Виды кристаллизации. Что такое фазовый переход? Расширение воды при замерзании

Процесс преобразования, а точнее, перехода вещества из субстанции жидкости в состояние твердого тела называется кристаллизация . Наиболее ярким примером подобной химической реакции является лед. Результат процесса называется кристаллом.

Чтобы запустить процесс, в растворе, над которым производится опыт, необходимо создать состояние перенасыщенности. Фазовый переход жидкости протекает следующим образом:

  1. Меняется уровень температуры жидкости.
  2. Удаляется часть растворителя.
  3. Происходит комбинирование двух предыдущих действий.
  4. Из получившихся расплавов происходит процесс кристаллизации.

Кристаллизация и методы получения кристаллов из жидкости

Существует два метода кристаллизации: изотермический и политермический.

При первом способе раствор подвергается интенсивному охлаждению, при этом начинают выделяться кристаллы, а количество жидкости растворителя остается прежним.

При изотермической кристаллизации, появление кристаллов происходит путем выпаривания. Процесс получил названия, поскольку вся реакция происходит при постоянной температуре, являющейся точкой кипения раствора. На практике, оба способа используются совместно. В этом случае, часть растворителя испаряется путем кипячения, при этом в это же время происходит охлаждение жидкости.

Есть еще один вариант кристаллизации, при котором в раствор добавляют вещества, обладающие хорошей способностью впитывать воду и уменьшающие восприимчивость содержащейся в жидкости соли к растворению. Вариант такого развития событий называется высаливанием. В этом случае используются препараты, способные «связать воду» (таким способом производится кристаллизация сульфата натрия, в процессе которой добавляется аммиак либо спирт), либо у них имеется одинаковый с используемой солью ион. Примером может служить химическая реакция, направленная на кристаллизацию медного купороса либо хлористого натрия.

Чтобы вырастить кристалл , начинают с мелкой частицы, называемой «зародышем». Иначе говоря, это своеобразный центр, вокруг которого, в процессе химической реакции начинает образовываться кристалл. В этом случае, процесс, при котором протекает образование зародышей, и сам процесс кристаллизации происходит в одно и то же время. В случае если это не так, например, зародыши образуются быстрее, появляется много слишком мелких кристалликов, а вот в обратном случае их получается мало, но большего размера.

Благодаря этому свойству, можно контролировать величину и скорость, с которой происходит кристаллизация. Осуществляется это с помощью следующих факторов:

  1. Раствор, должен быстро охлаждаться.
  2. Жидкости нельзя находиться в состоянии покоя.
  3. Нужна повышенная температура.
  4. Молекулярная масса кристаллов должна быть низкой.

Все вышеперечисленные нюансы способствуют появлению в результате продукции небольшого калибра, чтобы получить кристаллы большего размера требуется:

  1. Медленное охлаждение.
  2. Жидкость в состоянии покоя.
  3. Значительно пониженная температура.
  4. Высокая молекулярная масса.

Чтобы облегчить сам момент, когда начинают формироваться зародыши, в раствор вносят элементы кристаллического вещества, в виде мелкоизмельченного порошка. При этом сам процесс кристаллизации происходит за счет последующего ввода частиц того же элемента. Количество вводимого вещества, зависит от величины желаемого кристалла, например, для более крупного, используется небольшое количество затравочного материала.

Размеры кристаллов имеют значение при их дальнейшей обработке, например, большие кристаллы способны отдавать большое количество влаги в процессе мытья и фильтрации. Они быстрее сохнут, отстаиваются, легче отфильтровываются.

Поскольку основное назначение кристаллизации – получение конечного вещества, идеально чистого и без примесей, то обычно, полученные кристаллы подвергают процессы перекристаллизации, с удалением излишних примесей и повторной промывкой и сушкой.

Кристаллизация

Кристаллизация - это образование новой твердой фазы, выделяющейся из раствора, расплава или пара. Кристаллизация из раствора служит средством выделения из них целевых продуктов или загрязняющих примесей, то есть является методом разделения и очистки веществ. В технологии неорганических веществ преимущественно используется кристаллизация из растворов. Образование твердой фазы может происходить только в растворах, в которых концентрация кристаллизующегося вещества превышает концентрацию насыщения, то есть из пересыщенных растворов. Насыщенный раствор, находящийся в контакте с выделившейся кристаллической массой или оставшийся после ее удаления, называется маточным раствором. Пересыщение раствора характеризуется его абсолютным значением, то есть разностью х / - х 0 между концентрацией пересыщенного х / и насыщенного х 0 растворов, или относительным пересыщением (х / - х 0) / х 0 .

Способы кристаллизации

Способы кристаллизации различаются прежде всего приемами, с помощью которых достигается пересыщение раствора.

1) Политермическая или изогидрическая кристаллизация идет при неизменном содержании воды в системе. Она характерна для веществ, растворимость которых при повышенных температурах заметно превышает их растворимость при более низких температурах, и происходит путем охлаждения пересыщенных растворов. Пересыщение зависит от переохлаждения раствора, то есть от разности температур насыщенного и пересыщенного растворов. Если растворимость уменьшается при повышении температуры, кристаллизация будет идти при нагревании системы.

2) Изотермическая кристаллизация происходит путем удаления растворителя из системы (испарении воды) при постоянной температуре, она характерна для веществ, мало изменяющих свою растворимость при изменении температуры. Испарение воды может производиться интенсивным способом при кипении раствора или при медленном поверхностном испарении.

