Цитологические основы наследования. Реферат: Цитологические основы наследственности

Эукариотическая клетка (клетка грибов, растений и животных) является основной единицей живого и способна размножаться, видоизменяться и реагировать на раздражения. Она покрыта цитоплазматической мембраной, которая играет важную роль в регулировании состава клеточного содержимого, так как через нее проникают все питательные вещества и продукты секреции.

Цитоплазма находится внутри цитоплазматической мембраны, но вне ядра и представляет собой гиалоплазму (жидкую часть) и эргастоплазму (органеллы). Органеллы по строению делят на мембранные и немембранные. Мембранами образована эндоплазматическая сеть (ЭПС), заполняющая большую часть цитоплазмы, митохондрии, аппарат Гольджи и лизосомы. Существует два типа ЭПС: гранулярная, к мембранам которой прикреплено множество рибосом - мелких рибонуклеопротеидных частиц, служащих местом синтеза белка, и агранулярная, состоящая из одних только мембран.

Митохондрии – тельца величиной 0,2-5 мкм (микрометров), форма которой варьирует от сферической до палочковидной и нитевидной. Митохондрии сосредоточены в той части клетки, где обмен веществ наиболее и интенсивен. Каждая митохондрия ограничена двойной мембраной; внешний слой мембраны образует гладкую наружную поверхность, а от внутреннего слоя отходят многочисленные складки – кристы. Кристы содержат ферменты, участвующие в системе переноса электронов, которая играет важнейшую роль в превращении энергии питательных веществ в биологически полезную энергию, необходимую для осуществления клеточных функций. Полужидкое внутреннее содержимое митохондрии – матрикс – тоже содержит ферменты. Митохондрии, главная функция которых состоит в вырабатывании энергии, образно называют электростанциями клетки.

Комплекс Гольджи – компонент цитоплазмы, встречающийся почти во всех клетках, кроме зрелых спермиев и красных кровяных телец (эритроцитов), - представляет собой неупорядоченную сеть канальцев, выстланных мембранами. Обычно он расположен около ядра и окружает центриоли (немембранные органеллы цитоплазмы, играющие важную роль в клеточном делении, образуя веретено деления). Комплекс Гольджи служит местом временного хранения веществ, вырабатываемых в гранулярной эндоплазматической сети, а канальцы комплекса соединены с плазматической мембраной.

Лизосомы – группа внутриклеточных органелл, встречающихся в животных клетках, сходны по величине с митохондриями и представляют собой ограниченные мембраной тельца, которые содержат разнообразные ферменты, способные гидролизовать макромолекулярные компоненты клетки. В случае проникновения в клетку чужеродной ДНК (вируса) лизосомы выделяют в цитоплазму ферменты, расщепляющие ДНК, - нуклеазы, и тем самым выполняют защитную функцию.

Каждая клетка содержит ядро, которое служит важным регулирующим центром клетки. Ядро содержит наследственные факторы (гены), определяющие признаки данного организма, и управляет многими внутриклеточными процессами. Ядерная оболочка (кариолемма) окружает ядро и отделяет его от цитоплазмы и регулирует движение веществ из ядра и в ядро. Ядерный сок (кариоплазма) – полужидкое основное вещество ядра, в котором размещается строго определенное число нитевидных образований, называемых хромосомами. Хромосомы имеют продолговатую форму, состоят из двух хроматид с расположенной в том или ином участке перетяжкой - центромерой. Центромера делит хромосому на две части, называемые плечами хромосомы. Встречаются равноплечие хромосомы (метацентрические), неравноплечие (субметацентрические, акроцентрические). Длина хромосомы варьирует от 1 до 30 мкм. Более чем половину всей массы хромосомы составляет белок гистон, обладающий щелочными свойствами вследствие высокой концентрации в нем аминокислот аргинина и лизина. Хромосома содержит некоторое количество белка, имеющего кислотные свойства. ДНК и РНК содержатся в хромосомах в небольших, но измеримых количествах.

Гистон и ДНК объединены в структуру, называемую хроматиновой нитью, которая представляет собой двойную спираль ДНК, окружающую гистоновый стержень; она построена из повторяющихся единиц (нуклеосом), в каждую из которых входят примерно 200 пар оснований ДНК и по две молекулы каждого из четырех гистонов.

Хроматиновая нить обычно образует спираль диаметром около 25 мкм. По способности окрашиваться ядерными красителями хроматиновые нити подразделяют на две группы: эухроматин и гетерохроматин. Последний окрашивается более интенсивно.

Перед началом клеточного деления большая часть хроматина уплотняется, образуя хромосомы. Число хромосом в клеточных ядрах всех особей какого-либо вида постоянно и представляет собой один из его признаков. Зигота содержит диплоидный набор хромосом. Одинарный набор хромосом называют геномом. Набор хромосом, свойственный тому или иному виду животных называют кариотипом. Различают пары аутосом и последнюю пару половых хромосом.

В ядре находится сферическое тельце (одно или несколько), называемое ядрышком. Ядрышки исчезают, когда клетка готовится к делению, а затем появляются вновь. В ядрышках синтезируется рРНК (рибосомальная рибонуклеиновая кислота), из которой формируются частицы рибосом.

Митоз

Митоз – это непрямое деление соматических клеток, при котором каждая из двух дочерних клеток получает такое же количество и те же типы хромосом, какие имела материнская клетка. Промежуток времени между окончанием одного клеточного деления и окончанием последующего называют митотическим циклом, который подразделяется на митоз и интерфазу. Интерфаза включает тир периода. В первом периоде интерфазы, идущим вслед за прошедшим митозом и обозначаемой G1 (пресинтетическая фаза), осуществляется синтез белков иРНК. Затем следует период синтеза ДНК (фаза S - синтетическая), в течение которого количество ДНК в ядре клетки удваивается. В постсинтетический период (фаза G2) происходит синтез РНК и белков (в особенности ядерных) и накапливается энергия для следующего митоза.

Митоз делится на четыре стадии: профазу, метафазу, анафазу и телофазу. В первой стадии митоза – профазе – происходит формирование хромосом. Каждая хромосома состоит из двух хроматид, спирально закрученных друг относительно друга. Хроматиды утолщаются и укорачиваются в результате процесса внутренней спирализации.

Начинает выявляться слабо окрашенная и менее конденсированная область хромосомы – центромера. Во время профазы ядрышки постепенно уменьшаются в размерах, пока в конце концов их материал не диспергируется. Ядерная оболочка также распадается, и хромосомы оказываются в цитоплазме. В это время центриоль делится и дочерние центриоли расходятся в противоположные концы клетки. От каждой центриоли отходят тонкие нити в виде лучей; между центриолями формируются нити веретена деления. После разрушения ядерной оболочки каждая хромосома прикрепляется к нитям веретена при помощи своей центромеры.

Хромосомы выстраиваются в плоскости экватора, образуя метафазную пластинку, и начинается следующий период митоза – метафаза. Центромера делится, и хроматиды превращаются в две совершенно обособленные дочерние хромосомы. Деление центромер происходит одновременно во всех хромосомах.

Центромеры расщепляются и это уже начало анафазы. Выстроившись вдоль экватора хромосомы (сестринские хроматиды) тот час же начинают расходиться к разным полюсам клетки.

Телофаза начинается с момента достижения хромосомами полюсов. Хромосомы возвращаются в состояние, при котором видны лишь хроматиновые нити или гранулы; вокруг каждого дочернего ядра образуется ядерная оболочка. На этом завершается деление ядра, называемое кариокинезом, за которым следует деление тела клетки, или цитокинез.

У большинства типов клеток весь процесс митоза занимает один-два часа. Регулярный и упорядоченный митотический процесс обеспечивает передачу генетической информации каждому из дочерних ядер; в результате каждая клетка содержит генетическую информацию обо всех признаках организма.

Мейоз

Мейоз (от греч. уменьшение) был открыт В.Флеммингом у животных в 1882 году. Мейоз – это уменьшительное деление половых клеток (яйцеклеток и сперматозоидов). Мейоз состоит из двух клеточных делений, при которых число хромосом уменьшается вдвое, так что гаметы получают вдвое меньше хромосом, чем другие клетки тела. Отличительной особенностью первого деления мейоза является сложная и сильно растянутая по времени профаза I, в которой выделяют пять стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Лептотена (стадия тонких нитей) – начало конденсации хромосом, в целом напоминает раннюю профазу митоза, отличаясь более тонкими хромосомами и крупными ядрами. Зиготена (стадия сливающихся нитей) – сближение и начало коньюгации (попарного временного сближения гомологичных хромосом, при котором возможен обмен их гомологичными участками – кроссинговер) гомологичных (сходных) хромосом; к концу ее все гомологи объединяются в биваленты (двойни гомологичных хромосом). В пахитене (стадия толстых нитей) происходит кроссинговер. Диплотена (стадия двойных нитей, или стадия четырех хроматид) начинается взаимным отталкиванием гомологов и появлением хиазм (места соединения хроматид разных хромосом); у подавляющего большинства организмов в диплотене происходит дальнейшая спирализация хромосом и редукция числа ядрышек. Завершается обмен гомологичными участками хроматид. Для диакинеза (стадия обособления двойных нитей) характерны уменьшение числа хиазм и значительная компактность бивалентов. Биваленты гомологичных хромосом отходят к периферии ядра, так, что их легко подсчитать. На этом завершается профаза I.

Метафаза I начинается с момента исчезновения ядерной оболочки. Биваленты располагаются в экваториальной плоскости клетки. Формируется веретено деления.

В анафазе I начинается движение гомологичных хромосом к полюсам клетки. То есть именно в анафазе происходит редукция – сокращение числа хромосом.

Телофаза I характеризуется обособлением двух дочерних ядер. Ее нередко рассматривают как состояние покоя между двумя делениями мейоза интеркинез.

Второе деление мейоза происходит в обоих дочерних ядрах так же, как и в митозе. Моновалентные хромосомы (каждая из которых состоит из двух хроматид) сокращаются (профаза II) и ориентируются по экватору (метафаза II). Возникает веретено деления из ахроматиновых нитей. В стадии анафазы II хроматиды отделяются друг от друга и быстро расходятся к разным полюсам. В телофазе II происходят образование ядер, деспирализация хромосом. В результате двух последовательных делений мейоза из одной исходной диплоидной клетки образуются 4 гаплоидные генетически разнородные клетки.

Гаметогенез

Гаметогенез – это развитие половых клеток (гамет). Сперматогенез – развитие мужских гамет (спермиев). Оогенез – развитие женских гамет (яйцеклеток). Диплоидные клетки, из которых развиваются гаметы, называют оогониями и сперматогониями. Их быстрая пролиферация (разрастание) путем митоза приводит к образованию огромного количества клеток (ооцитов и сперматоцитов).

В сперматогенезе различают четыре периода: размножения, роста, созревания и формирования. В первом периоде диплоидные клетки – сперматогонии несколько раз делятся путем митоза и в последней интерфазе (премейотической) в них происходит репликация ДНК. Во втором периоде они растут и называются сперматоцитами 1-го порядка; ядро их проходит длинную профазу мейоза, во время которой совершается коньюгация гомологичных хромосом, кроссинговер и образуются биваленты. В третьем периоде происходят два последовательных деления созревания, или мейотических деления. В результате первого деления из каждого сперматоцита 1-го порядка образуются два сперматоцита 2-го порядка, а после второго деления – четыре одинаковые по размерам сперматиды; при этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды вступают в четвертый период формирования и превращаются в спермии. В результате сперматогенеза из одной диплоидной сперматогонии образуется четыре гаплоидных спермия. Сперматогенез совершается у большинства видов животных в семенных канальцах семенника.

