Эссе на тему значение периодического закона. Значение периодической системы и периодического закона Д

Периодическая система элементов оказала большое влияние на последующее развитие химии.

Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, по и явилась могучим орудием для дальнейших исследований.

В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид, да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы эка-алюминием и экасилицием.

В течение следующих 15 лет предсказания Менделеева блестяще подтвердились: все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия; вслед за тем в Швеции Л. Ф. Нильсоном был открыт скандий, имевший свойства экабора, и, наконец, спустя еще несколько лет в Германии К. А. Винклер открыл элемент, названный им германием, который оказался тождественным экасилицию.

Чтобы судить об удивительной точности предвидения Менделеева, сопоставим предсказанные им в 1871 г. свойства экасилиция со свойствами открытого в 1886 г. германия:

Открытие галлия, скандия и германия было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу. Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно - над магнием, так что его оксид должен иметь формулу, откуда атомная масса бериллия получается равной десяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида.



Точно <гак же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Например, цезию раньше приписывали атомную массу 123,4. Менделев же, располагая элементы в таблицу, нашел, что по своим свойствам цезий должен стоять в главной подгруппе первой группы под рубидием и потому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса цезия равна 132,9054.

И в настоящее время периодический закон остается путеводной нитью и руководящим принципом химии. Именно на его основе были искусственно созданы в последние десятилетия трансурановые элементы, расположенные в периодической системе после урана. Один из них - элемент № 101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы - закона перехода количества в качество.

Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

Разработанная в XX веке теория строения атома в свою очередь дала периодическому закону и периодической системе элементов новое, более глубокое освещение. Блестящее подтверждение нашли пророческие слова Менделеева: «Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие».

Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в. - физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева (атомный номер) является мерой электрического заряда атомного ядра этого элемента, номер горизонтального ряда (периода) в таблице определяет число электронных оболочек атома, а номер вертикального ряда - квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

Периодический закон - фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс. Определения

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса» .

С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).

В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов» .

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании»

В многоэлектронных атомах, как и в атоме водорода, состояние каждого электрона можно характеризовать квантовыми числами. Межэлектронное отталкивание приводит к тому, что энергия электронов, имеющих одно и то же значение n, но разные значения l, становится различной. Последовательность заполнения е подуровней определяется принципом наименьшей энергии, принципом Паули и правилом Хунда.
Принцип наименьшей энергии : заполнение электронами АО происходит в порядке возрастания их энергии. Установлена энергетическая диаграмма для различных АО в много-е нейтральных атомов, находящихся в основном состоянии(с наименьшей энергией). Правило Клечковского : энергия АО возрастает в соотв. с увеличением n+l. При одинаковом значении суммы энергия меньше у АО с меньшим значением n.
Принцип Паули : в атоме не м.б. 2 е с одинаковым значением 4х квантовых чисел. Этот набор значений полностью определяет энергетическое состояние е. 2 е, находящихся на одной АО называются спаренными. Общее число орбиталей на эн. уроне со зн. n = n*2. Следовательно, max электронная емкость = 2n*2.
Правило Хунда определяет последовательность заполнения АО е в пределах одного подуровня и гласит: При данном значении l (в пределах 1 подуровня) в основном состоянии электроны располагаются т.о., что значение суммарного спина атома max(на подуровне должно быть max число неспаренных e).
Распределение е по разл. АО называют е конфигурацией атома.Эл. конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям. ЭК атома изображают 2мя способами: в виде е формул и е-графических диаграмм. При написании е формул используют n и l. Подуровень обозначают с помощью n и l(буквой). Число е на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода: В случае е-графических диаграмм распределение е по подуровням представляют в виде квантовых ячеек. Орбиталь принято изображать квадратом, около кот. проставлено обозн. подуровня. Подуровни на каждом уровне д.б. немного смещены по высоте (энергия различна). Электроны изображаются против. стрелками в завис. от значения спина.С учетом структуры ЭК атомов все известные Эл. в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на 4 группы: s, p, d и f-элементы.
Отклонения от правила n+l наблюдаются у нек. элементов – это связано с тем, что с увеличением главного квантового числа различия между энергиями подуровней уменьшаются.

15. нуклоны, строение ядра, ядерные силы, их особенности.