3) Высаливание - кристаллизация соли может быть достигнута введением в раствор веществ, уменьшающих ее растворимость. Таковыми являются вещества, содержащие одинаковый с данной солью ион, ил связывающие воду. Например, кристаллизация хлорида натрия из концентрированного раствора при добавлении к нему хлорида магния; кристаллизация сульфата натрия при добавлении к его раствору спирта или аммиака. Механизм высаливания может быть различным. При добавлении к раствору электролита другого электролита с одноименным ионом произведение концентраций ионов растворенного вещества может превысить его произведение растворимости, то есть произведение концентраций этих ионов в насыщенном растворе, при этом избыток вещества выделяется в твердую фазу. В других случаях высаливание происходит вследствие изменения структуры раствора - образование гидратных оболочек вокруг частиц высаливающего вещества за счет разрушения таких оболочек у растворенного вещества. Соли, образующие кристаллогидраты, особенно с большим числом молекул воды, высаливаются сильнее, чем соли, кристаллизующиеся в безводной форме. Некоторые добавки могут приводить к всаливанию вещества, то есть увеличению его растворимости.

4) Осаждение веществ из растворов с помощью реагентов - наиболее распространенный метод кристаллизации в химической промышленности. Если при этом образуется практически нерастворимый продукт реакции, он сразу осаждается из быстро пересыщающегося раствора. Если продукт реакции растворим, его кристаллизация начинается после достижения необходимого пересыщения и продолжается по мере подачи реагента (осадителя). Примером может служить осаждение нерастворимого карбоната кальция при конверсии нитрата кальция в нитрат аммония:

Са(NO 3) 2 +(NH 4) 2 CO 3 =CaCO 3 +2NH 4 NO 3 .

Для получения катализаторов широко применяют осаждение металлов в виде нерастворимых соединений (гидроксидов, карбонатов, оксалатов и других солей) с последующим их разложением до оксидов.

5) Вымораживание применяется преимущественно для выделения отдельных компонентов из естественных рассолов, например соленых озер, при этом кристаллизацию проводят охлаждением растворов до температуры ниже 0С. Способ вымораживания используется для концентрирования растворов путем частичного удаления из них растворителя в виде льда. В этом случае кристаллизуется не соль, а растворитель - вода. Концентрируя морскую воду вымораживанием льда, получают 8% раствор соли, который используется для получения хлорида натрия.

Кристаллизация металлов

При переходе из жидкого состояния в твердое образуется кристаллическая решетка, возникают кристаллы. Такой процесс называется кристаллизацией.

Кристаллизация обусловлена стремлением системы при определенных условиях перейти к энергетически более устойчивому состоянию с меньшей свободной энергией F (рис.1.7). (рис.1.3 из ТКМ Комарова.)

Рис. 1.7 Изменение свободной энергии F металла в жидком (Fж) и твердом (Fт) состоянии в зависимости от температуры Т:

T s – теоретическая температура плавления.

Из рис.1.7 видно, что при Т > T s меньшей свободной энергией обладает вещество в жидком состоянии, а при Т < T s - в твердом.

В реальных телах как процесс кристаллизации, так и процесс плавления не может начаться при Т = T s , т.к. оба состояния (жидкое и твердое) обладают одинаковым запасом свободной энергии. Поэтому реальных телах процесс кристаллизации начнется при Т=Т кр < T s .

Разность ∆Т= T s - Т кр - называется степенью переохлаждения системы ∆Т.

При нагреве переход из твердого в жидкое состояние также начинается при определенной степени перегрева системы ∆Т.

Выделяютдва вида кристаллизации:

1) первичная - переход металла из жидкого состояния в твердое с образованием кристаллической структуры;

2) вторичная - образование новых кристаллов в твердом кристаллическом веществе.

Рис.1.8. Модель процесса кристаллизации (1с – 1 секунда, 2с – 2 секунды и т.д.)

На рис.1.8 приведена модель процесса кристаллизации.

Предположим, что на площади, изображенной на рис.1.9. за секунду возникает пять зародышей, которые растут с определенной скоростью. К концу первой секунды образовалось пять зародышей, к концу второй секунды они выросли и одновременно с этим возникло еще пять новых зародышей будущих кристаллов. Так, в результате возникновения зародышей и их роста происходит процесс кристаллизации, который, как видно в данном примере, заканчивается на седьмой секунде.

Кристаллизацию исследуют с помощью термического анализа , суть которого заключается в регистрации температуры системы через равные промежутки времени. Для этого в тигель 1 (рис. 1.9,а), с расплавленным металлом, погружают термоэлектрический термометр (термопару) 2, подключенный к регистрирующему потенциометру 3.

Рис.1.9 Кристаллизация металлов:

а – схема установки для регистрации процесса; б – кривая охлаждения и схема процесса кристаллизации (L – жидкое состояние, α – твердое состояние). 1- тигель, 2- термопара, 3 – регистрирующие потенциометр.

На основании полученных данных в координатах температура – время строят кривую охлаждения (рис. 1.9, б), которая отражает последовательность протекания процесса кристаллизации.

Верхний участок кривой охлаждения показывает понижение температуры жидкого металла. При температуре Т s , соответствующей горизонтальному участку , происходит процесс затвердевания жидкого металла. Выделение скрытой теплоты кристаллизации способствует сохранению постоянной температуры в течении всего времени, необходимого для завершения затвердевания (поэтому участок кривой охлаждения горизонтальный ). Нижний участок кривой соответствует охлаждению уже твердого металла.

На рис. 1.10 приведены кривые охлаждения металла при кристаллизации с различной скоростью охлаждения. Тонкой горизонтальной линией показано значение теоретической температуры кристаллизации Т s .