Оогенез состоит из трех периодов: размножения, роста и созревания. В период размножения путем митозов увеличивается число диплоидных половых клеток оогоний; после прекращения митозов и репликации ДНК в премейотической интерфазе они вступают в профазу мейоза, совпадающую с периодом роста клеток, называемых ооцитами 1-го порядка. В начале периода роста (фаза медленного роста, или превителлогенез) ооцит 1-го порядка увеличивается незначительно, в его ядре происходят коньюгация гомологичных хромосом и кроссинговер. Эта фаза у ряда животных может длиться годами. В фазе быстрого роста (вителлогенеза) увеличивается объем ооцитов 1-го порядка за счет накопления рибосом и желтка. В период созревания происходят два деления мейоза; в результате первого деления образуется небольшое полярное тельце и крупный ооцит 2-го порядка. К концу периода созревания, ооциты преобретают способность оплодотворяться, а дальнейшее деление их ядер блокируется. Мейоз завершается выделением второго полярного тельца и образованием гаплоидной яйцеклетки из ооцита 2-го порядка. Полярные тельца впоследствии дегенерируются. В результате оогенеза из одной диплоидной оогонии образуются 3 направительные тельца и одна яйцеклетка с гаплоидным набором хромосом.

Оплодотворение – это слияние мужской половой клетки с женской с образованием зиготы. Самое главное в процессе оплодотворения – это слияние мужского и женского пронуклеусов. Оплодотворение – процесс видоспецифичный, то есть спермии одного вида организмов, как правило, не оплодотворяют яйца другого вида. В яйцеклетку из спермия проникает только ядро и одна из центриолей.

Спермий стимулирует яйцо к развитию; вносит гаплоидный набор хромосом в качестве отцовского генетического вклада во вновь формирующуюся зиготу; вносит в яйцо центриоль, участвующую в механизме клеточного деления (образование веретена деления).

Цитологические основы наследственности

Строение клетки . После того как был сконструирован микроскоп учёные установили, что все организмы растений и животных состоят из мельчайших частиц- клеток. Клетка является элементарной единицей строение всех живых организмов. Данные микроскопических исследований показывают, что каждая клетка содержит много органоидов которые выполняют разнообразные функции.

Снаружи клетка покрыта оболочкой или мембраной. Клеточная оболочка состоит из трёх слоёв: белки, липиды, белки, а у растительных клеток есть ещё слой из клетчатки. В оболочке клеток имеются поры, через которые осуществляется связь клетки с окружающей средой. Установлено, что клеточные мембраны обладают дифференцированной проницательностью, одни вещества пропускают, другие - нет. Клеточные мембраны придают клетке определённую форму, выполняют защитную, питательную и выделительную функции. Наиболее характерным процессом для мембран является активный транспорт веществ. Этот транспорт осуществляется с помощью белков, которой переносят различные вещества с одной стороны мембраны на другую. Под оболочкой клетки находиться гелеобразное вещество – цитоплазма, в которой располагаются органоиды: ядро, эндоплазматическая сеть, рибосомы, митохондрии, комплекс Гольджи, лизосомы, клеточный центр, а в клетках растений – также и пластиды.

В большинстве случаев ядро имеет шаровидную или овальную форму и располагается в центре клетки. Оно служит важным регулирующим центром клетки, так как в нём расположены хромосомы, определяющие признаки данного организма, и управляет многими внутриклеточными процессами. В ядре находятся сферические тельца, называемые ядрышками. Они исчезают, когда клетка готовится к делению. Предполагают, что ядрышки участвуют в синтезе рибонуклеиновых кислот.

Внутреннюю часть клетки заполняет гелеобразное вещество, которое называется цитоплазмой. Цитоплазма представляет собой сложный лабиринт из мембран, образующих эндоплазматическую сеть. Существуют два типа эндоплазматической сети: гранулярная и агранулярная. На поверхности гранулярной сети находится много рибонуклеопротеидных частиц, называемых рибосомами. Эндоплазматическая сеть увеличивает обменную поверхность клетки. По её канальцам происходит транспорт веществ внутри клетки.

Рибосомы – мелкие частицы, находящиеся в клетке как в свободном состоянии, так и прикрепленные к наружной поверхности каналов эндоплазматической сети. Они являются чистыми рибонуклеопротеидами, так как состоят только из РНК и белка. В рибосомах бактерий содержится 60-64% РНК, в рибосомах млекопитающих – 40-45%.

Каждая рибосома состоит из двух сферических субъединиц, неравных по величине и химическому составу. В рибосомах происходит биосинтез белка. Количество рибосом в клетке непостоянно и зависит от интенсивности синтеза белка.

Все живые клетки содержат митохондрии. Это небольшие тельца размером 0,2 – 5 мкм, имеющие сферическую или палочковидную форму. В клетке их может быть от несколько штук до тысячи и более. Митохондрии выполняют энергетическую функцию, поэтому они сосредоточены в той части клетки где обмен веществ наиболее интенсивен. В них синтезируется аденозинтрифосфорная кислота (АТФ), необходимая для энергетических затрат клетки.

Митохондрии имеют внутреннюю внешнюю мембраны. Внутренняя мембрана образует складки, называемые кристами. В химическом отношении митохондрии включают в себя липопротеидный комплекс. В их составе содержится также много дыхательных ферментов: оксидаза, цитохромоксидаза и др.

В составе почти всех клеток имеется комплекс Гольджи. Он представляет собой сеть канальцев, выстланных мембранами. Обычно он расположен около ядра и окружает центриоли. Комплекс Гольджи служит местом временного хранения веществ, вырабатываемых в гранулярной эндоплазматической сети.

Лизосомы – группа внутриклеточных органелл, встречающихся в клетках животных. Они представляют собой ограниченные мембранами тельца, которые содержат разнообразные ферменты, способные гидролизовать макромолекулярные компоненты клетки.

Для цитоплазмы растительных клеток характерно присутствие пластид, которые осуществляют фотосинтез, синтез крахмала и пигментов. По окраске и выполняемой функции пластиды разделяются на три группы: лейкопласты, хлоропласты и хромопласты. Пластиды размножаются путём прямого деления. Для генетиков пластиды представляют объект тщательного изучения, так как они содержат ДНК и принимают участие в передаче наследственной информации.

Строение и типы хромосом. Главными органоидами клетки, локализованными в ядре и отвечающими за хранение и передачу наследственной информации, являются хромосомы. Своё название эти органоиды получили от греческого слова хром, что в переводе означает цвет. Это указывает на интенсивное поглощение хромосомами красителей. Хромосомы можно видеть под микроскопом только в период деления клетки. Наиболее удачное время для наблюдения за хромосомами это метафаза. У большинства организмов хромосомы имеют продолговатую форму и длину от 1 до 30 мкм.

При микроскопическом анализе хромосом видны различия в их форме и величине. Каждая хромосома имеет своё индивидуальное строение. Вместе с тем можно заметить, что хромосомы имеют общие морфологические признаки.

Хромосома имеет продолговатые участки – плечи или теломеры, которые разделены центромерой. Некоторые хромосомы имеют вторичную перетяжку, которая отделяет от хромосомы небольшой участок, называемый спутником. По положению центромеры хромосомы разделяют на четыре типа: метацентрики, субметацентрики, акроцентрики и телоцентрики.

К метацентрикам относят хромосомы, у которых центромера расположена по середине. Хромосомы, у которых одно плечо значительно длиннее другого, называют субметацентриками. К акроцентрическому типу относят хромосомы, у которых одно плечо длинное, а другое представлено небольшим зачатком. Телоцентрические хромосомы имеют только одно плечо. Точно определить тип хромосомы можно по величине плечевого индекса, который вычисляют путём деления длины длинного плеча на короткое.

Длинное плечо

Плечевой индекс (П.И.) = ----------------------

Короткое плечо

К метацентрикам относят хромосомы с величиной плечевого индекса

1 - 1,9, к субметацентрикам – 2 – 4,9, к акроцентрикам – 5 и более. Для телоцентрических хромосом плечевой индекс не вычисляют, так как они имеют только одно плечо. Расположение центромеры и величина плечевого индекса служат одним из критериев классификации и идентификации хромосом.

Химический анализ хромосом показал, что в их состав входят белки сложного состава типа гистонов и протаминов и ДНК. Причём ДНК в составе хромосом находится в спирализованном состоянии в виде хроматид.

При окрашивании хромосом установлено, что они окрашиваются по всей длине не одинаково. Наблюдаются светлые и тёмные участки. Тёмно-окрашенные участки хромосом были названы гетерохроматиновыми, а светлоокрашенные – эухроматиновыми. Предполагают, что тёмноокрашенные участки – это неактивные участки где ДНК плотно спирализована.

В настоящее время разработано много методов дифференцированного окрашивания хромосом: G, C, Q, NOR и др. При дифференцированном окрашивании каждая хромосома приобретает свой специфический рисунок – чередование светлых и тёмных полос, отражающих различную функциональную активность отдельных участков хромосом. С помощью дифференцированного окрашивания можно не только идентифицировать хромосомы, но и обнаруживать различные нарушения в их строении.

В соматических клетках всех организмов содержится двойной или диплоидный набор хромосом (2n). Половые же клетки имеют одинарный или гаплоидный набор хромосом (n). Одинарный набор хромосом называется геномом.

Набор хромосом соматической клетки, свойственный данному виду организмов, называют кариотипом . Причём кариотип характеризуется не только числом хромосом, но и их формой, наличием полос при дифферен-

цированном окрашивании и другими признаками.

Кариотипы человека и других организмов

Человек 46 Кролик 44

Крупный рогатый скот 60 Осёл 62

Лошадь 64 Кошка 36

Свинья 38 Куры 78 (77)

Овца 54 Гуси 82 (81)

Собака 78 Дрозофила 8

Среди всех хромосом различают пары аутосом, одинаковых для мужских и женских особей, и одну пару половых хромосом, различающихся у мужских и женских организмов. Половые хромосомы женских особей млекопитающих обозначают буквами ХХ, а мужских ХY.

Деление клеток (митоз, мейоз). В основе роста и дифференцировки органов и тканей животных лежит размножение клеток путём их деления. Основным типом деления соматических клеток является митоз. Для митоза характерно строгое распределение генетической информации в дочерне клетки.

Схема митоза выглядит следующим образом:

2n - материнская клетка

2n 2n – две дочерние клетки

Промежуток от одного клеточного деления к другому называется клеточным циклом. Клеточный цикл состоит из интерфазы и собственно митоза. В период интерфазы, а она по продолжительности во много раз длиннее митоза, клетка активно выполняет жизненные функции, типичные для неё. В интерфазе выделяют три периода: предсинтетический (G1), синтетический (S) и постсинтетический (G2). В предсинтетическом периоде в клетке происходит активный синтез белка и других веществ, необходимых для образования клеточных структур и последующего деления. В S – периоде синтезируется ДНК и происходит формирование второй хроматиды. Таким образом, в митоз клетка вступает с удвоенным числом хромосом. В постсинтетическом периоде активность жизненных процессов в клетке снижается, клетка готовится к делению.