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.

Ядеpные силы - это силы пpитяжения для любой паpы нуклонов.

 Ядеpное взаимодействие относится к категоpии сильного взаимодейст-вия. Вследствие чего ядеpная энеpгия, обусловленная таким взаимодействием, весьма велика и пpевосходит электpическую энеpгию, скажем, в атомах в миллионы pаз.

 Ядеpные силы являются коpоткодействующими, тогда как электpические и магнитные силы между элементаpными частицами относятся к числу дальнодействующих. Что это значит? Это значит, что ядеpные силы имеют огpаниченный pадиус действия и этот pадиус очень мал (поpядка см; напомним, что pазмеp атома поpядка см). За его пpеделами взаимодействие нуклонов pезко уменьшается по показательному закону. Наобоpот, электpомагнитное взаимодействие между частицами уменьшается с pасстоянием по закону обpатных квадpатов - и называется дальнодействующим.

 Ядеpные силы обладают заpядовой независимостью, то есть силы между пpотонами, между нейтpонами и между пpотоном и нейтpоном одинаковы.

 Ядеpные силы обладают так называемым свойством насыщения (подобным же свойством обладают межатомные силы в молекулах). Суть этого свойства состоит в том, что каждый нуклон в ядpе может иметь огpаниченное число соседей. Когда это число доходит до пpедела, дpугие нуклоны как бы вытесняются из области действия ядеpного пpитяжения данного нуклона. Вследствие этого свойства и коpоткого действия ядеpных сил объем ядpа pастет пpопоpционально числу нуклонов в нем. Это очень важное обстоятельство, и оно может быть использовано пpи констpуиpовании модели ядpа.

 Всякое взаимодействие между частицами в физике обусловлено некотоpым полем. Напpимеp, электpомагнитное взаимодействие обусловлено электpомагнитным полем, и этому полю в квантовой теоpии соответствуют частицы - фотоны. С точки зpения фотонов взаимодействие между заpяженными частицами (напpимеp, между электpонами) pассматpивается как виpтуальный (возможный) обмен фотонами: один электpон как бы испускает фотон, а дpугой, соседний, его поглощает, и наобоpот. Такой обмен фотонами называется виpтуальным, а не pеальным, поскольку ему мешает осуществляться в действительности закон сохpанения энеpгии. Понятие обмена частицами вводят из чисто фоpмальных сообpажений: квантово-механические соотношения, хаpактеpизующие взаимодействия, стpоятся так, как будто бы между частицами пpоисходит обмен фотонами.

16. Энергия связи, полуэмпирическая формула для связи.

Энергия связи (для данного состояния системы) - разность между полной энергией связанного состояния системы тел или частиц и энергией состояния, в котором эти тела или частицы бесконечно удалены друг от друга и находятся в состоянии покоя:

где - энергия связи компонентов в системе из i компонент (частиц), - полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и - полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, т.е. при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы и характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов - со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется сильным взаимодействием. Для легких ядер она составляет ~0.8 МЭв на нуклон.

В капельной модели ядро рассматривается как сферическая капля несжимаемой заряженной ядерной жидкости радиуса R = r 0 A 1/3 . То есть в энергии связи ядра учитываются объемная, поверхностная и кулоновская энергии. Дополнительно учитываются выходящие за рамки чисто капельных представлений энергия симметрии и энергия спаривания. В рамках этой модели можно получить полуэмпирическую формулу Вайцзеккера для энергии связи ядра.

E св (A,Z) = a 1 A - a 2 A 2/3 - a 3 Z 2 /A 1/3 - a 4 (A/2 - Z) 2 /A + a 5 A -3/4 .