Рис.1.10 Влияние скорости охлаждения на процессы кристаллизации:

а – кривые охлаждения чистого металла; б – влияние степени переохлаждения ∆Т на скорость зарождения (СЗ) и скорость роста (СР)

Из рас. 1.10 видно, что по мере увеличения скорости охлаждения (V 1

Более 100 лет назад основоположник науки о металлах Д.К. Чернов, установил, что кристаллизация состоит из двух процессов:

1) зарождение мельчайших частиц твердого вещества – зародышей или центров кристаллизации ;

2) роста кристаллов из этих центров.

Рост кристалла заключается в том, что к поверхности зародышей присоединяются все новые и новые атомы металла. Сначала образовавшиеся кристаллы растут свободно, сохраняя правильную геометрическую форму, затем при столкновении растущих кристаллов их форма нарушается, и в дальнейшем рост продолжается только там, где есть свободный доступ к расплаву. В результате кристаллы не имеют правильной геометрической формы и называются зернами. Размер зерна зависит от СЗ и СР.

Из рис. 1.9 видно, что с увеличением степени переохлаждения ∆Т (скорости охлаждения) количество зародышей, образующихся в единицу времени, возрастает (кривая СЗ на рис. 1.10, б), а кроме того, скорость роста кристаллов также увеличивается (кривая СР на рис. 1.10, б).

Основные понятия. Во многих технологических процессах, связан­ных с обработкой твердых материалов в жидкой среде, приходится путем кристаллизации выделять в виде кристаллов растворенные в жидкости твердые вещества.

Кристаллизация представляет собой процесс выделения твердой фазы при затвердевании веществ, находящихся в жидком со­стоянии (из расплава), или процесс выделения твердого растворенного вещества из раствора. Кристаллизация является одним из важнейших способов получения твердых веществ в чистом виде.

Кристаллы представляют собой твердые химически однородные тела правильной формы. Строение кристаллов характеризуется сим­метричным расположением атомов, ионов и молекул в узлах простран­ственной решетки, которая образуется тремя взаимно пересекающимися системами плоскостей.

Кристаллы одного и того же вещества могут различаться по раз­мерам и форме. В зависимости от условий образования кристаллов ско­рость роста их по отдельным граням может быть различной, вследствие чего кристаллы, сохраняя ту же самую кристаллическую решетку, прини­мают вытянутую или плоскую форму в зависимости от температуры и вязкости среды.

Каждая из форм кристаллов остается устойчивой лишь в опреде­ленном интервале значений температуры и давления. При достижении предельных условий происходит переход одной кристаллической формы в другую, сопровождающийся тепловым эффектом; границы этого пере­хода определяются так же, как и при изменении агрегатного состояния вещества. Кроме того, каждая из кристаллических форм обладает отлич­ной, свойственной только ей упругостью паров и растворимостью.

В технологии многообразие форм кристаллов используют для полу­чения одного и того же вещества в виде кристаллов определенной формы, обладающих различными свойствами, для чего создают соответствую­щие условия кристаллизации.

Так, в зависимости от температуры кристаллизации некоторые ве­щества могут быть получены различного цвета. Например, йодная ртуть в зависимости от температуры может быть выделена в виде осадка, окра­шенного в желтый или в красный цвет. Изменяют также свой цвет при различной температуре кристаллизации хромовые соли свинца.

Форма и величина кристаллов оказывают существенное влияние на их дальнейшую обработку путем фильтрования, при котором оба эти фактора значительно влияют на скорость процесса. Известно, что чем крупнее кристаллы и отчетливее выражена их кристаллическая форма, тем эффективнее протекает процесс фильтрования.

Поэтому, например, процессы нейтрализации сернокислых раство­ров мелом необходимо проводить при определенной температуре (60-65°) и заданном соотношении реагирующих масс (равномерное и одновремен­ное приливание водной суспензии мела и нейтрализуемой жидкости), что обусловливает образование крупнокристаллического осадка сернокислого кальция (гипса) определенной гидратной формы.

Известно также, что при синтезе органических полупродуктов и красителей антрахинонового ряда нередко от способа выделения кристал­лов в значительной степени зависит успех всего . Так, на­пример, быстрое осаждение антрахинона и его производных без нагрева­ния приводит к образованию осадков, которые практически не филь­труются, а медленное осаждение в разведенной среде при кипячении раствора дает крупнокристаллические, сравнительно легко фильтруемые осадки.

Существенное влияние на кристаллизацию оказывает процесс гидратации, при котором выделяющиеся из раствора одна или не­сколько молекул растворенного вещества соединяются с одной или не­сколькими молекулами растворителя. При этом число присоединяющихся молекул растворителя может быть различным в зависимости от темпера­туры и концентрации, при которых проводится кристаллизация.

Вследствие гидратации вещество из раствора выделяется в виде кристаллогидратов определенной формы, содержащих вполне определенное количество молекул растворителя (воды), причем содер­жание кристаллизационной воды в кристаллах сказывается не только на их форме, но и на свойствах. Так, например, безводный сульфат меди CuS04 является бесцветным соединением, кристаллизующимся в виде призматических иголок ромбической системы, а пятиводный гидрат суль­фата меди CU S04-5H20 образует крупные синие кристаллы триклиниче­ской системы. При нагревании до 100° этот гидрат теряет 4 молекулы воды, а при 240° полностью теряет всю кристаллизационную воду, пере­ходя в безводный сульфат.

Кристаллогидраты обладают определенной упругостью пара. Если упругость их пара больше упругости паров воды в окружающем воздухе при данной температуре, то кристаллы при хранении на воздухе теряют кристаллизационную воду-выветриваются. Примером такого кристал­логидрата может служить глауберова соль, представляющая собой десяти - водный сульфат натрия Na2S04- 10Н20.