Вслед за интерфазой начинается деление клетки – митоз. Большинство учёных митоз разделяют на четыре фазы: профаза, метафаза, анафаза и телофаза.

Профаза. Эта фаза характеризуется постепенным уплотнением и спирализацией хромосом, в результате чего они становятся различимы под микроскопом, образуя нитевидные структуры. Видно, что каждая хромосома состоит из двух копий, расположенных рядом друг с другом и соеди-

нённых центромерой. Эти копии, пока они не разошлись, называются сестринскими хроматидами. Другим характерным событием профазы являются постепенное исчезновение ядрышка и разрушение оболочки ядра. Центриоли к концу профазы обычно расходятся к полюсам клетки. Под микроскопом в эту фазу видна сетчатая структура ядра.

Метафаза. У большинства организмов в этой фазе ядерная оболочка уже исчезла и хромосомы в сформированном виде находятся в цитоплазме. Центромеры хромосом прикрепляются нитями веретена деления к центриолям клетки. В эту фазу хромосомы собираются в плоскости, расположенной в области экватора клетки. Эта фаза митоза наиболее удобна для наблюдения и изучения хромосом.

Анафаза. Обычно это короткая стадия митоза. В эту фазу каждая центромера делится пополам. В результате сокращения нитей веретена дочерние хроматиды расходятся к полюсам клетки.

Телофаза. В этой фазе два набора хромосом группируется у противоположных полюсов клетки. Здесь они начинают раскручиваться и удлиняться, приобретая форму интерфазных хромосом. Вокруг каждого набора хромосом образуется ядерная мембрана и вновь возникают ядрышки. К концу телофазы делится цитоплазма и образуются две дочерние клетки с диплоидным набором хромосом.

Продолжительность митоза зависит от типа тканей, физиологического состояния организма и внешних факторов. Например, установлено, что во время покоя и сна животных митотическая активность различных тканей значительно выше, чем в период бодрствования.

Длительность митоза может составлять от нескольких минут до часа и более. При изучении митоза в культуре клеток человека установлено, что в среднем продолжительность фаз митоза следующая: профаза длится 60% времени, метафаза – 5%, анафаза – 5% и телофаза 30%.

Таким образом, в результате митоза из одной материнской клетки возникают две дочерние, содержащие такой же набор хромосом, как у исходной клетки. Основное биологическое значение митоза состоит в точном распределении хромосом между дочерними клетками; тем самым сохраняется преемственность хромосомного набора в ряде клеточных поколений и полноценность генетической информации каждой клетки, что необходимо для осуществления общих и специфических функций живого организма.

Мейоз – это два последовательных деления ядра, которые приводят к образованию половых клеток. Во время мейоза каждая клетка делится дважды, в то время как хромосомы удваиваются лишь один раз, в результате чего число хромосом в половых клетках оказываются вдвое меньше их числа в исходной клетке. Схема мейоза выглядит следующим образом.

2n - соматическая клетка

Редукционное деление

Эквационное деление

n n n n - половые клетки

Первое деление мейоза, которое приводит к уменьшению числа хромосом в два раза, называется редукционным, второе деление, в результате чего число хромосом не изменяется, - эквационным. Предшествующая мейозу интерфаза полностью аналогична митотической интерфазе. В ней происходит синтез ДНК и удвоение хромосом.

Редукционное деление начинается с профазы 1, которая подразделяется на пять стадий: лептонемы, зигонемы, пахинемы, диплонемы и диакинеза. В стадии лептонемы хромосомы представляют тонкие нити. Они еще деспирализованы и в 2-5 раз длиннее метафазных. Под микроскопом можно видеть, что они состоят из двух хроматид, соединенных центромерой.

На стадии зигонемы гомологичные хромосомы коньюгируют, т. е. соединяются друг с другом наподобие застёжки « молния ». Такое соединение гомологичных хромосом называется синапсом. Это важное генетическое событие, поскольку оно даёт возможность обмена участками между гомологичными хромосомами. На этой стадии под микроскопом можно видеть, что каждая хромосома состоит из двух нитей, а в комплексе образуется бивалент их четырёх хроматид. Далее на стадии пахинемы происходит утолщение хромосом, так что становятся хорошо различимы сестринские хроматиды.

На стадии диплонемы две гомологичные хромосомы почти расходятся, однако сестринские хроматиды остаются соединёнными общей центромерой. Кроме того, у гомологичных хромосом остаются одна или несколько зон контакта, которые называются хиазмами. Каждая хроматида может образовывать хиазмы с любой из хроматид гомологичной хромосомы, так что хиазмами могут быть связаны две, три или все четыре хроматиды бивалента. Число хиазм в биваленте может быть различным, но обычно не более двух - трех. Наличие хиазм свидетельствует о том, что между хроматидами происходит кроссинговер (т.е. обмен участками).

Диакенез характеризуется максимальным утолщением и спирализацией хромосом, принимающих форму коротких толстых палочек. У большинства организмов на этой стадии хиазмы перемещаются в направлении от центромер к концам хромосом и исчезают. После завершения диакенеза ядерная мембрана и ядрыщки растворяются.

После завершения профазы 1 наступает метафаза 1. В эту фазу биваленты располагают в плоскости экватора центромерами к противоположным полюсам. В анафазе 1 начинается расхождение гомологичных хромосом к противоположным полюсам, которое носит случайный характер. В телофазе 1 хромосомы достигают полюсов клетки. Вокруг них формируется ядерная оболочка и начинается деление цитоплазмы. Таким образом, в результате редукционного деления из одной клетки с диплоидным набором хромосом образуют две клетки с гаплоидным числом хромосом.

Между первой и второй стадиями мейоза имеется непродолжительный период покоя- интеркенез, во время которого не происходит синтез

ДНК и удвоения хромосом.

Эквационное деление происходит по типу митоза. Профаза 2 часто проходит очень быстро. В метафазе 2 хромосомы прикрепляются центромерами к нитям веретена и располагаются в плоскости экватора. К началу анафазы 2 каждая центромера делится и сестринские хроматиды таким образом становятся хромосомами, расходящимися затем к противоположным полюсам. Телофаза 2 завершается образованием ядерной оболочки вокруг каждого из двух гаплоидных ядер.

Таким образом, в результате двух мейотических делений из одной клетки с диплоидным набором хромосом образуются четыре клетки с гаплоидным набором. Случайный характер распределения хромосом и обмен их участками в результате кроссинговера позволяет создать новые комбинации наследственного материала в половых клетках. Кроме этого, мейоз обеспечивает поддержание постоянства числа хромосом в смежных поколених организмов.

Образование половых клеток и оплодотворение. У живых организмов размножение происходит в основном половым путём. Начало новому организму дают половые клетки – гаметы. Мужские половые клетки – сперматозоиды образуются в семенниках, а женские яйцеклетки – в яичниках. Половые клетки образуются из соматических в результате сложных процессов в мейозе. Процесс образования мужских половых клеток называется сперматогенезом, а женские – оогенезом.

Соматическая клетка, из которой образуются женские половые клетки, называется сперматоцитом первого порядка. В результате редукционного деления из него формируются два сперматоцита второго порядка с гаплоидным числом хромосом. Далее происходит эквационное деление, в результате которого каждый сперматоцит первого порядка делится с образованием двух клеток. Таким образом, в результате двух делений образуются четыре сперматида, которые в процессе формирования превращаются в полноценные сперматозоиды.

Сперматозоиды состоят из головки, шейки и хвоста. Головка содержит ядро и очень небольшое количество цитоплазмы. Сперматозоиды способны передвигаться в половых путях самки. Эти клетки образуются в придатках семенников непрерывно в течении всей жизни животного, начиная с момента полового созревания.

Яйцеклетка образуется из ооцитов первого порядка в процессе мейоза. При первом деления из ооцита образуются две гаплоидные клетки – ооцит второго порядка и полярное тельце. Причём эти клетки не равноценны. Ооцит второго порядка намного крупнее, так как эта клетка содержит почти всю цитоплазму материнской клетки. Полярное тельце включает хромосомы и очень небольшое количество цитоплазмы. Далее ооцит второго порядка делится, образуя крупную клетку, - оотид и полярное тельце. Полярное тельце полученное при первом делении также делится. Оотид в процессе формирования и созревания превращается в полноценную яйцеклетку, а полярные тельца в дальнейшем развитии не участвуют.

Таким образом, в результате двух последовательных делений из ооцита первого порядка образуется одна полноценная яйцеклетка с гаплоидным набором хромосом и три полярных тельца. Образование яйцеклеток у самок животных происходит при их половом созревании и протекает циклично.

Половые клетки участвуют в процессе оплодотворения. Оплодотворение – это слияние мужских и женских половых клеток, в результате чего восстанавливается диплоидный набор хромосом и начинается развитие нового организма.

Процесс оплодотворения видоспецифичный или избирательный. Это значит, что в норме яйцеклетка оплодотворяется сперматозоидом своего вида. Это закреплено процессом эволюции и не допускает смешения видов в природе. Кроме этого, оплодотворение носит случайный характер, т. е. яйцеклетка может быть оплодотворена любым из попавших в половые пути самки сперматозоидом.

Как исключение, в природе иногда наблюдается развитие организмов без оплодотворения. Это явление получило название партеногенеза. При партеногенезе получают потомство, полностью похожим на родительский организм. Различают две формы партеногенеза – андрогенез и гиногенез. При андрогенезе получают особей только мужского пола, при гиногенезе – женского. Используя явление партеногенеза Астаурову удалось решить проблему регуляции пола у тутового шелкопряда. В природе партеногенез встречается у низших форм (ракообразные, перепончатокрылые и др.), а из высших это явление обнаружено у птиц (индейки).

  1. Молекулярные основы наследственности (2)

    Тесты >> Биология

    ... основы наследственности Свойство организмов обеспечивать материаль­ную и функциональную преемственность между поколениями а) изменчивость б) пенетрантность в) наследственность ... с хромосомами группы D Цитологические параметры Y-гоносомы (исключите неверный...

  2. Генетика и наследственность . Конспект лекций

    Конспект >> Биология

    Году). Литература: основная – 1,2,3; дополнительная – 7,8,9 2.Цитологические основы наследственности . -роль основных элементов клетки в сохранении... при оплодотворении; Тема лекции: Цитологические основы наследственности Вопросы: 1. Роль основных элементов...

  3. Генетика. Биоэкология. Методологические основы генетики. Курс лекций

    Конспект >> Биология

    Разделяется на две субъединицы. Лекция 5. ЦИТОЛОГИЧЕСКИЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ Вопросы: Строение и типы хромосом Кариотип... именно хромосомы представляют собой материальную основу наследственности . Происходящее при дигибридном скрещивании независимое...

Цитогенетика и материальные основы наследственности.

Согласно положению клеточной теории (Рудольф Вирхов), новая клетка может появиться только из клетки. Новое поколение при делении клетки от своих родителей получает все признаки, формирующие его организм. Изучением строения материальных структур наследственности и изменчивости и их функционированием занимается особый раздел генетики – цитогенетика .

