Скорость химической реакции в которой. Скорость химической реакции: условия, примеры

Химические реакции протекают с различными скоростями: с малой скоростью - при образовании сталактитов и сталагмитов, со средней скоростью - при варке пищи, мгновенно - при взрыве. Очень быстро проходят реакции в водных растворах.

Определение скорости хи­мической реакции, а также выяснение ее зависимости от условий проведения про­цесса - задача химической кинетики - науки о законо­мерностях протекания хими­ческих реакций во времени.

Если химические реакции происходят в однородной сре­де, например в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реак­ции называют гомогенными .

(v гомог) определя­ется как изменением количества вещества в еди­ницу времени в единице объема:

где Δn - изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); Δt - интервал времени (с, мин); V - объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентра­цию С, то

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

если объем системы не меняется.

Если реакция идет между веществами, находя­щимися в разных агрегатных состояниях (напри­мер, между твердым веществом и газом или жид­костью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она прохо­дит только на поверхности соприкосновения ве­ществ. Такие реакции называют гетерогенными .

Определяется как изменение количества вещества в единицу вре­мени на единице поверхности.

где S - площадь поверхности соприкосновения ве­ществ (м 2 , см 2).

Изменение количества ве­щества, по которому опреде­ляют скорость реакции, - это внешний фактор, наблюда­емый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не раз­лететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли «старые связи» и смогли образоваться «новые», а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферно давлении исчисляются миллиардами за 1 секунду, то есть все реакции должны были бы идти мгновен­но. Но это не так. Оказывается, что лишь очень не­большая доля молекул обладает необходимой энер­гией, приводящей к эффективному соударению.

Минимальный избыток энергии, который долж­на иметь частица (или пара частиц), чтобы произо­шло эффективное соударение, называют энергией активации E a .

Таким образом, на пути всех частиц, вступаю­щих в реакцию, имеется энергетический барьер, равный энергии активации E a . Когда он малень­кий, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В против­ном случае требуется «толчок». Когда вы подноси­те спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию E a , необходимую для эф­фективного соударения молекул спирта с молеку­лами кислорода (преодоление барьера).

Скорость химической реакции зависит от мно­гих факторов. Основными из них являются: при­рода и концентрация реагирующих веществ, дав­ление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирую­щих веществ в случае гетерогенных реакций .

Температура

При повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. X. Вант- Гофф сформулировал правило:

Повышение темпе­ратуры на каждые 10 °С приводит к увеличению скорости реакции в 2-4 раза (эту величину назы­вают температурным коэффициентом реакции).

При повышении темпе­ратуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко по­вышается доля «активных» молекул, участвующих в эф­фективных соударениях, пре­одолевающих энергетичес­кий барьер реакции. Математически эта зависимость выражается со­отношением:

где v t 1 и v t 2 - скорости реакции соответственно при конечной t 2 и начальной t 1 температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые 10 °С.

Однако для увеличения скорости реакции повы­шение температуры не всегда применимо, т. к. ис­ходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества и т. д.

Эндотермические и экзотермические реакции

Реакция метана с кислородом воздуха, как известно, сопровождается выделением большого количества тепла. Поэтому ее используют в быту для приготовления пищи, нагревания воды и отопления. Природный газ, поступающий в дома по трубам, на 98% состоит именно из метана. Реакция оксида кальция (СаО) с водой тоже сопровождается выделением большого количества тепла.

О чем могут говорить эти факты? При образовании новых химических связей в продуктах реакции выделяется больше энергии, чем требуется на разрыв химических связей в реагентах. Избыток энергии выделяется в виде тепла, а иногда и света.

СН 4 + 2О 2 = СО 2 + 2Н 2 О + Q (энергия (свет, тепло));

СаО + Н 2 О = Са(ОН) 2 + Q (энергия (тепло)).

Такие реакции должны протекать легко (как легко катится под гору камень).

Реакции, в которых энергия выделяется, называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского «экзо» – наружу).

Например, многие окислительно-восстановительные реакции являются экзотермическими. Одна из таких красивых реакций — внутримолекулярное окисление-восстановление, протекающее внутри одной и той же соли — дихромата аммония (NH 4) 2 Cr 2 O 7:

(NH 4) 2 Cr 2 O 7 = N 2 + Cr 2 O 3 + 4 H 2 O + Q (энергия).