Наоборот, если упругость пара над кристаллогидратом меньше упру­гости паров воды в окружающем воздухе, кристалл «притягивает» из окружающего воздуха воду и постепенно «плавится». Для этих кристал­лов при хранении на воздухе содержание кристаллизационной воды должно быть таким, чтобы не нарушалась форма кристаллов. Типичным примером подобных кристаллогидратов является обыкновенная поварен­ная соль.

Равновесие фаз и растворимость. Все вещества, в том числе и твер­дые, обладают способностью в той или иной степени растворяться в раз­личных жидких растворителях. Степень растворимости и концентрацию растворов чаще всего выражают в весовых процентах растворенного вещества по отношению к общему весу раствора или в граммах растворен­ного вещества на 100 г растворителя.

Растворимость веществ зависит от их химической природы, свойств растворителя и температуры. Данные о растворимости различных ве­ществ находят опытным путем и обычно изображают в виде кривых за­висимости растворения от температуры.

Растворимость многих веществ изображается плавной кривой, без излома, причем, как правило, с повышением температуры растворимость возрастает.

Для многих веществ, образующих кристаллогидраты, кривые рас­творимости имеют изломы; растворимость таких веществ может с повы­шением температуры уменьшаться.

Определение растворимости веществ при заданных температурах имеет большое практическое значение, но надежных расчетных формул нет, и в каждом конкретном случае приходится пользоваться опытными данными.

Для вычисления растворимости негидратируемых минеральных со­лей в воде при любой температуре может быть применено правило одно­значности физико-химических функций, если известна растворимость соли при двух каких-нибудь температурах. Такие расчеты аналогичны опре­делению температур кипения растворов при различных давлениях (см стр. 422), так как основой является общее правило, выражающее линей­ное изменение физико-химических величин для подобно протекающих процессов.

Применительно к растворимости это правило может быть сформу­лировано так: отношение разности температур (/-/"), соответствующих двум различным молярным растворимостям данного вещества, к разности температур (

Таким образом, тепловой баланс процесса в общем случае может быть выражен следующим образом:

Qi + Q2"+ Qs = Q * + Qs + Qe 4- QT + Qs (3-322)

Применительно к отдельным видам кристаллизации это уравнение должно быть видоизменено.

При выпаривании с кристаллизацией Q7=0.

При кристаллизации с охлаждением водой, холодильным рассолом или воздухом Q3=0.

При вакуум-кристаллизации Q3=Q7=0.

В кристаллизаторах с охлаждением можно пренебречь потерей тепла в окружающую среду и принять Q8=0-

КРИСТАЛЛИЗАЦИЯ - образование кристаллов из газа, раствора, расплава, стекла или кристалла др. структуры (полиморфные превращения). К. состоит в укладке атомов, молекул или ионов в кристаллическую решётку . К. определяет образование минералов, льда, играет важную роль в атм. явлениях, в живых организмах (образование зубной эмали, костей, почечных камней). Путём К. получают и массивные монокристаллы, и тонкие кристаллич. плёнки , диэлектриков и металлов. Массовая К.- одноврем. рост множества мелких кристаллов - лежит в основе металлургии и широко используется в хим., пищевой и медицинской промышленности.

Термодинамика кристаллизации . Расположение частиц в кристалле упорядочено (см. Дальний и ближний порядок) , и их энтропия S K меньше энтропии S c в неупорядоченной среде (паре, растворе, расплаве). Поэтому снижение темп-ры Т при пост. давлении р ведёт к тому, что химический потенциал вещества в кристалле

становится меньше его потенциала в исходной среде:

Здесь - энергии взаимодействия частиц и уд. объём вещества в кристаллич. и неупорядоченном состояниях (фазах), S K и S С - энтропии . Т. о., кристаллич. фаза оказывается "выгоднее", происходит К., сопровождаемая выделением т.н. скрытой теплоты К.: H=T(S C -S K )0,5-5 эВ, а также скачком уд. объёма (фазовый переход первого рода). Если р10 4 атм, то член в соотношении (1) мал, и притеплота К. равна , т. е. является мерой изменения энергии связи между частицами при К. [при К. из расплава и может иметь разл. знаки].

К. при полиморфных превращениях (см. Полиморфизм )может быть фазовым переходом второго рода. В случае переходов первого рода граница раздела кристалл - среда локализована в пределах неск. межатомных расстояний, и её уд. свободная энергия >0.

Для переходов 2-го рода граница не локализована и

Условия(р, Т, С к) = (р, Т , С с) для каждого из компонентов кристалла и среды определяют связь р, Т и концентрации компонентов С , при к-рых кристалл находится в равновесии со средой, т. е. диаграмму состояния вещества. Разность , являющаяся мерой отклонения от равновесия, наз. термодинами ч. движущей силой К. Обычно она создаётся понижением темп-ры ниже равновесного значения Т 0 , т.е. переохлаждением системы на Т-Т 0 -Т . Если

Т Т 0 , то

Если давление р паров или концентрация С в растворе больше равновесных значений р 0 и С 0 , то говорят об абс. пересыщении (р=р - р 0 или С=С-С 0 ) либо относит. пересыщении (=р/р 0 или С/С 0 ). В этом случае в разреженных парах и разведённых растворах

В процессе выращивания монокристаллов из растворов обычно , из паров и при хим. реакциях 1, при конденсации молекулярных пучков 10 2 -10 4 .