Основной предмет исследований цитогенетики - хромосомы, их организация, функционирование и наследование. При классическом цитогенетическом анализе проводят одновременно цитологическое (микроскопическое) исследование хромосом и генетический анализ наследования признаков. Цитогенетику подразделяют на общую, в которую включают также популяционную и радиационную цитогенетику, и частную - цитогенетику растений, цитогенетику животных и цитогенетику человека (в том числе медицинскую цитогенетику).

Однако, в передаче наследственных признаков участвуют не только хромосомы, но и другие клеточные структуры. Такое наследование называется внехромосомной (цитоплазматической) наследственностью и ее изучает раздел генетики, называемый клеточной генетикой . При изучении материальных основ наследственности используются не только методы генетики и цитологии, но, и методы молекулярной биологии, цитохимии, кариологии и др.

Роль хромосом в наследовании признаков была определена далеко не сразу, да и установление того факта, что в каждой клетке живого организма обязательно присутствие хромосом заняло продолжительный период. Первые исследования хромосом начались более 100 лет назад с помощью обычного светового микроскопа.

Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872г. швейцарский ботаник Карл Вильгельм Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum) и традесканции (Tradescantia). Однако его рисунки не позволяют однозначно утверждать, что Карл Нэгили видел именно хромосомы.

В том же 1872 году ботаник Эдмунд Руссов привел свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum) и пыльцы лилии (Lilium bulbiferum). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления.

Некоторые исследователи полагают, что первыми увидел хромосомы немецкий ботаник Вильгельм Фридрих Хофмайстер задолго до К.Нэгили и Э.Руссова, еще в 1848-1849 гг. При этом ни К.Нэгили, ни Э.Руссов, ни тем более В. Хофмейстер не осознавали значения того, что видели.

В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 г., а их первооткрывателем - немецкого анатома Вальтера Флеминга. Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге «Клеточное вещество, ядро и деление клетки» ("Zellsubstanz, Kern und Zelltheilung") собрал и упорядочил сведения о них, дополнив результатами собственных исследований (рис. 1).

Рисунок из книги В.Флемминга, изображающий разные стадии деления клеток эпителия саламандры (W.Flemming. Zellsubstanz, Kern und Zelltheilung. 1882г.)

В книге он описал непрямое деление ядра и привел много детальных рисунков. Ввел термины хроматин и митоз.

Термин «хромосома» был предложен немецким гистологом Х.Вальдейером в 1888г., «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

Цитогенетика как наука сформировалась в начале 20 века. После переоткрытия в 1900г. законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902г. Теодор Генрих Бовери (Германия) и в 1902-1903 гг. Уолтер Саттон и Эрнест Генри Вильсон (США) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Они пришли к заключению, что именно хромосомы являются материальными носителями факторов наследственности, открытых Г. Менделем и позднее названных генами.

Т.Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У.Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.

В 1903 г. Сеттон в 1903 впервые использовал термин «цитогенетика».

В 1907 году американским исследователем К. Мак-Клонгом были открытыполовые хромосомы . Это событие было первым успехом применения микроскопа для решения задач генетики. Идентификация половых хромосом остается начальным этапом цитогенетического исследования всякого биологического объекта.

На начальных этапах развития изучались геномы, растений, низших животных, прокариот и вирусов. Цитогенетика человека и млекопитаю­щих, занимающая ведущее место в современной цитогенетике, развилась позже, главным образом в связи с методи­ческими трудностями.

Рассмотрим современные представления о макроструктуре хромосом . Прежде всего, необходимо отметить, что организация структур, отвечающих за наследственность у прокариотических и эукариотических организмов имеет отличия. В эукариотических клетках информация, необходимая для поддержания вида и нормального развития индивидуума, содержится в хромосомах, заключённых в клеточных ядрах, а у бактерий и сине-зеленых водорослей хромосомный материал, находится непосредственно в цитоплазме без ядерной оболочки.

Важная особенность хромосом заключается в их способности изменять свою структуру в зависимости от фазы клеточного цикла. Хромосомы как индивидуаль­ные структуры становятся доступными для исследова­ния после значительного уко­рочения и утолщения, кото­рые они испытывают в период подготовки клетки к деле­нию. Для соматических клеток таким делением является митоз, для генеративных - сначала митоз, а затем мейоз.

Хромосомы в этом состоянии представляют собой компактные палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом имеется перетяжка (первичная хромосомная перетяжка Х.п.), которая делит хромосому на два плеча. В области перетяжки расположена важная для удвоения хромосом структура, называемая центромерой (рис. 2).



Рисунок 2.

Центромера – это особое образование, к которому прикрепляются нити веретена деления. Участки хромосомы, разделенные центромерой, называются плечами. Длинное плечо хромосомы обозначают буквой q , короткое - буквой p .

У некоторых хромосом имеются вторичные перетяжки - морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. Эти зоны называют зоны ядрышка (организаторы ядрышка). У человека вторичные перетяжки имеют 9, 13, 14, 15, 21 и 22 хромосомы.

Некоторые хромосомы имеют сателлит (спутник) - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Концевые зоны хромосом называются теломерами. У позвоночных теломеры состоят из богатых G повторов ДНК-последовательностей (TTAGGG) и специфических белков, создающих эти специализированные структуры. Взаимодействуя со многими другими факторами в клетке, теломеры способствуют динамичной регуляции поддержания стабильности хромосом.

В зависимости от морфологии выделяют 4-х типа хромосом:

Метацентрические (V-образные хромосомы, обладающие плечами равной длины);

Субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

Акроцентрические- резко неравноплечие (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

Телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце).

Рис. 3. Типы метафазных хромосом: а - метацентрическая; б - субметацентрическая; в - акроцентрическая; г- телоцентрическая: 1 - короткое плечо; 2 - центромера; 3 - длинное плечо

Хромосомы различаются не только по морфологии, но и по величине. Размеры хромосом растений и животных колеблются от долей микрона до десятков микрон (0,2-50). Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон, диаметр от 0,2 мкм (или 200 А). Длина каждой определенной хромосомы относительно постоянна. Таким об­разом, каждая хромосома индивидуальна. Учитывая морфологию и величину хромосом, в клетке их можно точно идентифицировать, а для удобства изучения при­сваивать им определенные номера, что и было сделано для хромосом человека и некоторых других организмов.

Совокупность хромосом соматической клетки, определяемую их числом, величиной и формой, называют кариотипом. Хромосомы, несущие генетическую информацию, ответственную за развитие соматических признаков, называют аутосомами . В то время как последнюю пару хромосом, связанную с генетикой пола, называют половыми хромосомами или гоносомами . Для обозначения половых хромосом у различных видов используются различные символы (буквы), зависящие от специфики определения пола таксона (различные системы половых хромосом). Так, у большинства млекопитающих женский кариотип гомогаметен, а мужской гетерогаметен, соответственно, запись половых хромосом самки XX, самца - XY. У птиц же самки гетерогаметны, а самцы гомогаметны, то есть запись половых хромосом самки ZW, самца - ZZ. Например, нормальный кариотип женщины: 46, XX; нормальный кариотип мужчины 46, XY.

При проведении кариологических исследований кариотип систематизируют, т.е. располагают хромосомы по форме и размерам. Кроме диплоидного числа хромосом в кариотипе часто обозначают число хромосомных плеч. Для его определения подсчитывают число двуплечих хромосом (мета- и субметацентрических); иногда при определении Ч.х.п. двуплечими считают и телоцентрические хромосомы, применяя обозначение (NF). chromosome arm number, NF - число хромосомных плеч.

Для кариотипа используется запись в системе Международной цитогенетической номенклатуры (International System for Cytogenetic Nomenclature) ISCN 1995, имеющая следующий формат:

1.количество хромосом

2.половые хромосомы

3. особенности.

Положения хромосомной теории были развиты Т. Морганом и его школой. Согласно этой теории передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Основателями классической генетики являются Томас Хант Морган, Кэлвин Бриджес, Алфред Генри Стёртевант и Герман Джозеф Мёллер, чьи экспериментальные работы с плодовой мушкой (D. melanogaster) позволили сформулировать

основные положения хромосомной теории наследственности:

1.Кариотип вида постоянен (количественная, морфологическая, характеристика хромосом). Постоянство кариотипа обеспечивается механизмами митоза и мейоза;

2. Группы сцепления генов соответствуют определенным парам хромосом;

3. Индивидуальная структура хромосом постоянна, ее мутационные изменения наследуются;

4. Гены в хромосомах располагаются линейно. В ходе мейоза происходит рекомбинация между гомологичными хромосомами.

Эти выводы были опубликованы в 1915г. в книге «Механизмы Менделевского наследования» («The mechanisms of mendelian heredity»). В 1933г. за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине.

Положения хромосомной теории Т.Х. Моргана могут быть дополнены основными законами поведения хромосом у эукариот:

1. В кариотипе все хромосомы, исключая половые, парные, т.е. гомологичные . Половые хромосомы, в силу того, что они отличаются морфологически, называют гемилогичными ;

2. Хромосомы каждой пары индивидуальны отличаются от других пар своими размерами и строением;

3. Хромосомы в ходе редукционного деления распределяются независимо, то есть при созревании половых клеток хромосомы разных пар распределяются в дочерние клетки независимо от других пар;

4. Закон постоянства числа хромосом : при митотических делениях сохраняется в дочерних ядрах то же число хромосом, что и в исходном ядре. При мейозе и образовании гамет число хромосом уменьшается вдвое, но после оплодотворения восстанавливается количество хромосом, характерное для данного вида.

В случае мейоза, диплоидный набор потомства состоит из пар гомологичных хромосом, имеющих одинаковые генный состав, размеры и структуру. Однако, этот набор хромосом уже смешанный, половина хромосом пришла от матери и вторая половина от отца. Дальнейшие процессы приводят к развитию зиготы в сложный многоклеточный организм. Весь процесс развития, при котором диплоидные клетки делятся и дифференцируются (образуют различные ткани и органы) представляет собой реализацию генетической и пространственной информации.

Если бы гаплоидный набор был совершенно одинаковым, то организмы несли бы идентичный набор хромосом и не отличались по этому набору от своих родителей. Тогда различия между рыбами сводилась бы исключительно к влиянию внешней среды (того водоёма), в котором они обитают. В действительности же картина более сложна.

В настоящее время выделяют три уровня организации наследственных структур у различных организмов (генный, хро­мосомный, геномный). Для понимания закономерностей наследственно­сти исследования направлены по трем направлениям:

1) изучение морфологии и химического строения хромо­сом и кариотипа в целом;

2) выделение дискретных признаков организма, контролируемых единичными генами («инвента­ризация» единиц наследственной изменчивости);

3) определение локализации генов в хромосомах (сцепление генов и кар­ты хромосом). По каждому из этих разделов накоплено много данных, их интенсивная разработка продолжается как в теоретическом, так и прикладном (клиническом) ас­пектах.

Для понимания основных свойств и поведения хромосом необходимо изучение их тонкой структуры и химической природы.

Химический состав и микроструктура хромосом .

С химической точки зрения хромосома представляет собой нитевидную двуспиральную молекулу дезоксирибонуклеиновой кислоты (ДНК). Химический анализ хромосом показывает, что помимо ДНК, в хромосому включаются РНК и несколько низкомолекулярных основных белков – гистонов, а также и сложный кислый белок, называемый остаточным белком.