Другое дело – обратные реакции. Они аналогичны закатыванию камня в гору. Получить метан из CO 2 и воды до сих пор не удается, а для получения негашеной извести СаО из гидроксида кальция Са(ОН) 2 требуются сильное нагревание. Такая реакция идет только при постоянном притоке энергии извне:

Са(ОН) 2 = СаО + Н 2 О — Q (энергия (тепло))

Это говорит о том, что разрыв химических связей в Ca(OH) 2 требует большей энергии, чем может выделиться при образовании новых химических связей в молекулах CaO и H 2 O.

Реакции, в которых энергия поглощается, называются ЭНДОТЕРМИЧЕСКИМИ (от «эндо» – внутрь).

Концентрация реагирующих веществ

Изменение давления при участии в реакции га­зообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодей­ствие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирую­щих веществ, тем больше столкновений и, соответ­ственно, выше скорость реакции. Например, в чи­стом кислороде ацетилен сгорает очень быстро. При этом развивается температу­ра, достаточная для плавле­ния металла. На основе боль­шого экспериментального материала в 1867 г. норвеж­цами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональ­на произведению концентраций реагирующих ве­ществ, взятых в степенях, равных их коэффици­ентам в уравнении реакции.

Этот закон называют также законом действую­щих масс.

Для реакции А + В = D этот закон выразится так:

Для реакции 2А + В = D этот закон выразится так:

Здесь С А, С В - концентрации веществ А и В (моль/л); k 1 и k 2 - коэффициенты пропорцио­нальности, называемые константами скорости ре­акции.

Физический смысл константы скорости реак­ции нетрудно установить - она численно равна скорости реакции, в которой концентрации реаги­рующих веществ равны 1 моль/л или их произ­ведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от тем­пературы и не зависит от концентрации веществ.

Закон действующих масс не учитывает кон­центрации реагирующих веществ, находящихся в твердом состоянии , т. к. они реагируют на по­верхности и их концентрации обычно являются постоянными.

Например, для реакции горения угля выражение скорости реакции должно быть запи­сано так:

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции мо­жет сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют меха­низм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией актива­ции. Их называют катализаторами (от лат. katalysis - разрушение).

Катализатор действует как опытный провод­ник, направляющий группу туристов не через вы­сокий перевал в горах (его преодоление требует много сил и времени и не всем до­ступно), а по известным ему обходным тропам, по кото­рым можно преодолеть гору значительно легче и быстрее.

Правда, по обходному пу­ти можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, ко­торые называют селективны­ми. Ясно, что нет необходи­мости сжигать аммиак и азот, зато оксид азота (II) находит использование в производстве азотной кислоты.

Катализаторы - это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остаю­щиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называ­ют катализом. Катализаторы широко использу­ют в различных отраслях промышленности и на транспорте (каталитические преобразователи, пре­вращающие оксиды азота выхлопных газов авто­мобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализа­тор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализа­тор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида мар­ганца (IV):

Сам катализатор не рас­ходуется в результате реак­ции, но если на его поверх­ности адсорбируются другие вещества (их называют каталитическими ядами), то поверхность становится не­работоспособной, требуется регенерация катализатора. Поэтому перед проведени­ем каталитической реакции тщательно очищают исход­ные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катали­затор - оксид ванадия (V) V 2 O 5:

При производстве метанола используют твер­дый «цинкохромовый» катализатор (8ZnO Cr 2 O 3 х CrO 3):

Очень эффективно работают биологические ка­тализаторы - ферменты. По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью про­текают сложные химические реакции.

Известны другие интересные вещества - ин­гибиторы (от лат. inhibere - задерживать). Они с высокой скоростью реагируют с активными ча­стицами с образованием малоактивных соедине­ний. В результате реакция резко замедляется и за­тем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизи­руют растворы пероксида водорода.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем факто­ром, посредством которого сказывается влияние при­роды реагирующих веществ на скорость реакции.

Если энергия активации мала (< 40 кДж/моль), то это означает, что значительная часть столкнове­ний между частицами реагирующих веществ при­водит к их взаимодействию, и скорость такой ре­акции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих ре­акциях участвуют разноименно заряженные ионы, и энергия активации в данных случаях ничтожно мала.

Если энергия активации велика (> 120 кДж/моль), то это означает, что лишь ничтожная часть стол­кновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заме­тить практически невозможно.

Если энергии активации химических ре­акций имеют промежуточные значения (40­120 кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаи­модействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимо­действие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, иду­щих на поверхности веществ, т. е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растер­тый в порошок мел гораздо быстрее растворяется в соля­ной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется в первую очередь увеличением поверхности со­прикосновения исходных веществ , а также рядом других причин, например, нарушением структуры «правильной» кристаллической решетки. Это при­водит к тому, что частицы на поверхности обра­зующихся микрокристаллов значительно реакци­онноспособнее, чем те же частицы на «гладкой» поверхности.