К. может происходить в результате или с участием хим. реакций. Равновесное состояние смеси газов при возможной хим. реакции между составляющими её веществами A i можно обобщённо записать в виде , где - стехиометрич. коэф. (<0 для прямой реакции, >0 - для обратной). В этом случае

Здесь К - константа равновесия реакции, р i - (или концентрации, если реакция протекает в растворе). В случае электролитов

Рис. 4. Кристаллографическая плотнейшая (вверху) и пентагональная (внизу) упаковки.

Понижение темп-ры не только уменьшает работу образования зародыша, но и экспоненциально повышает вязкость расплава, т. е. снижает частоту присоединения новых частиц к зародышу (рис. 5, а). В результате I (Т )сначала достигает максимума, а затем становится столь малой (рис. 5, б) , что при низких темп-pax расплав затвердевает, оставаясь аморфным. В расплавах со сравнительно малой вязкостью это возможно лишь при очень быстром (10 6 К/с) охлаждении. Так получают аморфные сплавы металлов (см. Аморфные металлы) . В жидком гелии образование зародышей возможно не переходом системы через барьер, а туннельным просачиванием сквозь него. При выращивании крупных совершенных кристаллов на "затравках" избегают появления спонтанных зародышей, используя слабо пересыщенные растворы или перегретые расплавы. Наоборот, в металлургии стремятся получить максимальное число центров К., создавая глубокие переохлаждения (см. ниже).

Рис. 5. Температурные зависимости скорости зарождения и роста кристалла: а) сплошные кривые - температурная зависимость числа зародышей цитриновой кислоты в переохлаждённом водном растворе (темп-ры насыщения: А-62 °С, В - 85 °С); пунктир - увеличение вязкости (в пуазах) растворов с понижением Т; б) скорость роста v кристаллов бензофенона из расплава как функции Т .

Рост кристалла может быть послойным и нормальным в зависимости от того, является ли его поверхность в атомном масштабе гладкой или шероховатой. Атомные плоскости, образующие гладкую грань, почти полностью укомплектованы и содержат сравнительно небольшое число вакансий и атомов, адсорбированных в местах, соответствующих узлам кристаллич. решётки следующего слоя. Края незавершённых атомных плоскостей образуют ступени (рис. 6, в). В результате тепловых флуктуации ступень содержит нек-рое число трёхмерных входящих углов - изломов. Присоединение новой частицы к излому не изменяет энергии поверхности и поэтому является элементарным актом роста кристалла. С увеличением отношения тепловой энергии kT к поверхностной энергии (в расчёте на 1 атомное место на поверхности) плотность изломов увеличивается. Соответственно увеличивается конфигурац. энтропия и падает свободная линейная энергия ступени. При определ. отношениях (близких к 1, но несколько различных для разных граней) линейная энергия ступени обращается в 0, и ступень "размазывается" по грани, к-рая превращается в шероховатую, т. е. равномерно и плотно покрытую изломами поверхность (рис. 6, б) . Связь поверхностной энергии с теплотой К. позволяет заключить, что для веществ и темп-р, для к-рых изменение энтропии при К. таково, что S/k >4, все плотноупакованные грани - гладкие. Эта ситуация характерна для равновесия кристалл - пар, а также (для нек-рых веществ) для границы кристалл -расплав. Переход от шероховатости к огранению возможен при изменении концентрации в двухкомпонентных системах (К. из растворов). Если S/k<2 (типично для плавления металлов), то поверхности любой ориентации шероховаты. При отдельные гладкие грани сосуществуют с шероховатыми поверхностями (напр., кристаллы Ge и Si в расплавах, гранаты в расплавах и высокотемпературных растворах). Зависимость свободной энергии и скорости К. от ориентации поверхности имеет острые (сингулярные) минимумы для гладких (сингулярных) граней и округлённые (несингулярные) для шероховатых поверхностей.

Рис. 6. Атомно-гладкая (а ) и шероховатая (б ) поверхности (моделирование на ЭВМ).

Рис. 7. Концентрические ступени на грани (100) NaCl при росте из молекулярного пучка. Высота ступени 2,82 А (декорированы мелкими кристалликами специально осаждённого золота).

Рис. 8. а - Спиральная форма роста; б - ступень, оканчивающаяся на поверхности в точке её пересечения винтовой .

Присоединение нового атома в любом положении на поверхности кроме излома меняет её энергию. Заполнение немногочисленных вакансий, снижающее эту энергию, не может дать начала новому атомному слою, а концентрация атомов в местах, соответствующих узлам решётки следующего слоя, повышает энергию и поэтому мала. В результате необратимое присоединение частиц к кристаллу, т. е. его рост, возможен только когда на его поверхности есть изломы. На шероховатых поверхностях плотность изломов велика, и рост вдоль нормали к поверхности возможен практически в любой точке. Такой рост наз. нормальным. Он лимитируется скоростью присоединения отд. частиц к изломам. Его скорость R линейно увеличивается с переохлаждением на фронте К.:

Здесь а - межатомное расстояние,l 0 - расстояние между изломами, - эффективная частота тепловых , - энергия, необходимая для присоединения частиц к излому (энергия активации). Она учитывает перестройку ближнего порядка в жидкости, десольватацию строит. частиц и изломов в растворах, хим. реакции и т. д. В простых расплавах коэф. велики, что обеспечивает рост с заметной скоростью, когда переохлаждение на фронте К. Т 1К. Так, для роста Si 10 6 см/с R= (3-5)*10 -3 см/с достигается при 10 -5 К. При достаточно низких темп-pax подвижность частиц падает и скорость роста уменьшается, подобно скорости зарождения (рис. 5, б) .