В хромосомах присутствуют также кальций, магний, железо и некоторые микроэлементы, роль которых ещё окончательно не выяснена. Можно в хромосоме найти и различные ферменты, в том числе ДНК - полимеразу, который участвует в репликации ДНК. ДНК-полимераза активируется ионами магния и возможно ионами марганца. Комплекс ДНК - гистон является основной структурной единицей хромосомы.

Основной вопрос заключался в том, каким образом молекула ДНК, достигающая в растянутом виде значительной длины упаковывается в процессе деления в компактные структуры - хромосомы?

Первоначально изучение структуры хромосом проводилось на делящихся кле­тках в профазе, так как тонкие хромосомы начинают в этот период утолщаться, конденсиро­ваться. В ранней профазе хромосомы имеют вид тонких двойных нитей, которые получили название сестринские хроматиды . В метафазе они представлены в виде укороченных и утолщенных образований и в свето­вом микроскопе видно, что хромосомы состоят из 4 нитей, ко­торые были названы полухроматидами (хромонемами). Поэтому первоначально существовала гипотеза, по которой каждая хромосома состоит из многих нитей - хромонем (многонитчатая модель хромосомы). Согласно этой модели, общее число нитей в хромосоме - 64. Диаметр тончайшей нити составляет около 30 А. Много­нитчатая структура хромосомы представлена на рисунке 5.

Рисунок 5. Схема микроскопической, субмикроскопической и молекулярной организации хромосомы (многонитчатая модель)

Другая гипотеза, которая подтвердилась в настоящее время, предполагала, что хромосома состоит только из одной нити, которая по мере подготовки к митозу претерпевает процесс спирализации. В ходе профазы спирализация распространяется по всей хромосоме, достигая макси­мума в метафазе. Поэтому в метафазе хромосомы выглядят очень компактными.

Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры (рис. 6).

Рисунок 6. Схема строения метафазной хромосомы: 1 - морфология; 2 - внутренняя структура хроматиды, видимая при использовании специальных методов ослабления спирализации.

В телофазе наступает деспирализация хромонем, и в интерфазе хромонемы оказываются максимально рас­крученными. Характер спирализации и деспирализации хромосом в митотическом цикле представляет законо­мерный процесс (цикл спирализации, рис. 7).

Рисунок 7. Схема спирализации хромонем в митотическом цикле: 1 - интерфаза, хромонемы сла­бо спирализованы (остаточные спирали); 2, 3, 4 - профаза, усиление спирализации хромонем, образование двух хроматид; 5 - прометафаза, проявление че­тырех полухроматид; 5 - метафаза, максимальная спирализация, выявляются как большая, так и малая спираль; 7 - ана­фаза; 8 - телофаза (одна из до­черних хромосом), деспирализация хромонем.

Со степенью спирализации хромосом связано их дифференциальное окрашивание по длине. При фиксации и окраске основными красителями разные участки (районы) дают разную реакцию. Одни участки интенсивно окрашиваются - их назвали гетерохроматиновыми . Гетерохроматиновые участки хромосомы называются хромомеры . Положение их в каждой хромосоме постоянно, а в разных хромосомах - различно.

Другие участки хромосом окрашиваются слабо - они названы эухроматиновыми . Эухроматиновые участки в интерфазе деспирализуются, что указывает на их более высокую метаболическую активность, т.е. глыбки хроматина в интерфазном ядре представ­ляют собой не что иное, как гетерохроматиновые участки хро­мосом.

В хромосомах гетерохроматин располагается вне области центромеры. Половые хромосомы состоят почти полностью из гетерохроматина. Гетерохроматиновые и эухроматиновые нити представляют нити диаметром 25 нм.

Белки, участвующие в спирализации хромосом – гистоны, являются основными белками, так как содержат большой процент (20-30%) положительно заряженных аминокислот – аргинина и лизина. Гистоны взаимодействуют с ДНК, которая имеет отрицательный заряд благодаря отрицательно заряженным фосфатным группам.

У всех высших растений и животных в спирализации ДНК участвует 5 белков-гистонов, имеющих обозначение Н1, Н2А, Н2В, Н3 и Н4. Гистоны отсутствуют только в сперматозоидах некоторых организмов. Их функцию выполняют основные белки – протамины. Содержание гистонов в клетках соответствует их молярному соотношению: 1 Н1:2 Н2А: 2 Н2В: 2 Н3: 2 Н4.

Гистоны отличаются по молекулярной массе и аминокислотному составу. Гистон Н1 богат лизином (29%), гистоны Н2а и Н2в богаты как лизином, так и аргинином, а гистоны Н3 и Н4 богаты аргинином.

Гистоны формируют основные структурные единицы хромосом - нуклеосомы. Четыре гистона Н2А, Н2В, НЗ и Н4 образуют октамерный белковый комплекс (Н2А, Н2В, НЗ, Н4)2, который называют «нуклеосомный кор» (от англ. nucleosome core). Молекула ДНК «накручивается» на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеотидов).

Отдельные нуклеосомы связывает линкерная ДНК. В среднем линкерная ДНК составляет 60 пар (от 15 до 100) нуклеотидных остатков. Молекулы гистона H1 связываются с ДНК в межнуклеосомных участках (линкерных последовательностях) и защищают эти участки от действия нуклеаз (рис. 8).

В ядре каждой клетки присутствует около 60 млн. молекул каждого типа гистонов, а общая масса гистонов примерно равна содержанию ДНК, т.е. количество ДНК и гистонов в хроматине эквивалентно.

Рис. 8. Структура нуклеосом. Восемь молекул гистонов (Н2А, Н2В, НЗ, Н4)2 составляют ядро нуклеосомы, вокруг которого ДНК образует примерно 1,75 витка.

Аминокислотные остатки лизина, аргинина и концевые аминогруппы гистонов могут модифицироваться: ацетилироваться, фосфорилироваться, метилироваться или взаимодействовать с белком убиквитином (негистоновый белок). Модификации бывают обратимыми и необратимыми, они изменяют заряд и конформацию гистонов, а это влияет на взаимодействие гистонов между собой и с ДНК. Активность ферментов, ответственных за модификации, регулируется и зависит от стадии клеточного цикла. Модификации делают возможными конформационные перестройки хроматина.

В зависимости от степени спирализации и ее формы различают разные формы хромосом, в зависимости от степени конденсации. Одни хромосомы подвергаются циклу спирализации и деспирализации равномерно по всей длине на протяжении клеточного цикла. Другие - преимуще­ственно состоят из гетерохроматина в течение всего жизненного цикла клетки, в том числе и в интерфазе, находятся в сильно спирализованном состоянии, а потому сильнее окрашиваются. Морфологию таких хромосом можно изучать в течение всего жизненного цикла клетки, а не только в период ее деления.

Например, дифференциация хромосом по длине хорошо видна на гигантских хромосомах. Гигантские хромосомы в 100-200 раз длиннее обычных и содержат в 1000 раз больше хромонем, чем обычные метафазные хромосомы большинства соматических и половых клеток.

Впервые гигантские (политенные) хромосомы бы­ли обнаружены Е. Бальбиани в 1881 г. в слюнных железах личинок мотыля (сем. Chironomidae). В дальнейшем оказалось, что такая структура хромосом характерна для ядер ряда со­матических клеток личинок двукры­лых - клеток кишечника, мальпигиевых сосудов, слюнных желез, а также найдена у некоторых ра­стений (в антиподах и синергидах) и у простейших.

Гигантские хромосомы возникают при политении. Политения – процесс, при котором репродукция хромосом происходит без увеличения их числа в клетке. В этом случае 2 хромонемы после девяти последовательных удвоений образуют около 1000 нитей, плотно прилегающих друг к другу. Хромонемы гигантских хромосом постоянно находятся в ча­стично и неравномерно деспирализованном состоянии, что обу­словливает увеличение длины хромосом в 100-200 раз. Типич­ные гигантские хромосомы можно наблюдать в слюнных же­лезах личинок дрозофилы (род Drosophila) (рис. 9, а). Строение и морфологические особенности этих хромосом видны в клет­ках при малом увеличении даже без специальной обработки на временных тотальных препаратах, но особенно хорошо - на окрашенных ацетокармином.

Рисунок 9. Относительные размеры хромосом в ядрах клеток слюнных желез (гигантские) и в клетках ганглия (митотические) дрозофилы; Примеры политенных хромосом

Например, если в любой соматической клетке хирономуса можно сосчитать 8 хромосом, то в клетке слюнной железы их только 4, так как одинаковые по морфологии и размеру хромосомы (одна отцовская, а другая материнская) обладают способностью объединяться, конъюгировать (соматическая конъюгация), что увеличивает еще больше толщину гигантских хромосом.

Другая особенность политенных хромосом состоит в том, что хромомеры многочисленных хромонем, плотно прилегая друг к другу, создают утолщения - диски, которые при окрашивании бывают более темными. Диск представляет собой участок плотно сложенной хроматиновой нити (хромомера). В световом микроскопе они выглядят в виде лент, поперечно исчерченных из-за чередования по всей длине интенсивно окрашенных участков (дисков) и светлых (междисковых) пространств (рис. 9, б). Хромомера политенной хромосомы содержит один или более генов в неактивном состоянии.

Размер и морфология дисков сильно варьируют, но для каж­дой хромосомы они постоянны и служат прекрасными маркерами при распознавании - идентификации хромосом (рис. 10). Между дисками хорошо видна политенность хромосомы.

Рисунок № 10. Участок политенной хромосомы с дисковой стрктурой(а) и образованием пуфа (б).. Схема иллюстрирует возникновение пуфа путем деконденденсации четырех хроматиновых нитей, уложенных в хромомере (в).

Строение дисков изменяется в онтогенезе, что связано с функционированием хромосом. Так наблюдается попеременное набухание и разрыхление дисков - образование так называемых пуфов (рис. 10, б). Гигантские пуфы некоторых специфических дисков названы кольцами Бальбиани. Процесс образования пуфов представляет собой деконденсацию хроматиновых нитей, упакованных в диске (рис. 10, в) и является обратимым. В цитогенетике появление пуфов рассматривается в качестве морфологического выражения транскрипционной активности генов.

Другой моделью, на которой можно познакомиться с тон­ким строением хромосом и их функционированием, являются хромосомы типа «ламповых щеток» . Вид этих хромосом дейст­вительно напоминает ершик, которым моют стеклянные про­бирки. Отдельные участки этих хромосом сильно вытянуты и образуют симметричные петли, перпендикулярные оси хромосомы (рис. 11). Такое состояние хро­мосом встречается в ооцитах рыб, амфи­бий, рептилий и птиц .

Рисунок 11. Схема строения от­дельной петли, хромо­сомы типа «ламповых щеток».

В отличие от гигантских хромосом «лам­повые щетки» не являются политенными, а содержат сильно деспирализованные хромонемы. Предполагают, что большая сте­пень деспирализации связана с повы­шением метаболической активности хро­мосом в процессе роста ооцитов.

Тонкий электронномикроскопический анализ показал, что каждая хромонема по оси образует серию хромомер, из которых и выходят боковые петли - деспирализо­ванные хромонемы, толщина их в самых тонких участках оказывается равной 100-200 А.