В промышленности для проведения гетероген­ных реакций используют «кипящий слой», чтобы увеличить поверхность соприкосновения реагиру­ющих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью «кипящего слоя» проводят об­жиг колчедана.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Дадим определение основному понятию химической кинетики – скорости химической реакции:

Скорость химической реакции есть число элементарных актов химической реакции, происходящих в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных реакций).

Скорость химической реакции есть изменение концентрации реагирующих веществ в единицу времени.

Первое определение является наиболее строгим; из него следует, что скорость химической реакции можно также выражать как изменение во времени любого параметра состояния системы, зависящего от числа частиц какого-либо реагирующего вещества, отнесенное к единице объема или поверхности – электропроводности, оптической плотности, диэлектрической проницаемости и т.д. и т.п. Однако наиболее часто в химии рассматривается зависимость концентрации реагентов от времени. В случае односторонних (необратимых) химических реакций (здесь и далее рассматриваются только односторонние реакции) очевидно, что концентрации исходных веществ во времени постоянно уменьшаются (ΔС исх < 0), а концентрации продуктов реакции увеличиваются (ΔС прод > 0). Скорость реакции считается положительной, поэтому математически определение средней скорости реакции в интервале времени Δt записывается следующим образом:

(II.1)

В различных интервалах времени средняя скорость химической реакции имеет разные значения; истинная (мгновенная) скорость реакции определяется как производная от концентрации по времени:

(II.2)

Графическое изображение зависимости концентрации реагентов от времени есть кинетическая кривая (рисунок 2.1).

Рис. 2.1 Кинетические кривые для исходных веществ (А) и продуктов реакции (В).

Истинную скорость реакции можно определить графически, проведя касательную к кинетической кривой (рис. 2.2); истинная скорость реакции в данный момент времени равна по абсолютной величине тангенсу угла наклона касательной:

Рис. 2.2 Графическое определение V ист.

(II.3)

Необходимо отметить, что в том случае, если стехиометрические коэффициенты в уравнении химической реакции неодинаковы, величина скорости реакции будет зависеть от того, изменение концентрации какого реагента определялось. Очевидно, что в реакции

2Н 2 + О 2 → 2Н 2 О

концентрации водорода, кислорода и воды изменяются в различной степени:

ΔС(Н 2) = ΔС(Н 2 О) = 2 ΔС(О 2).

Скорость химической реакции зависит от множества факторов: природы реагирующих веществ, их концентрации, температуры, природы растворителя и т.д.

Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики :

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

Т. е. для реакции

АА + bВ + dD + ... → еЕ + ...

Можно записать

(II.4)

Коэффициент пропорциональности k есть константа скорости химической реакции . Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.

Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции . Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.

В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Скорость химической реакции зависит от следу­ющих факторов:

1) Природа реагирующих веществ.

2) Поверхность соприкосновения реагентов.

3) Концентрация реагирующих веществ.

4) Температура.

5) Присутствие катализаторов.

Скорость гетерогенных реакций зависит также от:

а) величины поверхности раздела фаз (с увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается);

б) скорости подвода реагирующих веществ к поверхно­сти раздела фаз и скорости отвода от нее продуктов реак­ции.

Факторы, влияющие на скорость химической реакции:

1. Природа реагентов. Большую роль играет харак­тер химических связей в соединениях, строение их молекул. Например, выделение водорода цинком из раствора хлороводородной кислоты происходит значительно быстрее, чем из раствора ук­сусной кислоты, так как полярность связи Н-С1 больше, чем связи О-Н в молекуле СН 3 СООН, иначе говоря, из-за того, что НСl - сильный электролит, а СН 3 СООН - слабый элект­ролит в водном растворе.

2. Поверхность соприкосновения реагентов. Чем больше поверхность соприкосновения реагирующих веществ, тем бы­стрее протекает реакция. Поверхность твердых веществ мо­жет быть увеличена путем их измельчения, а для раствори­мых веществ - путем их растворения. Реакции в растворах протекают практически мгновенно.

3. Концентрация реагентов. Чтобы произошло взаимо­действие, частицы реагирующих веществ в гомогенной систе­ме должны столкнуться. При увеличении концентрации реагирующих веществ скорость реакций увеличивается. Это объясняется тем, что при увеличении количества вещества в единице объема уве­личивается число столкновений между частицами реагиру­ющих веществ. Число столкновений пропорциональ­но числу частиц реагирующих веществ в объеме реактора, т. е. их молярным концентрациям.