Если поверхность гладкая, то изломы существуют только на ступенях, рост идёт последоват. отложением слоев и наз. послойным. Если поверхность образована лестницей одинаковых ступеней и в среднем отклонена от ближайшей сингулярной грани на угол с тангенсом р , то ср. скорость её роста вдоль нормали к этой сингулярной ориентации

где - скорость роста ступени вдоль грани, (В растворах 10 -1 -10 -3 см/с.)

Плотность ступеней определяется тем, генерируются ли они двумерными зародышами или дислокациями .Образование двумерных зародышей требует преодоления потенциального барьера, высота к-рого пропорциональна линейной энергии ступеней и обратно пропорциональна . Соответственно, скорость К. экспоненциально мала при малых Т [для роста грани (III) Si с R=(3-5)*10 -3 см/с необходимо Т 0,ЗК; см. выше]. При К. из молекулярных пучков, если есть места преимущественного образования двумерных зародышей, ступени имеют вид замкнутых колец (рис. 7). Возможно, что образование зародышей "облегчается" точками выхода на поверхность краевых дислокаций.

При росте на винтовой дислокации, образуемая ею ступень в процессе роста приобретает спиральную форму (рис. 8), т. к. в точке окончания ступени на дислокации её скорость роста равна 0. В процессе спирального роста новый слой "накручивается" сам на себя вокруг точки выхода дислокации и на поверхности возникает пологий (вицинальный) холмик роста. Часто холмики образуются группой дислокаций, суммарный вектор Бюргерса к-рых имеет в направлении нормали к поверхности составляющую Ь , равную неск. параметрам а решётки. Точки выхода этих дислокаций могут занимать на поверхности некоторую область (с периметром 2L , рис. 9, а, в) . В этом случае склон кругового вицинального холмика образует с сингулярной гранью угол с тангенсом р =b /(19r c +2h ) (рис. 9,б ). Наклоны холмиков измеряютсяметодами оптич. (рис. 10), методом цветов тонких пластинок, а иногда непосредственно визуализацией ступеней.

Рис. 9. Двухзаходная спираль, образующая вицинальный холмик вокруг точек выхода на поверхность двух дислокаций: о) общий вид холмика; б) его сечение плоскостью, перпендикулярной грани и проходящей через точки выхода дислокаций; в) спираль на грани (100) синтетического алмаза.

Рис. 10. Интерференционные полосы от вицинального холмика на грани призмы кристалла ADP (рост из водного раствора).

Радиус двумерного критяч. зародыша пропорционален линейной энергии ступени и обратно пропорционален Т . Поэтому с увеличением Т крутизна холмика р линейно увеличивается при малых Т и стремится к насыщению при больших (при L 0). Соответственно, нормальная скорость роста R квадратично увеличивается с пересыщением при малых переохлаждениях и линейно - при больших (рис. 11). Вариации вектора Бюргсрса и протяжённость L дислокац. источника определяют разброс значений скорости роста кристаллографически идентичных граней (или одной и той же грани) в одинаковых условиях. В процессе роста грани точка выхода не перпендикулярной ей дислокации смещается и может достигнуть одного из рёбер. После этого ступень исчезает. Дальше К. идёт лишь путём двумерного зарождения, и скорость роста при малых переохлаждениях падает (по крайней мере в неск. раз при К. из расплава и на неск. порядков при К. из раствора). Из-за относительно малых значений линейной энергии ступеней на границе кристалл - расплав и отсутствия проблемы доставки кристаллизующегося вещества , и Л на неск. порядков выше, чем для К. из растворов и газовой фазы.

Ввиду малой плотности газовой фазы послойная К. из неё идёт в осн. не прямым попаданием частиц на ступени, а за счёт частиц, адсорбированных на атомно-гладких "террасах" между ступенями. За время между моментами прилипания к поверхности и такая частица совершает случайные блуждания по поверхности и уходит от точки прилипания на расстояние порядка ср. пробега l s . Поэтому достичь ступени могут лишь частицы, адсорбировавшиеся вокруг неё в полосе шириной Большинство частиц, падающих на поверхность с малой плотностью ступеней, испаряются - коэф. конденсации для таких поверхностей мал. Он приближается к 1 при большой плотности ступеней, т. е. при значит. пересыщениях. По той же причине скорость К. из газовой фазы даже на одной дислокации квадратично увеличивается с пересыщением при малых пересыщениях и линейно - при больших. При конденсации молекулярных пучков ступени образуются путём двумерного зарождения в местах, где пересыщение в адсорбционном слое достигает критического, и потому ср. расстояние между ступенями определяется длиной пробега адсор-биров. частиц.

Подвод вещества к растущей поверхности и отвод от неё теплоты К. ограничивает скорость К., когда эти процессы протекают медленнее поверхностных. Такой диффузионный режим типичен для К. из расплавов и неперемешиваемых растворов. Высокая скорость К. из расплава лежит в основе всех широко используемых методов выращивания монокристаллов, в к-рых скорость К. задаётся механич. движением кристалла относительно независимо формируемого теплового поля. Кинетич. режим К., когда скорость К. лимитируется поверхностными процессами, характерен для К. из перемешиваемых растворов, из газовой фазы и роста из перемешиваемого расплава кристаллов с высокой энтропией плавления.

Рис. 11. Наклоны р вицинальных холмиков, образованных двумя разными дислокационными источниками, и задаваемые ими скорости роста грани R в зависимости от пересыщения .