Характеристика кариотипов

Каждому виду организмов свойствен определенный кариотип. Кариотипы организмов могут содержать от 2-х хромосом у малярийного плазмодия до 1000 - у радиолярий. Примеры кариотипов приведены на рисунке 4.

Рисунок 4. Кариотипы разных видов растений и животных, изо­браженные в одном масштабе: 1 - диатомовая водоросль (Сосconcis placenttila); 2 - муха (Drosophila melanogaster); 3 - сложноцветное (Crepis capillaris); 4 - саранчовое (Gomphocerus rufus); 5 - жук (Gerris lateralis).

При изучении кариотипа парные (гомологичные) хромосомы располагают рядом. Примеры диплоидного числа хромосом у некото­рых животных и растений приведены в таблице 1-2.

Таблица 1. Животные

Plasmodium malariae малярийный плазмодий
Hydra vulgaris гидра пресноводная
Lumbricus terrestris дождевой червь
Bombyx niori тутовый шелкопряд
Pieris brassicae капустная белянка
Cyprinus carpio Сазан
Perca fluviatilis Окунь
Triturus vulga Тритон
Lacerta agili ящерица прыткая
Columba livia Голубь
Callus gallus курица домашняя
Lepus cuniculus Кролик
Bos taurus крупный рогатый скот
Anthropopithecus sp. Шимпанзе
Homo sapiens Человек

Таблица 2. Растения

Если сравнивать число и размер хромосом у человека и у других видов организмов, то можно увидеть огромные отличия. Например, у коровы, размер генома которой примерно равен геному человека, имеется 60 пар хромосом. У шпорцевой лягушки содержится всего 18 хромосом, но даже самые маленькие из них больше, чем самые крупные хромосомы человека. У птиц, наоборот, число хромосом достигает 40 и более и все они очень небольшие по размерам. Таким образом, количество хромосом в кариотипе не связано с уровнем ор­ганизации животных и растений: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Сравниваются кариотипы не только по числу хромосом, но и по массе ДНК. Применяемая единица измерения – пикограмм. 1 пг = 10 -12 г.

Считается, число и морфология хромосом в отдельных случаях могут служить показателем филогенетического родства видов . На этом принципе строится кариосистематика.

Хотя, сходство кариотипа указывает на родственные связи организмов, о днако, и в пределах вида генетический материал претерпевает изменения (например, перекомбинации при мейозе), поэтому потомство отличается от родителей, хотя и несёт только генетические особенности, заложенные в хромосомах родителей.

Разнообразие кариотипов связано также с тем, что у некоторых организмов имеются добавочные к диплоидному набору хромосомы. Так, у ряда животных помимо крупных хромосом обнаружены очень мелкие «точечные» хромосомы. В отличие от хромосом нормального диплоидного набора, которые принято называть А-хромосомы, добавочные хромосомы назвали В-хромосомы . В-хромосомы часто называют необязательны­ми, и долгое время данный тип хромосом оставался загадкой. В настоящее время В-хромосомы обнаружены у 80 видов животных и 256 видов растений (кукуруза, рожь, пресноводные тубеллярии, некоторые насекомые).

Впервые, В-хромосомы были обнаружены Эрнестом Вильсоном в 1905 г. у клопа Matepodius terminalis.

Свойства В-хромосом:

1. По размерам меньше хромосом основного набора;

2. Более интенсивно окрашиваются, т.к. имеют больше хроматина;

3. Присутствие не обязательно; наличие (отсутствие) в кариотипе не сказывается на фенотипе (однако их накопление в количестве больше 10, может вызывать депрессию роста, снижение плодовитости, различные аномалии в свойствах и признаках);

4. Не гомологичны А-хромосомам, в анафазе мейоза часто не наблюдается их равномерного распределения, поэтому в дочерние клетки может попасть неравномерное их число, что вызывает изменчивость кариотипа по числу В-хромосом (у кукурузы Zea mays их количество в клетке может варьировать от 1 до 34.);

5. В-хромосомы не содержат никакого генетического материала, т.е. не имеют экспрессирующихся генов с существенными для жизни организма функциями;

6. Для некоторых видов растений характерно явление сома­тической элиминации, т.е. В-хромосомы, например у растений, могут неизменно обнаруживаться в микроспороцитах, но не в клетках корня;

7. Обладают способностью к увеличению своего количества в последующих поколениях при половом размножении;

8. Как правило, В-хромосомы встречаются у малохромосомных видов.

Другая разновидность хромосом обнаруживается в кариотипе самок высших животных, они получили название тельца Барра. Тельца Барра – это половой, или Х-хроматин (вторая, неактивная половая хромосома). Величина телец Барра около 1 мкм. Они прокрашиваются всеми основными ядерными красителями более интенсивно, чем остальные хроматиновые структуры ядра. Тельца Барра наблюдаются в интерфазных ядрах соматических клеток самок плацентарных, включая человека.

Локализация Х-хроматина в ядре различна. В большинстве тканей он находится на внутренней поверхности ядерной оболочки и может иметь треугольную, плоско-выпуклую, трапециевидную, U-образную или гантелевидную форму. В веретеновидных и палочковидных ядрах Х-хроматин располагается на одном из полюсов ядра. Реже Х-хроматин располагается на ядрышке или в нуклеоплазме, при этой локализации он обладает сферической формой и трудно отличим от других хромоцентров, имеющих такой же размер, но неспецифических для пола.

СБОРНИК ЗАДАЧ

«Медицинская генетика»

«Основы медицинской генетики»

Протокол № от « » 2011 г.


Решение.

Тема: «Закономерности наследование признаков»

Таблица 1.1 Количественные закономерности образования гамет и расщепления гибридов при разных типах скрещивания

Сколько типов гамет, и какие именно образуют организмы со следующими генотипами: а) aabb, б) AaBB, в) AaBb, г) AAbbCC, д) AabbCC, е) AaBbCc?

Решение.

а) Гомозиготы, согласно формуле N= 2 n , образуют один тип гамет (2 0 = 1):

б) Гетерозиготы по одному признаку дают два типа гамет (2 1 = 2):

в) Гетерозиготы по двум признакам дают четыре типа гамет (2 2 = 4):

г) Гомозиготы дают один тип гамет (2 0 = 1):

д) Гетерозиготы по одному признаку дают два типа гамет (2 1 = 2):

е) Гетерозиготы по трем признакам дают восемь типов гамет (2 3):

G ABC aBC AbC ABc abC Abc aBc abc

Гетерозиготы по n признакам дают 2 n типов гамет (см. табл. 1.1.)

Моногибридное скрещивание.

  1. У человека ген полидактилии (многопалость) доминирует над нормальным строением кисти.

а) Определите вероятность рождения шестипалых детей в семье, где оба родителя шестипалые гетерозиготы.


Решение.

P: ♀Aa x ♂Aa

F: AA; Aa; Aa; aa

75% шестипалые 25% пятипалые

б) В семье, где один из родителей имеет нормальное строение кисти, а второй шестипалый, родился ребенок с нормальным строением кисти. Какова вероятность рождения детей с патологией?

Решение.

Генотипы родителей:

Генотип ребенка: аа

Так как ребенок рецессивная гомозигота и унаследовал по одному гену от каждого из родителей, то шестипалый родитель – гетерозигота Аа.

P: ♀aa x ♂Aa

50% шестипалые 50% пятипалые

  1. У человека ген кареглазости доминирует над геном голубоглазости. Определите и запишите в генном выражении вероятность рождения голубоглазых детей в следующих случаях:

а) оба родителя гомозиготны по признаку кареглазости;

б) оба родителя гетерозиготны;

в) один родитель гетерозиготен, а другой – голубоглазый.

3. Галактоземия (нарушение углеводного обмена, связанное с неспособностью усваивать молочный сахар) наследуется как аутосомный рецессивный признак. Успехи современной медицины позволяют предупредить развитие болезни и избежать тяжелых последствий нарушения обмена.

Какова вероятность рождения больных детей в семье, где они из супругов гомозиготен по гену галактоземии, но развитие болезни у него было предотвращено диетой, а второй гетерозиготен по галактоземии?

4. Афибриногенемия (отсутствие фибриногена плазмы, что обусловливает осложнение кровотечений, заканчивающихся часто смертью) наследуется как рецессивный аутосомный признак. В семье у здоровых родителей родился ребенок с признаками афибриногенемии.

Какова вероятность рождения здорового ребенка?

5. Наличие седой пряди в волосах обусловлено доминантным аутосомным геном. Определите генотипы родителей, если у матери имеется седая прядь волос надо лбом, а у отца – нет; из двух детей в семье, один имеет седую прядь, а другой нет.

6. Болезнь Вильсона (нарушение обмена меди, которая в избытке откладывается в печени, мозге, почках, роговице и ряде других органов, развивается цирроз печени, происходят дегенеративные изменения ткани мозга, нарушается перенос глюкозы, заболевание начинается в 10-15 лет) наследуется как рецессивный аутосомный признак. Какова вероятность рождения больных детей в семье, где один из супругов страдает анализируемым заболеванием, а другой здоров, здоровы были также его родители, братья и сестры?

7. Муж и жена гетерозиготны по гену альбинизма (альбинизм – признак рецессивный). У родителей родилась двойня. Какова вероятность того, что оба ребенка будут альбиносами, если:

а) однояйцевая двойня;

б) разнояйцевая двойня.

8. Слияние нижних молочных резцов наследуется как аутосомный доминантный признак. В одной семье у первенца обнаружили, что нижние резцы срослись. Родители не помнят, была ли у них эта аномалия.

Определите возможные генотипы родителей и для каждого варианта высчитайте вероятность рождения ребенка без аномалии.

Дигибридное скрещивание.

1. У человека ген карих глаз доминирует над голубыми глазами, а умение владеть правой рукой – над леворукостью.

а) Какими могут быть дети, если их родители гетерозиготны по обеим парам генов?

Решение.

Генотипы родителей АаВв

Фенотипы – кареглазые, правши

P: ♀ АаВв х ♂ АаВв

G: АВ, Ав Ав, Ав

аВ, ав аВ, ав

кареглазые правши А – В – 9/16 – 56,75%

кареглазые левши А – вв – 3/16 – 18,75%

голубоглазые правши ааВ – 3/16 – 18,75%

голубоглазые левши аавв – 1/16 – 6,25%

б) Какими могут быть дети, если отец левша, но гетерозиготен по цвету глаз, а мать голубоглазая, но гетерозиготна в отношении умения владеть руками.

Решение.

Отец – Аавв кареглазый левша

Мать – ааВв голубоглазая правша

P: ♀ ааВв х ♂ Аавв

G: аВ, ав Ав, ав

F1: АаВв, ааВв, Аавв, аавв

карегл, голуб, карегл, голуб,

правша правша левша левша

в) Голубоглазый правша женился на кареглазой правше. У них родились дети: кареглазый левша, голубоглазый правша.

Определить вероятность рождения в этой семье голубоглазых детей, владеющих левой рукой.

Решение.

Отец – ааВ

Мать – А – В –

Дети – А – вв

Так как один из детей голубоглазый, то мать –Аа; второй из детей – левша, то родители по гену В будут гетерозиготы Вв.