Количественно зависимость скорости реакции от кон­центрации реагирующих веществ выражается законом дей­ствующих масс (Гульдберг и Вааге, Норвегия, 1867 г.): скорость химической реакции пропорциональна произве­дению концентраций реагирующих веществ.

Для реакции:

aA + bB ↔ cC + dD

скорость реакции в соответствии с законом действующих масс равна:

υ = k· [A ] υ a · [B ] υ b , (9)

где [А] и [В] - концентрации исходных веществ;

k - кон­станта скорости реакции , которая равна скорости реакции при концентрациях реагирующих веществ [А] = [В] = 1 моль/л.

Константа скорости реакции зависит от при­роды реагирующих веществ, температуры, но не зависит от концентрации веществ.

Выражение (9) называется кинетическим урав­нением реакции. В кинетические уравнения входят концен­трации газообразных и растворенных веществ, но не вхо­дят концентрации твердых веществ:

2SO 2(г) + O 2(г) = 2SO 3(г) ; υ = 2 · [О 2 ];

СuО (тв.) + Н 2(г) = Сu (тв) + Н 2 О (г) ; υ = k· .

По кинетическим уравнениям можно рассчитывать, как изменяется скорость реакции при изменении концентрации реагирующих веществ.

Влияние катализатора.

5. Температура реакции. Теория активных соударений

Для того чтобы совершился элементарный акт химического взаи­модействия, реагирующие частицы должны столкнуться друг с другом. Однако не каждое столкновение приводит к химическому взаимо­действию. Химическое взаимодействие происходит в том случае, когда частицы при­ближаются на расстояния, при которых возможно перераспределение электронной плотности и возникновение новых химических связей. Взаимодействующие частицы должны обладать энергией, достаточной для преодоления сил отталкивания, возникающих между их электронными оболочками.

Переходное состояние - состояние системы, при котором уравнове­шены разрушение и создание связи. В переходном состоянии система находится в течение небольшого (10 -15 с) времени. Энергия, которую необходимо затратить, чтобы привести систему в переходное состояние, называется энергией активации. В многоступенчатых реакциях, которые включают в себя несколько переходных состояний, энергия активации соответствует наибольшему значению энергии. После преодоления переходного состояния молекулы вновь разлетаются с разрушением старых связей и образованием новых или с преобразованием исходных связей. Оба варианта возможны, так как происходят с высвобождением энергии. Существуют вещества, способные уменьшить энергию акти­вации для данной реакции.

Активные молекулы А 2 и В 2 при столкновении объединяются в про­межуточный активный комплекс А 2 ...В 2 с ослаблением, а затем и раз­рывом связей А-А и В-В и упрочнением связей А-В.

«Энергия активации» реакции образования НI (168 кДж/моль) значительно меньше, чем энергия, необходимая для полного разрыва связи в исходных молекулах Н 2 и I 2 (571 кДж/моль). Поэтому путь реакции через образование активного (активированного} комплекса энергетически более выгоден, чем путь через полный разрыв связей в исходных молекулах. Через образование промежуточных актив­ных комплексов происходит подавляющее большинство реакций. Положения теории активного комплекса разработаны Г. Эйрингом и М. Поляни в 30 годах XX в.

Энергия активации представляет собой избыток кинетической энер­гии частиц относительно средней энергии, необходимой для химиче­ского превращения сталкивающихся частиц. Реакции характеризуются различными величинами энергии активации (Е а). В большинстве случаев энергия активации химических реакций между нейтральными молекулами составляет от 80 до 240 кДж/моль. Для биохимических процессов значения Е а зачастую ниже - до 20 кДж/моль. Это объясня­йся тем, что абсолютное большинство биохимических процессов протекает через стадию фермент-субстратных комплексов. Энергетические барьеры ограничивают протекание реакции. Благодаря этому в принципе возможные реакции (при Q < 0) практически всегда не протекают или замедляются. Реакции с энергией активации выше 120 кДж/моль настолько медленны, что их протекание трудно заметить.

Для осуществления реакции молекулы при столкновении должны быть определенным образом ориентированы и обладать достаточной энергией. Вероятность надлежащей ориентации при столкновении характеризу­ют с помощью энтропии активации S a . Перераспределению электрон­ной плотности в активном комплексе благоприятствует условие, когда при столкновении молекулы А 2 и В 2 ориентированы, как это показано на рис. 3а, тогда как при ориентации, показанной на рис. 3б, вероятность реакции еще гораздо меньше - на рис. 3в.