Формы роста кристаллов (габитус) определяются анизотропией скорости К. и условиями тепло- и массопереноса. Кристаллы с шероховатыми поверхностями имеют обычно округлую форму. Атомно-гладкие поверхности проявляются в виде граней. Стационарная форма кристаллич. многогранника такова, что расстояние от центра до каждой грани пропорционально её скорости роста. В результате кристалл оказывается образованным гранями с мин. скоростями роста (грани с большими скоростями постепенно уменьшаются и исчезают). Они параллельны плоскостям с наиб. плотной упаковкой и наиб. сильными связями в атомной структуре кристалла. Поэтому кристаллы с цепочечной и слоистой структурой имеют игольчатую или таблитчатую форму. Анизотропия скоростей роста и, следовательно, форма роста кристалла в разл. фазах зависят от состава, Т , Т и сильно меняются под действием поверхностно-активных примесей.

Из-за большой скорости поверхностных процессов К. переохлаждение Т на атомно-шероховатых поверхностях мало, т. е. Т=Т 0 (отсюда назв. изотермы). Плотноупакованные грани с простыми индексами в случае неметаллов часто остаются сингулярными и появляются на округлом фронте К. в виде плоского среза в форме круга, эллипса или кольца (рис. 12, а) в зависимости от формы изотермы К. Темп-ра вдоль такой грани не постоянна и достигает минимума в точках, наиб. удалённых от изотермы Т=Т 0 . В этих точках наивысшего переохлаждения генерируются слои, определяющие скорость роста грани. Поэтому стационарный размер грани тем больше, чем большее Т нужно для её роста со скоростью, равной скорости округлого фронта К. в направлении вытягивания кристалла. Шероховатые и гранные поверхности захватывают разные кол-ва примесей, и кристалл с сосуществующими гранными и шероховатыми формами вырастает неоднородным (рис. 12, б) .

Рис. 12. Образование плоской грани на округлом фронте кристалла (кристалл вытягивается из расплава): а - осевое сечение кристалла с фронтом кристаллизации, вогнутым в сторону кристалла в центре и плоским по периферии; б -продольное сечение кристалла Si (периферич. область обогащена примесью).

Если Т в расплаве убывает по мере удаления от фронта К., то фронт неустойчив: случайно возникший на нём выступ попадает в область большего переохлаждения, скорость роста вершины выступа становится ещё больше и т. д. В результате плоский фронт распадается на прилегающие друг к другу пластинчатые или игольчатые кристаллы - в сечении, параллельном фронту, возникает полосчатая или ячеистая структура. Ячейки характерны для больших градиентов темп-ры и имеют обычно гексагональную форму независимо от симметрии кристалла (рис. 13). Неустойчивость не совместима с выращиванием совершенных монокристаллов, т. к. ведёт к захвату включений маточной среды. Сферич. кристалл, растущий в переохлаждённом расплаве или растворе, сохраняет свою форму, пока его радиус не достигнет критич. значения, зависящего от радиуса критич. зародыша и скорости поверхностных процессов К. В дальнейшем развиваются выступы, и кристалл приобретает скелетную (рис. 14, а, б )или дендритную форму (рис. 14, в , г ). Название последней связывается с появлением вторичных ветвей после достижения первичным выступом критич. длины.

Рис. 13. Схема ячеистой структуры фронта кристаллизации.

Рис. 14. Исходный округлый кристалл циклогексанола в расплаве (а ), начальная стадия роста скелетного кристалла (б ), дендрит (в ), дендрит при большом переохлаждении (г ).

Примесь, отталкиваемая фронтом К. из расплава, скапливается перед ним и, меняя равновесную темп-ру К., вызывает т. н. концентрац. переохлаждение, увеличивающееся по мере удаления от фронта. Если равновесная темп-pa в расплаве увеличивается с расстоянием от фронта быстрее, чем истинная, то возникает концентрационная неустойчивость. Она исчезает при достаточно высоких отношениях градиента темп-ры на фронте К. к его скорости.

Фронт К. из раствора всегда неустойчив, т. к. пересыщениеувеличивается по мере удаления от растущей поверхности. Для огранённых кристаллов характерно большое пересыщение около вершин и рёбер, причём перепад увеличивается с размером грани. При достаточно больших пересыще-нии и размере грани вершины становятся ведущими источниками ступеней роста, а в центр. частях граней возникают провалы - начинается скелетный рост (рис. 15). Ему способствуют нек-рые примеси. Неустойчивость К. из растворов подавляется интенсивным перемешиванием, снижением пересыщения, а иногда введением примесей.

Рис. 15. Скелетный кристалл шпинели.

Захват примесей. Отношение концентраций примеси в кристалле и исходном веществе наз. коэф. захвата К . При К<1 К. ведёт к очистке от примеси кристалла, при К>1 - к очистке исходной среды, К=1 соответствует сохранению концентрации. Коэф. захвата разными гранями различны и не совпадают с термоди-намич. равновесными, определяемыми диаграммой состояния. Поэтому состав кристалла отклоняется от термодинамически равновесного. Так, при лазерной или электронной импульсной рекристаллизации тонких приповерхностных слоев Si со скоростями К. до неск. м/с концентрация примесей As, Sb, In, Bi в кристалле Si превосходит равновесную в 3-600 раз, причём подавляющее большинство примесных атомов находится в узлах решётки. Это связано, во-первых, со статистич. отбором: каждый узел решётки при К. окончательно заполняется тем или иным атомом после множества попыток (от 10 6 -10 7 при скоростях 10 -3 см/с и до 10 при скоростях м/с). Во-вторых, в условиях быстрой К. не успевает протекать диффузия в расплаве.