P: ♀ АаВв х ♂ ааВв

G: АВ, Ав аВ


Вероятность рождения голубоглазых левшей аавв – 12,5%

2. Светловолосый кареглазый мужчина из семьи, все члены которой имели карие глаза, женился на голубоглазой темноволосой женщине, мать которой была светловолосой. Какой фенотип можно ожидать у детей? Светлые волосы и голубые глаза – признаки рецессивные.

3. Арахнодактилия наследуется как аутосомный доминантный признак. Леворукость – признак рецессивный. Определить вероятность проявления патологии и какой рукой при этом будут владеть дети, если отец имеет паучьи пальцы, аномалию унаследовал от отца, и правша (в его семье левшей не было). Мать нормальна по обоим признакам, но ее отец был левша.

4. Миоплегия – периодически повторяющиеся параличи, связанные с потерей мышечными клетками калия (проявляются в возрасте 20-40 лет) наследуется по аутосомно доминантному типу. Альбинизм наследуется по аутосомно рецессивному типу. Какова возможная вероятность проявления двух патологий одновременно, если в семье, где мать и отец страдают миоплегией, по гену альбинизма – нормальны, родился ребенок альбинос? По гену минплегии до 20-40 лет картина не ясна.

5. Аниридия – отсутствие радужной оболочки глаза, сопровождающая помутнением роговицы и хрусталика, снижением зрения, наследуется как аутосомно доминантный признак. Отсутствие веснушек – признак рецессивный. Какова вероятность рождения детей с нормальным зрением в семье, где один из родителей страдает аниридией, а другой нормален, если известно, что у больного родителя эту аномалию имел только отец. Веснушки имеет мать, аномалию унаследовала от своей матери.

Полигибридное скрещивание.

1. Близорукий (доминантный признак) левша (рецессивный признак) вступает в брак с женщиной, нормальной по обоим признакам. Известно, что у обоих супругов были братья и сестры, страдавшие фенилкетонурией (слабоумие из-за избытка фенилаланина в крови при отсутствии фермента, необходимого для превращения этой аминокислоты в тирозин), но сами они нормальны в отношении этого признака. В их семье первый ребенок был нормален в отношении всех трех признаков, второй был близоруким левшой, третий оказался больным фенилкетонурией.

а) Определите генотипы родителей и всех троих детей.

б) Определите вероятность того, что четвертый их ребенок будет нормален по всем трем признакам.

2. Полидактилия, близорукость и отсутствие малых коренных зубов передаются как доминантные аутосомные признаки.

а) Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают всеми тремя недостатками, но гетерозиготны по всем трем парам генов?

б) Определите вероятность рождения детей без аномалий в семье, о которой известно следующее. Мать по линии жены была шестипалой, а отец – близорукий. В отношении других признаков они нормальны. Дочь же унаследовала от своих родителей обе аномалии. Мать по линии мужа не имела коренных зубов, имела нормальное зрение и пятипалую кисть. Отец нормален в отношении всех трех признаков. Сын унаследовал аномалию от матери.

3. Некоторые формы катаракты и глухонемоты у человека передаются как аутосомные рецессивные признаки. Отсутствие резцов и клыков верхней челюсти также может передаваться как рецессивный признак.

а) Какова вероятность рождения детей со всеми тремя аномалиями в семье, где оба родителя гетерозиготны по всем трем парам генов?

б) Какова вероятность рождения детей со всеми тремя аномалиями в семье, где один из родителей страдает катарактой и глухонемотой, но гетерозиготен по третьему признаку, а второй супруг гетерозиготен по катаракте и глухонемоте, но страдает отсутствием резцов и клыков в верхней челюсти?

Исаак Ньютон

«Примеры учат лучше, чем теория».

Жила на свете кошечка

Притворна и смела

И шерстка у ней рыжая,

Пушистая была.

К ней котик черный, гладенький

Нередко приходил,

И разговоры нежные

С той кошкой заводил.

В положенные сроки

Родилось шесть котят,

Слепые, гладкошерстные

И вечно есть хотят.

Три самки многоцветные,

Три рыженьких самца…

Пусть, мать гомозиготная,

А генотип отца?

В F2 же катавасия:

Есть кошки двух мастей

И двух мастей есть котики

Пушистых часть детей…

Объясните полученные результаты с помощью генетической схемы.

Неполное доминирование.

1. Талассемия (анемия Кули) обусловлена расстройством синтеза нормального гемоглобина. Кроме нарушения морфологии эритроцитов (мишеневидная форма), наблюдается в различной степени выраженная желтуха, изменения в скелете (череп башенного типа) и др. Гомозиготы по гену талассемии в 90-95% случаев гибнут в раннем возрасте, у гетерозигот заболевание проходит в относительно легкой форме. Наследование аутосомное с неполным доминированием.

Решение.

Талассемия – А, А≥а

Нормальный синтез гемоглобина – а

а) Какова вероятность рождения здоровых детей в семье, где оба родителя страдают легкой формой талассемии?

P: ♀ Aa × ♂ Aa

F1: AA; Aa; Aa; aa

смертельный легкая форма здоровы

исход 50% 25%

б) Какова вероятность рождения здоровых детей в семье, где один из супругов страдает легкой формой талассемии, а другой нормален в отношении анализируемого признака?

P: ♀ Aa × ♂ aa

легкая форма здоровы

2. Акаталазия (отсутствие каталазы – окислительно-восстановительный фермента в крови и тканях; при этом заболевание в юношеском возрасте развиваются язвы на деснах, приводящие к выпадению зубов) обусловлена редким аутосомным геном. Исследование активности каталазы показали, что у гетерозигот она лишь несколько понижена.

а) У обоих родителей и единственного сына в семье активность каталазы оказалась пониженной против нормы. Определите вероятность рождения в семье детей без аномалии.

б) Определите вероятные фенотипы в семье, где один из супругов страдает акаталазией, а другой имеет лишь пониженную активность каталазы.

3. Серповидноклеточная анемия (изменение нормального гемоглабина А на S-гемоглабин, в результате чего эритроциты принимают форму серпа) наследуется как неполностью доминантный аутосомный ген. Заболевание у гомозиготных особей приводит к смерти обычно до полового созревания, гетерозиготные особи жизнеспособны, анемия у них чаще проходит в легкой форме. Интересно, что малярийный плазмодий не может использовать для своего питания S-гемоглобин. Поэтому люди, имеющие эту форму гемоглобина, не болеют малярией.

а) Какова вероятность рождения детей, устойчивых к малярии, в семье, где один из родителей гетерозиготен в отношении серповидноклеточной анемии, а другой нормален в отношении этого признака?

4. Семейная гиперхолестеринемия характеризуется неполным доминированием. У гетерозигот это заболевание выражается в высоком содержании холестерина в крови; у гомозигот по гену гиперхолестеринемии кроме высокого содержания холестерина развиваются ксантомы (доброкачественная опухоль) кожи и сухожилий, атеросклероз.

а) Определите возможную степень развития гиперхолестеринемии у детей в семье, где оба родителя имеют лишь высокое содержание холестерина в крови.

б) Определите вероятность рождения детей с аномалией и степень ее развития в семье, где один из родителей, кроме высокого содержания холестерина в крови, имеет развитые ксантомы и атеросклероз, а другой нормален в отношении анализируемого признака.

5. Цистинурия – наследственное заболевание, связанное с образованием цистиновых камней в почках, наследуется как аутосомный рецессивный признак. Но у гетерозигот наблюдается лишь повышенное содержание цистина в моче, у гомозигот по гену цистинурии – образование цистиновых камней в почках.

а) Определите возможные формы проявления цистинурии у детей в семье, где один супруг страдал почечнокаменной болезнью, а другой имел лишь повышенное содержание цистина в моче.

б) Определите возможные формы проявления цистинурии у детей в семье, где один из супругов страдал камнями почек, а другой – нормален в отношении анализируемого признака.

6. У человека имеется летальный ген, обусловливающий в гетерозиготном состоянии брахидактилию, т.е. укорочение средней фаланги пальцев (неполное доминирование). У гомозигот этот ген является причиной аномального развития скелета. Дети, гомозиготные по этому гену, рождаются без пальцев и с другими нарушениями в развитии скелета, приводящими к смерти в раннем возрасте.

а) Какова вероятность того, что у двух, страдающих брахидактилией супругов, родится нормальный ребенок?

б) Каково соотношение фенотипов следует ожидать у потомков от брака нормальной женщины и страдающего брахидактилией мужчины?

7. Ген, определяющий курчавость волос неполностью доминирует над геном, определяющим прямые волосы. У гетерозигот отмечаются волнистые волосы. Альбинизм – признак рецессивный с полным доминированием. У родителей, имеющих нормальную пигментацию и курчавые волосы, родился ребенок альбинос с гладкими волосами. Каковы генотипы родителей и каких детей можно ожидать от этого брака в дальнейшем?

Сверхдоминирование.

1. Редкий в популяции ген а вызывает у человека наследственную анафтальмию (отсутствие глазного яблока). У гомозигот по гену А отмечается нормальное развитие глазного яблока; у гетерозигот отмечается макрофтальмия – увеличение размеров глазного яблока; у гомозигот по гену а – анафтальмия.

а) Определите развитие глазного яблока у детей, если у родителей отмечается макрофтальмия.

б) Определите развития глазного яблока у детей, если мужчина с увеличенными размерами глазного яблока женится на женщине с нормальными глазами.

Кодоминирование.

Примером кодоминирования является АВ (IV) группа крови.

Комплементарность

1. Глухота у человека может быть обусловлена рецессивными генами d и е, лежащими в разных парах хромосом. Для нормального слуха в генотипе человека должны присутствовать доминантные гены из разных аллельных пар – D и Е. Ген D отвечает за нормальное развитие слуховой улитки, а ген Е – за нормальное развитие слухового нерва.

а) Определить вероятность рождения глухих детей в семье, где оба родителя гетерозиготны по обеим парам генов.

б) Определить вероятность рождения детей с нормальным слухом, если один из супругов слышащий и гетерозиготен, а у другого – недоразвитие улитки и нормальное развитие слухового нерва (гомозиготен).

в) Глухая женщина (DDee) вступает в брак с глухим мужчиной (ddEE). Будут ли глухими их дети?

г) Определить вероятность рождения глухих детей в семье, где родители имеют разную форму глухоты.

2. Глухонемые супруги Ивановы имели 2 глухонемых детей, а глухонемые супруги Петровы – 3 глухонемых. После смерти жены Иванов женился на вдове Петрова. От этого брака родилось 3 детей, все с нормальным слухом.

а) Напишите генотипы супругов Ивановых, супругов Петровых и их детей от первого и второго браков.

б) Сын от второго брака, Иванов-Петров, женился на девушке с таким же генотипом, как у него. Укажите вероятность рождения глухонемых детей в этой семье.

в) Второй сын из семьи Ивановых-Петровых женился на глухонемой девушке – племяннице своей матери. Какова вероятность рождения глухонемых детей у этих супругов?

г) Дочь супругов Ивановых-Петровых вышла замуж за глухонемого юношу, который родился с нормальным слухом, но потерял его вследствие перенесенного заболевания. В его семье никогда не было глухонемых. Какова вероятность рождения глухих детей в этой семье?

Ответы.