Рис. 3. Благоприятная (а) и неблагоприятные (б, в) ориентации молекул А 2 и В 2 при столкновении

Уравнение, характеризующее зависимость скорости и реакции от тем­пературы, энергии активации и энтропии активации, имеет вид:

(10)

где k - константа скорости реакции;

А - в первом приближении общее число столкновений между молекулами за единицу времени (секунду) в единице объема;

е - основание натуральных лога­рифмов;

R - универсальная газовая постоянная;

Т - абсолютная температура;

Е а - энергия активации;

S a - изменение энтропии активации.

Уравнение (11) выведено Аррениусом в 1889 году. Предэкспоненциальный множитель А пропорционален общему числу соударений между молекулами в единицу времени. Его размерность совпадает с размерностью константы скорости и зависит от сум­марного порядка реакции.

Экспонента равна доле активных соударений от их общего числа, т.е. столкнувшиеся молекулы должны иметь достаточную энергию взаимодействия. Вероятность же их нужной ориента­ции в момент соударения пропорциональна .

При обсуждении закона действующих масс для скорости (9) специ­ально было оговорено, что константа скорости есть постоянная величи­на, не зависящая от концентраций реагентов. При этом предполагалось, что все химические превращения протекают при постоянной темпера­туре. Вместе с тем, быстрота химического превращения может существенно изменяться при понижении или повышении температуры. С точки зрения закона действующих масс это изменение скорости обусловлено температурной зависимостью константы скоро­сти, так как концентрации реагирующих веществ лишь незначительно меняются вследствие теплового расширения или сжатия жидкости.

Наиболее хорошо известным фактом является возрастание скоро­сти реакций с увеличением температуры. Такой тип температурной зависимости скорости называется нормальным (рис. 3 а). Этот тип зависимости характерен для всех простых реакций.

Рис. 3. Типы температурной зависимости скорости химических реакций: а - нормальная;

б - аномальная; в - ферментативная

Однако в настоящее время хорошо известны химические превра­щения, скорость которых падает с увеличением температуры, такой тип температурной зависимости скорости называется аномальным . В каче­стве примера можно привести газофазную реакцию азота (II) оксида с бромом (рис. 3 б).

Особый интерес для медиков представляет зависимость от тем­пературы скорости ферментативных реакций, т.е. реакций с участием ферментов. Практически все реакции, протекающие в организме, относятся к этому классу. Например, при разложении пероксида водорода в присутствии фермента каталазы скорость разложения зависит от температуры. В интервале 273-320 К температурная зависимость имеет нормальный характер. С увеличением температуры скорость возрастает, с уменьшением - падает. При подъеме температуры выше 320 К наблюдается резкое аномальное падение скорости разложения пероксида. Сходная картина имеет место и для других ферментативных реакций (рис. 3 в).

Из уравнения Аррениуса для k видно, что, поскольку Т входит в показатель степени, скорость химической реакции очень чувстви­тельна к изменению температуры. Зависимость скорости гомогенной реакции от температуры может быть выражена правилом Вант-Гоффа, согласно которому при увеличении температуры на каждые 10° скорость реакции возрастает в 2-4 раза; число, показывающее во сколько раз возрастает скорость данной реакции при повышении температуры на 10°, называется температурным коэффициентом ско­рости реакции - γ.

Это правило математически выражается следующей формулой:

(12)

где γ - температурный коэффициент, который показыва­ет, во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 ; υ 1 – t 1 ; υ 2 – скорость реакции при температуре t 2 .

При повышении температуры в арифметической прогрессии скорость возрастает в геометрической.

Например, если γ = 2,9, то при возрастании температуры на 100° скорость реакции увеличивается в 2,9 10 раз, т.е. в 40 тыс. раз. Отклонения от этого правила составляют биохимические реакции, скорость которых увеличивается в десятки раз при незначительном повышении температуры. Это правило справедливо лишь в грубом приближении. Реакции, в которых участвуют крупные молекулы (белка), характеризуются большим температурным коэффициентом. Скорость денатурации белка (яичного альбумина) возрастает в 50 раз при повышении температуры на 10 °С. После достижения некоторого максимума (50-60 °С) скорость реакции резко понижается в резуль­тате термоденатурации белка.

Для многих химических реакций закон действующих масс для ско­рости неизвестен. В таких случаях для описания температурной зави­симости скорости превращения может применяться выражение:

Предэкспонента А с не зависит от температуры, однако зависит от концентрации. Единицей измерения является моль/л∙с.

