Казанский собор в Санкт - Петербурге, чтобы убедиться в этом. Если мы мысленно проведем вертикальную линию через шпиль на куполе и вершину фронтона, то увидит, что с двух сторон от нее абсолютно одинаковые части сооружения (колоннады и здания собора.







Симметрия противостоит хаосу, беспорядку. Она присутствует в нашей жизни буквально во всём, но мы настолько к ней привыкли, что не замечаем этого. Некоторым она кажется скучной, некоторые любят её за спокойствие, которое она вносит в нашу жизнь, некоторые пытаются противостоять ей. Но как бы мы к ней не относились, она есть в нашей жизни буквально во всём, добавляя в неё мир, спокойствие и состояние чего-то нечуждого глазу. Вывод:



СИММЕТРИЯ В ПРИРОДЕ

 Симметрия- закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. При этом подразумевается, что соразмерность – часть гармонии, правильного сочетания частей целого.

Существует очень сложная многоуровневая классификация типов симметрий

В быту мы чаще всего сталкиваемся с так называемой зеркальной симметрией. Это такое строение объектов, когда их можно разделить на правую и левую или верхнюю и нижнюю половины воображаемой осью, называемой осью зеркальной симметрии. При этом половины, находящиеся по разные стороны оси – идентичны друг другу.

Поворотная симметрия. Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

можно отметить, что на не сорванных цветах и грибах, растущих деревьях плоскости симметрии ориентированы всегда вертикально. Определяя пространственную организацию живых организмов, прямой угол организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональна вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, – есть цель жизни. И сама природа, и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности, и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек

Осевая симметрия это результат поворота абсолютно одинаковых элементов вокруг общего центра. При этом они могут располагаться под любым углом и с различной частотой. Главное, чтобы элементы вращались вокруг единого центра. В природе, примеры осевой симметрии чаще всего можно найти среди растений и животных, которые растут или перемещаются перпендикулярно к поверхности Земли.

Симметрия – основополагающий принцип устройства мира. Симметрия – распространенное явление, ее всеобщность служит эффективным методом познания природы. Симметрия в природе нужна, чтобы сохранять устойчивость. Внутри внешней симметрии лежит внутренняя симметрия построения, гарантирующая равновесие. Симметрия – проявление стремления материи к надежности и прочности. Симметричные формы обеспечивают повторяемость удачных форм, поэтому более устойчивы к различным воздействиям. Симметрия многообразна.