а) В данной задаче представлены разные формы глухонемоты. ААвв – родители и дети в одной семье; ааВВ – родители и дети в другой семье. АаВв – дети от второго брака.

в) 50% (генотип мужа АаВв, жены – ааВВ).

г) Нулевая. Все дети должны получить от отца нормальные гены, необходимые для развития органа слуха. Его глухота – не наследственной природы, а фенокопия данной болезни.

3. Синтез интерферона у человека зависит от двух генов, один из которых находится в хромосоме 2, а другой – в хромосоме 5.

а) Назовите форму взаимодействия между этими генами.

б) Определите вероятность рождения ребенка, не способного синтезировать интерферон, в семье, где оба супруга гетерозиготны по указанным генам.

Эпистаз

1. Так называемый бомбейский феномен состоит в том, что в семье, где отец имел

I группу крови, а мать III, родилась девочка с I группой. Она вышла замуж за мужчину со II группой крови, и у них родилось две девочки: первая с IV, вторая –

с I группой крови. Появление в третьем поколении девочки с IV группой крови от матери с I группой крови вызвало недоумение. Однако в литературе было описано еще несколько подобных случаев. Некоторые генетики склонны объяснять это явление редким рецессивным эпистатическим геном, способным подавлять действие генов, определяющих группу крови А и В.

Принимая эту гипотезу:

а) Установите вероятные генотипы всех трех поколений, описанных в бомбейском феномене.

б) Определите вероятность рождения детей с I группой крови в семье первой дочери из третьего поколения, если она выйдет замуж за такого по генотипу мужчину, как она сама.

в) Определите вероятные группы крови у детей в семье второй дочери из третьего поколения, если она выйдет замуж за мужчину с IV группой крови, но гетерозиготного по редкому эпистатическому гену.


Полимерия

1. Рост человека контролируется тремя парами генов, которые взаимодействуют по принципу полимерии. Самые низкорослые люди имеют все рецессивные гены и рост 150 см, самые высокие – все доминантные гены и рост 180 см.

а) Определите рост людей, гетерозиготных по всем трем парам генов роста.

б) Низкорослая женщина вышла замуж за мужчину среднего роста. У них было четверо детей, которые имели рост 165 см, 160 см, 155 см и 150 см. Определите генотипу родителей и их рост.

2. У человека цвет кожи определяется в основном двумя неаллельными генами. Четыре доминантных аллеля А 1 А 1 А 2 А 2 определяют черный цвет кожи, а четыре рецессивных аллеля а 1 а 1 а 2 а 2 – белый цвет кожи. Мулаты могут иметь темную, смуглую и светлую окраску кожи.

а) Сколько фенотипических классов по цвету кожи может быть у детей от брака двух смуглых мулатов, гетерозиготных по двум парам аллелей.

б) Можно ли ожидать рождения более темных детей от светлых родителей?

Пенетрантность

В настоящее время накоплено немало примеров, когда доминантные гены не всегда проявляются в виде признаков и свойств организма. Вероятность реализации гена в фенотипе Н.В. Тимофеев-Ресовский (1927 г.) предложил назвать пенетрантностью. Пенетрантность выражается процентом особей, у которых данный ген проявился в виде признака или свойства.

1. Определите вероятность рождения детей различных фенотипов в семье, где один из родителей носитель доминантного аутосомного гена арахнодактилии, а второй нормален. Известно, что пенетрантность этого гена составляет 30%.

Решение.

Если бы пенетрантность гена арахнодактилии составляла 100%, то вероятность детей в этой семье была бы равной:

Р: аа х Аа

норма арахнодактилия

0,5 норма 0,5 арахнодактилия

Однако арахнодактилия проявляется только у 30% детей – носителей этого гена. Следовательно, арахнодактилия будет только у 15% всех детей (0,5 ∙ 0,3 = 0,15). Остальные 85% детей будут с нормальными пальцами.

Ответ: 15% - арахнодактилия, 85% - норма.

2. Врожденный сахарный диабет обусловлен рецессивным аутосомным геном d с пенетрантностью у женщин 90%, у мужчин – 70%. Определите вероятность фенотипов детей в семье, где оба родителя являются гетерозиготными носителями этого гена.

Решение.

Очевидно, что вероятность получить этот рецессивный ген в гомозиготном состоянии у девочек и мальчиков будет 25% (0,25):

F 1: DD, Dd, Dd: dd

¾ здоровы ¼ диабетики

(потенциальные)

Однако в силу различной пенетрантности этого гена у девочек и мальчиков соотношение фенотипов среди девочек и мальчиков окажется разным. Вероятность сахарного диабета у девочек окажется 22,5% (0,25 ∙ 0,9 = 0,225), у мальчиков 17,5% (0,25 ∙ 0,7 = 0,175). Так как вероятность рождения мальчиков и девочек примерно одинакова (0,5), то вероятность появления диабетика в этой семье равна 20% (0,225 + 0,175) ∙ 0,5 = 0,2. Следовательно, вероятность фенотипов детей в этой семье составляет 80% здоровых и 20% диабетиков.

Ответ: 80% здоровы, 20% диабетики.

3. В брак вступили нормальные мужчина и женщина, в семьях которых один из родителей страдал врожденным псориазом (чешуйчато-корковые поражения кожи). Определите вероятность фенотипов детей в семье, если пенетрантность гена псориаза составляет 20%.

4. Определите вероятность рождения нормальных детей в семье, где оба родителя с аниридией (отсутствие радужной оболочки глаза) и происходят из семей, в которых один из супругов имел эту аномалию. Известно, что пенетрантность этого гена около 80%.

5. У человека птоз (опущение века) определяется аутосомным рецессивным геном с пенетрантностью 60%. Определите вероятность рождения детей различных фенотипов в семье, где оба родителя являются гетерозиготными.

6. Отосклероз (очаговое поражение косточек среднего уха, способное вызвать глухоту) наследуется как доминантный аутосомный признак с пенетрантностью 30%. Определите вероятность фенотипов детей в семье, где оба родителя гетерозиготны по этому гену.

7. Кареглазый мужчина, страдающий ретинобластомой (злокачественная опухоль глаза), мать которого была голубоглазой и происходила из благополучной семьи, а отец – кареглазым и страдал ретинобластомой, женился на женщине, все предки которой были здоровыми. Какова вероятность появления в этой семье голубоглазых детей с ретинобластомой, если пенетрантность этого гена – 60%?

Закон Харди-Вайнберга

Генные болезни

При решении ситуационных задач 1-7 определить:

А) название заболевания,

Б) тип наследования,

В) причины возникновения,

Хромосомные болезни

ЛИТЕРАТУРА

Основная:

1. Заяц, Р.Г. Основы общей и медицинской генетики: учебное пособие / Р.Г.Заяц, И.В.Рачковская. – Минск: Вышэйшая школа, 1998. – 255 с.

2. Орехова, В.А. Медицинская генетика: учебное пособие / В.А.Орехова, Т.А.Лашковская, М.П.Шейбак. – Минск: Вышэйшая школа, 1997. – 123 с.

Дополнительная:

  1. Болгова, И.В. Сборник задач по общей биологии / И.В.Болгова. – Москва: Оникс, 2005. – 256 с.
  2. Бочков, Н.П. Медицинская генетика / Н.П.Бочков, А.Ф.Захаров, В.И.Иванов. – Москва: Медицина, 1984. – 368 с.
  3. Каминская, Э.А. Общая генетика /Э.А.Каминская. – Минск: Вышэйшая школа, 1992. – 352 с.
  4. Карузина, И.П. Учебное пособие по основам генетики / И.П.Карузина. – Москва: Медицина, 1980. – 224 с.
  5. Медицинская биология и общая генетика: тесты для студентов / Р.Г.Заяц [и др.]; под общ. ред. Р.Г.Заяц, В.Э.Бутвиловский, И.В.Рачковская, И.И.Жигунов, В.В.Давыдов. – Минск: МГМИ, 2001. – 301 с.
  6. Морозов, Е.И. Генетика в вопросах и ответах / Е.И.Морозов, Е.И.Тарасевич, В.С.Анохина. – Минск: Университетское, 1989. – 288 с.
  7. Песецкая, Л.Н. Практикум по генетике / Л.Н.Песецкая. – Минск: Сэр-Вит, 2005. – 80 с.
  8. Материалы государственных программ.

Интернет-ресурсы:

1. Генетика человека - Википедия - Режим доступа:ru.wikipedia.org

2. Генетика человека. Медицинская генетика. Клиническая генетика. – Режим доступа: eurolab. ua

3. Генетика человека. – Режим доступа: images.yandex.by

СБОРНИК ЗАДАЧ

для самостоятельной работы по учебным дисциплинам

«Медицинская генетика»

«Основы медицинской генетики»

Составитель Судас Елена Ивановна, преподаватель медицинской генетики, высшая квалификационная категория по специальности «Преподаватель»

Рассмотрено на заседании цикловой комиссии общемедицинских дисциплин

Протокол № от « » 2011 г.

Председатель цикловой комиссии


Тема: «Цитологические основы наследственности»

1. В культуре тканей человека в одной из клеток во время ненормального митоза дочерние хромосомы одной из коротких хромосом (№21) попали в одно ядро в результате не расхождения, кроме того, произошла элиминация (гибель или удаление) другой хромосомы (№15). Сколько хромосом будут иметь дочерние клетки?

Решение.

В результате не расхождения сестринских хроматид 21-й хромосомы в той клетке, куда они попали, будет три хромосомы № 21, но не будет хватать одной хромосомы № 15, в результате общее число хромосом в этой клетке будет 46. А в другой клетке, которая не получит одну хромосому № 21 и одну хромосому № 15, будет 44 хромосомы, так как в нормальных клетках человека 46 хромосом.

  1. Могут ли в яйцеклетке женщины, имеющей 23 хромосомы, 22 быть отцовскими?
  2. Человек имеет 46 хромосом. Сколько хромосом в сперматоцитах 1-го порядка?
  3. Сколько функционирующих гамет образуется в норме из 100 первичных сперматоцитов? 100 вторичных ооцитов?
  4. Во время ненормального мейоза в исходной клетке человека одна пара гомологичных хромосом отошла к одному полюсу (нерасхождение). Сколько хромосом оказалось в каждой клетке, образовавшейся в результате мейоза?
  5. Сколько бивалентов имеется в метафазе I у человека?
  6. Укажите хромосомную формулу женской яйцеклетки.
  7. Укажите хромосомные формулы мужских сперматозоидов.
  8. Закончите формулу оплодотворения и укажите пол будущего ребенка ♀ 22 А + Х ∙ ♂ 22 А +Y.
  9. Закончите формулу оплодотворения и укажите пол будущего ребенка ♀ 22 А + Х ∙ ♂ 22 А +Х.
  10. Объясните, почему количество хромосом в диплоидном наборе всегда представлено четным числом.
  11. В чем значение митоза в передаче наследственной информации?
  12. Проведите сравнительный анализ процессов митоза и мейоза. Назовите принципиальные отличия и черты сходства.
  13. Какое значение имеют процессы конъюгации, кроссинговера и свободного перекомбинирования хромосом в мейозе?
  14. Укажите отличия спермато- и оогенеза.
  15. Почему половые клетки должны иметь гаплоидный, а не диплоидный набор хромосом? Представьте, что они диплоидны. Каковы возможные последствия?