Теоретическая зависимость позволяет заранее рассчитывать ско­рость при любой температуре, если известны энергия активации и предэкспонента. Таким образом, прогнозируется влияние температуры на быстроту протекания химического превращения.

Сложные реакции

Принцип независимости. Все рассмотренное выше отно­силось к сравнительно простым реакциям, но в химии часто встречаются так называемые сложные реакции. К таким реакциям относятся рассматриваемые ниже. При выводе кинетических уравнений для этих реакций ис­пользуют принцип независимости: если в системе протекает несколько реакций, то каждая из них независима от других и ее ско­рость пропорциональна произведению концентраций ее реагентов.

Параллельные реакции - это реакции, идущие од­новременно в нескольких направлениях.

Термический распад хлората калия протекает одновременно по двум реакциям:

Последовательные реакции - это реакции, которые протекают в несколько стадий. Таких реакций в химии большинство.

.

Сопряженные реакции. Если в системе протекают не­сколько реакций и протекание одной из них невозможно без другой, то эти реакции называются сопряженными , а само явление - индукцией .

2HI + Н 2 СrО 4 → I 2 + Сr 2 О 3 + Н 2 О.

Эта реакция в обычных условиях практически не наблюдает­ся, но если в систему добавить FеО, то происходит реакция:

FеО + Н 2 СrО 4 → Fе 2 О 3 + Сr 2 O 3 + Н 2 О

и одновременно с ней идет первая реакция. Причиной этого явля­ется образование во второй реакции промежуточных продуктов, участвующих в первой реакции:

FеО 2 + Н 2 СrО 4 → Сr 2 О 3 + Fе 5+ ;

HI + Fе 5+ → Fе 2 О 3 + I 2 + Н 2 О.

Химическая индукция - явление, при котором одна химиче­ская реакция (вторичная) зависит от другой (первичной).

А + В - первичная реакция,

А + С - вторичная реак­ция,

то А - активатор, В - индуктор, С - акцептор.

При химической индукции, в отличие от катализa, концентрации всех участников реакции уменьшаются.

Фактор индукции определяется из следующего уравнения:

.

В зависимости от величины фактора индукции возможны сле­дующие случаи.

I > 0 - затухающий процесс. Скорость реакции снижается со временем.

I < 0 - ускоряющийся процесс. Скорость реакции увеличи­вается со временем.

Явление индукции важно тем, что в ряде случаев энергия первичной реакции может скомпенсировать затраты энергии во вторичной реакции. По этой причине, например, оказывается тер­модинамически возможным синтез белков путем поликонденса­ции аминокислот.

Цепные реакции. Если химическая реакция протека­ет с образованием активных частиц (ионов, радикалов), которые, вступая в последующие реакции, вызывают появление новых активных частиц, то такая последова­тельность реакций называется цепной реакцией .

Образование свободных радикалов связано с затратой энер­гии на разрыв связей в молекуле. Эта энергия может быть сооб­щена молекулам путем освещения, электрического разряда, на­гревания, облучения нейтронами, α- и β-частицами. Для проведе­ния цепных реакций при невысоких температурах в реагирующую смесь вводят инициаторы - вещества, легко образующие радика­лы: пары натрия, органические пероксиды, иод и т. д.

Реакция образования хлороводорода из простых соединений, активируемая светом.

Суммарная реакция:

Н 2 + С1 2 2НС1.

Отдельные стадии:

Сl 2 2Сl∙ фотоактивация хлора (инициирование)

Сl∙ + Н 2 = НСl + Н∙ развитие цепи

Н∙ + Сl 2 = НСl + Сl∙ и т. д.

Н∙ + Сl∙ = НСl обрыв цепи

Здесь Н∙ и Сl∙ - активные частицы (радикалы).

В этом механизме реакции можно выделить три группы эле­ментарных стадий. Первая представляет собой фотохимическую реакцию зарождения цепи . Молекулы хлора, поглотив квант света, диссоциируют на свободные атомы, обладающие высокой реакционной способностью. Таким образом, при зарождении це­пи происходит образование свободных атомов или радикалов из валентно-насыщенных молекул. Процесс зарождения цепи назы­вают также инициированием . Атомы хлора, обладая непарными электронами, способны реагировать с молекулярным водородом, образуя молекулы хлороводорода и атомарного водорода. Ато­марный водород, в свою очередь, вступает во взаимодействие с молекулой хлора, в результате чего снова образуется молекула хлороводорода и атомарный хлор и т. д.