Неравновесный захват примеси при послойном росте связан со статистич. отбором на ступенях, а также с тем, что даже равновесная концентрация примеси в поверхностном слое кристалла и торце ступени заметно отличается от объёмной. При достаточно быстром отложении слоев следующий слой замуровывает предыдущий вместе с содержащейся в нём примесью. В результате каждая грань захватывает примесь в кол-ве, отвечающем концентрации в её поверхностном слое, и кристалл оказывается сложенным из секторов роста разных граней, с разл. концентрациями примесей и др. дефектов - возникает т. н. секториальное строение кристалла (рис. 16). Количество примеси, захватываемое при движении ступени по грани, зависит от ориентации этой ступени. Поэтому сектор роста данной грани, в свою очередь, разбивается на области, отложенные вициналями разной ориентации с разным содержанием примеси (вицинальная секториальность, рис. 17).

Темп-pa и концентрация примеси на фронте К. из расплава флуктуируют из-за конвекции расплава и вращения кристалла и тигля в обычно слегка несимметричном тепловом поле. Соответствующие положения фронта К. отпечатываются в кристалле в виде полос (зонар-ное строение, рис. 16). Флуктуации темп-ры могут быть столь сильны, что рост кристалла сменяется плавлением и ср. скорость оказывается на порядок меньше мгновенной. Интенсивность конвекции и амплитуда полосчатости уменьшаются при выращивании кристаллов в невесомости.

Рис. 16. Секториальное и зонарное строение кристалла алюмокалиевых квасцов.

Рис. 17. Вицинальный холмик, образованный на грани ступенями трёх разных ориентации вокруг краевой дислокации D(a) . Разные склоны холмика захватывают разные количества примеси (б ).

Образование дефектов . Посторонние газы, растворимые в растворах и расплавах лучше, чем в кристаллах, выделяются на фронте К. Пузырьки газа захватываются растущим кристаллом, если они превышают критич. размер, убывающий с увеличением скорости роста (аналогично захватываются твёрдые частицы). При К. в невесомости конвективный отвод пузырьков от фронта К. затруднён и кристалл обогащается газовыми включениями. Специально создавая пузырьки, получают пеноматериалы. Реальные кристаллы всегда имеют зонарно и секториально распределённые примеси, к-рые изменяют параметр решётки, что вызывает внутр. напряжения, дислокации и трещины. Последние возникают также из-за несоответствия параметров решёток затравки (подложки) и нарастающего на ней кристалла. Источниками внутр. напряжений и дислокаций являются также включения маточной среды и посторонних частиц.

При К. из расплава дислокации возникают из-за термоупругих напряжений, вызванных нелинейным распределением темп-ры; при охлаждении уже выросших частей кристалла снаружи; при линейном распределении темп-ры вдоль нормали к достаточно протяжённому фронту К., если свободный температурный изгиб кристалла невозможен; наследованием из затравки. Поэтому выращивание бездислокационных кристаллов Si, GaAs, IP начинают с затравок малого диаметра и ведут в максимально однородном температурном ноле. Кристаллы могут содержать петли дислокаций размером меньше 1 мкм. Петли образуются как контуры дискообразных скоплений (кластеров) межузельных атомов (или вакансий), возникших в результате распада пересыщенного твёрдого раствора при охлаждении выросшего кристалла. Атомы примеси могут быть центрами зарождения кластеров.

Массовая К . При определ. условиях возможен одноврем. рост множества кристаллов. Спонтанное массовое появление зародышей и их рост происходят, напр., при затвердевании отливок металлов. Кристаллы зарождаются прежде всего на охлаждаемых стенках изложницы, куда заливается перегретый металл. Зародыши на стенках ориентированы хаотично, однако в процессе роста "выживают" те из них, у к-рых направление макс. скорости роста перпендикулярно стенке (геометрич. отбор кристаллов). В результате у поверхности возникает т.н. столбчатая зона, состоящая из узких кристаллов, вытянутых вдоль нормали к поверхности.

Массовая К. в растворах начинается либо на спонтанно возникших зародышах, либо на специально введённых затравках. Сталкиваясь в перемешиваемом растворе между собой, со стенками сосуда и мешалкой, кристаллики разрушаются и дают начало новым центрам К. (вторичное зарождение). Причиной вторичного зарождения могут быть также мелкие обломки нависающих над гранью слоев, "запечатывающих" плоские параллельные грани, включения маточного раствора. В металлургии используют сильные конвективные потоки, обламывающие дендритные кристаллы и разносящие центры К. по всему объёму, иногда применяют УЗ-дробление растущих кристаллов. Массовой К. очищают вещества от примеси (К<1). Массовая К. из газовой фазы (в т. ч. из плазмы) используется для получения ультрадисперсных порошков с размерами кристалликов до 10 -6 см и менее. Необходимые для этого высокие переохлаждения достигаются резким охлаждением пара смеси химически реагирующих газов или плазмы. Известен способ массовой К. капель, кристаллизующихся во время падения в охлаждаемом газе.

Лит.: Выращивание кристаллов из растворов, 2 изд., Л., 1983; Леммлейн Г. Г., Морфология и генезис кристаллов, М., 1973; Лодиз Р. А., Паркер Р. Л., Рост монокристаллов, пер. с англ., М., 1974; Проблемы современной кристаллографии, М., 1975; Современная кристаллография, т. 3, М., 1980; Чернов А. А., Физика кристаллизации, М., 1983; Гегузин Я. Е., Kаганевский Ю. С., Диффузионные процессы на поверхности кристалла, М., 1984; Морохов И. Д., Трусов Л. И., Лаповок В. Н., Физические явления в ультрадисперсных средах, М., 1984; Скрипов В. П., Коверда В. П., Спонтанная кристаллизация переохлажденных жидкостей, М., 1984.