Эти процессы, характеризующиеся повторением одних и тех же элементарных стадий (звеньев) и идущие с сохранением свободных радикалов, приводят к расходованию исходных ве­ществ и образованию продуктов реакции. Такие группы реакций называют реакциями развития (или продолжения) цепи.

Стадия цепной реакции, при которой происходит гибель сво­бодных радикалов, называется обрывом цепи . Обрыв цепи может наступить в результате рекомби­нации свободных радикалов, если выделяющаяся при этом энергия может быть отдана какому-либо третьему телу: стенке сосуда или молекулам инертных примесей (стадии 4, 5). Вот почему скорость цепных реакций очень чувствительна к наличию приме­сей, к форме и размерам сосуда, особенно при малых давлениях.

Число элементарных звеньев от момента зарождения цепи до ее обрыва называют длиной цепи. В рассматриваемом примере на каждый квант света образуется до 10 5 молекул НСl.

Цепные реакции, в ходе которых не происходит «умножения» числа свободных радикалов, называются неразветвленными или простыми цепными реакциями . В каждой элементарной стадии неразветвленного цепного процесса один радикал «рождает» одну молекулу продукта реакции и только один новый радикал (рис. 41).

Другие примеры простых цепных реакций: а) хлорирование парафиновых углеводородов Сl∙ + СН 4 → СН 3 ∙ + НС1; СН 3 ∙ + Сl - → СН 3 Сl + Сl∙ и т. д.; б) реакции радикальной полимеризации, например, полимеризация винилацетата в присутствии перекиси бензоила, легко распадающегося на радикалы; в) взаимодейст­вие водорода с бромом, протекающее по механизму, аналогично­му при реакции хлора с водородом, только с меньшей длиной цепи вследствие ее эндотермичности.

Если в результате акта роста появляются две или более активных частиц, то эта цепная реакция является разветвленной.

В 1925 г. Н. Н. Семенов и его сотрудники открыли реакции, содержащие элементарные стадии, в результате которых возни­кают не одна, а несколько химически активных частиц - атомов, или радикалов. Появление нескольких новых свободных радика­лов приводит к появлению не­скольких новых цепей, т.е. одна цепь разветвляется. Такие про­цессы называют разветвленными цепными реакциями (рис. 42).

Примером сильно разветвлен­ного цепного процесса является реакция окисления водорода при низких давлениях и температуре около 900°С. Механизм реакции можно записать так.

1. H 2 + O 2 OH∙ + OH∙ зарождение цепи

2. ОН∙ + Н 2 → Н 2 О + Н∙ развитие цепи

3. Н∙ + О 2 → ОН∙ + О: разветвление цепи

4. О: + Н 2 → ОН∙ +Н∙

5. ОН∙ +Н 2 → Н 2 О + Н∙ продолжение цепи

6. Н∙ + Н∙ + стенка → Н 2 обрыв цепи на стенке сосуда

7. Н∙ + О 2 + М → НО 2 ∙ + М обрыв цепи в объеме.

М - инертная молекула. Радикал НО 2 ∙, образующийся при трой­ном соударении, малоактивен и не может продолжать цепь.

На первой стадии процесса образуются радикалы гидроксила, которые обеспечивают развитие простой цепи. В третьей же ста­дии в результате взаимодействия с исходной молекулой одного радикала образуются два радикала, причем атом кислорода об­ладает двумя свободными валентностями. Это и обеспечивает разветвление цепи.

В результате разветвления цепи скорость реакции в началь­ный период времени стремительно нарастает, и процесс заканчи­вается цепным воспламенением-взрывом. Однако разветвлен­ные цепные реакции заканчиваются взрывом только в том случае, когда скорость разветвления больше скорости обрыва цепей. В противном случае наблюдается медленное течение процесса.

При изменении условий протекания реакции (изменение дав­ления, температуры, состава смеси, размера и состояния стенок реакционного сосуда и т. д.) может произойти переход от мед­ленного течения реакции к взрыву и наоборот. Таким образом, з цепных реакциях существуют предельные (критические) со­стояния, при которых происходит цепное воспламенение, от кото­рого следует отличать тепловое воспламенение, возникающее в экзотермических реакциях в результате все увеличивающегося разогревания реагируемой смеси при слабом теплоотводе.

По разветвленному цепному механизму происходит окисле-кие паров серы, фосфора, оксида углерода (II), сероуглерода и т. д.

Современная теория цепных процессов разработана лауреа­тами Нобелевской премии (1956) советским академиком Н. Н. Семеновым и английским ученым Хиншельвудом.

Цепные реакции следует отличать от реакций каталитических, хотя последние носят и циклический характер. Самое существенное отличие цепных реакций от каталитических заклю­чается в том, что при цепном механизме возможно течение реак­ции в направлении повышения энергии системы за счет само­произвольно протекающих. Катализатор же термодинамически невозможную реакцию не вызывает. Кроме того, в каталитиче­ских реакциях отсутствуют такие стадии процесса, как зарожде­ние и обрыв цепи.

Реакции полимеризации. Частный случай цепной ре­акции - реакция полимеризации.

Полимеризацией называется процесс, при котором ре­акция активных частиц (радикалов, ионов) с низкомоле­кулярными соединениями (мономерами) сопровождает­ся последовательным присоединением последних с уве­личением длины материальной цепи (длины молекулы), т. е. с образованием полимера.

Мономерами являются органические соединения, как правило, содержащие в составе молекулы непредельные (двойные, тройные) связи.

Основные стадии процесса полимеризации:

1. Инициирование (под действием света, нагревания и т. д.):

А: А А" + А" - гомолитический распад с об­разованием радикалов (активные валентноненасыщенные частицы).

А: В А - + В + - гетеролитический распад с образованием ионов.

2. Рост цепи: А" + М АМ"

(или А - + М АМ", или В + + М ВМ +).

3. Обрыв цепи: АМ" + АМ" → полимер

(или АМ" + В + → полимер, ВМ + + А" → полимер).

Скорость цепного процесса все­гда больше, чем нецепного.

Как любые процессы, химические реакции происходят во времени и поэтому характеризуются той или иной скоростью.

Раздел химии, изучающий скорость химических реакций и механизм их протекания, называется химической кинетикой . Химическая кинетика оперирует понятиями «фаза», «система». Фаза это часть системы, отделенная от других ее частей поверхностью раздела.

Системы бывают гомогенные и гетерогенные. Гомогенные системы состоят из одной фазы . Например, воздух или любая смесь газов, раствор соли. Гетерогенные системы состоят из двух или нескольких фаз . Например, жидкая вода – лед – пар, раствор соли + осадок.

Реакции, протекающие в гомогенной системе , называются гомогенными . Например, N 2(г) + 3H 2(г) = 2NH 3(г) . Они протекают во всем объеме. Реакции, протекающиев гетерогенной системе , называютсягетерогенными . Например, С (к) + О 2(г) = СО 2(г) . Они протекают на поверхности раздела фаз.

Скорость химической реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

1. Природа реагирующих веществ.

Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы являются мало реакционноспособными. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

2. Концентрация.

С увеличением концентрации чаще происходят столкновения молекул реагирующих веществ – скорость реакции возрастает.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции

nA (г) + mB (г) = pAB (г)

зависимость скорости реакции выражается уравнением:

где С А и С В – концентрации реагирующих веществ, моль/л; k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид:

υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.



Для гетерогенных реакций (когда вещества находятся в разных агрегатных состояниях) скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЭДМ не входит:

nA (к) + mB (г) = pAB (г)

Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к)

3. Температура.

При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними. Чтобы реакция осуществлялась, сталкивающиеся молекулы должны обладать определенным избытком энергии. Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества , называется энергией активации . Энергию активации (Е а ) выражают в кДж/моль. Ее величина зависит от природы реагирующих веществ, т.е. для каждой реакции своя энергия активации. Молекулы, обладающие энергией активации , называют активными . Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С.

4. Поверхность соприкосновения реагирующих веществ.

Для гетерогенных систем, чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ – путем их растворения.

5. Катализаторы.

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

К гомогенному относятся такие процессы, в которых катализатор находится в том же агрегатном состоянии, что и реагирующие вещества.

2SO 2(г) + O 2(г) 2SO 3(г)

Действие гомогенного катализатора заключается в образовании более или менее прочных промежуточных активных соединений, из которых он затем полностью регенерируется.

К гетерогенному катализу относятся такие процессы, в которых катализатор и реагирующие вещества находятся в различных агрегатных состояниях, а реакция протекает на поверхности катализатора.

N 2(г) + 3H 2(г) 2NH 3(г)

Механизм действия гетерогенных катализаторов сложнее гомогенных. Значительную роль в этих процессах играют явления поглощения газообразных и жидких веществ на поверхности твердого вещества – явления адсорбции. В результате адсорбции увеличивается концентрация реагирующих веществ, повышается их химическая активность, что приводит к увеличению скорости реакции.