Первое слагаемое в энергии связи ядра, подобного жидкой капле, пропорционально массовому числу A и описывает примерное постоянство удельной энергии связи ядер.
Второе слагаемое - поверхностная энергия ядра уменьшает полную энергию связи, так как нуклоны, находящиеся на поверхности имеют меньше связей, чем частицы внутри ядра. Это аналог поверхностного натяжения.
Третье слагаемое в энергии связи обусловлено кулоновским взаимодействием протонов. В капельной модели предполагается, что электрический заряд протонов равномерно распределен внутри сферы радиуса R = r 0 A 1/3 .
Четвертое слагаемое - энергия симметрии ядра отражает тенденцию к стабильности ядер с N = Z.
Пятое слагаемое - энергия спаривания учитывает повышенную стабильность основных состояний ядер с четным числом протонов и/или нейтронов.
Входящие в формулу коэффициенты a 1 , a 2 , a 3 , a 4 и a 5 оцениваются из экспериментальных данных по знергиям связи ядер, что дает

a 1 = 15.75 МэВ; a 2 = 17.8 МэВ; a 3 = 0.71 МэВ; a 4 = 94.8 МэВ;

17. Альфа- и бета-распады, закон радиоактивного распада.

Бе́та-распа́д - тип радиоактивного распада, обусловленного слабым взаимодействием и изменяющего заряд ядра на единицу. При этом ядро может излучать бета-частицу (электрон или позитрон). В случае испускания электрона он называется «бета-минус» (), а в случае испускания позитрона - «бета-плюс-распадом» (). Кроме и -распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон. Во всех типах бета-распада ядро излучает электронное нейтрино ( -распад, электронный захват) или антинейтрино ( -распад).

Механизм распада

В -распаде слабое взаимодействие превращает нейтрон в протон, при этом испускаются электрон и антинейтрино:

На фундаментальном уровне (показанном на Фейнмановской диаграмме) это обусловлено превращением d-кварка в u-кварк с испусканием W-бозона.

В -распаде протон превращается в нейтрон, позитрон и нейтрино:

Таким образом, в отличие от -распада , -распад не может происходить в отсутствие внешней энергии, поскольку масса самого

нейтрона больше массы протона. -распад может случаться только внутри ядер, где абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра. Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц.

Во всех случаях, когда β + -распад энергетически возможен (и протон является частью ядра с электронными оболочками), он сопровождается процессом электронного захвата, при котором электрон атома захватывается ядром с испусканием нейтрино:

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ), то электронный захват происходит, не сопровождаясь конкурирующим процессом позитронного распада; последний в этом случае запрещён законом сохранения энергии.

Когда протон и нейтрон являются частями атомного ядра, эти процессы распада превращают один химический элемент в другой. Например:

( распад),

( распад),

(электронный захват).

Бета-распад не меняет число нуклонов в ядре A , но меняет только его заряд Z . Таким образом может быть введён набор всех нуклидов с одинаковым A ; эти изобарные нуклиды могут превращаться друг в друга при бета-распаде. Среди них некоторые нуклиды (по крайней мере, один) бета-стабильны, поскольку они представляют собой локальные минимумы излишка массы: если такое ядро имеет (A , Z ) числа, соседние ядра (A , Z −1) и (A ,Z +1) имеют больший излишек массы и могут распадаться посредством бета-распада в (A , Z ), но не наоборот. Необходимо заметить, что бета-стабильное ядро может подвергаться другим типам радиоактивного распада (альфа-распаду, например). Большинство изотопов, существующих в природных условиях на Земле, бета-стабильны, но существует несколько исключений с такими большими периодами полураспада, что они не успели исчезнуть за примерно 4,5 млрд лет, прошедшие с момента нуклеосинтеза. Например, 40 K, который испытывает все три типа бета-распада (бета-минус, бета-плюс и электронный захват), имеет период полураспада 1.277·10 9 лет.

Бета-распад можно рассматривать как переход между двумя квантовомеханическими состояниями, обусловленный возмущением, поэтому он подчиняется золотому правилу Ферми.

А́льфа-распа́д , вид радиоактивного распада ядра, в результате которого происходит испускание альфа-частицы. При этом массовое число уменьшается на 4, а атомный номер - на 2. Альфа-распад наблюдается только у тяжёлых ядер (Атомный номер должен быть больше 82, массовое число должно быть больше 200). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Неттола). При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы 9400(Nd-144)-23700(Po-212m) км/с. В общем виде формула альфа-распада выглядит следующем образом:

Пример альфа-распада для изотопа 238 U:

Альфа-распад может рассматриваться как предельный случай кластерного распада.

18. Ядерные реакции, реакции деления ядер.

Я́дерная реа́кция - процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

§ реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

§ прямые ядерные реакции, проходящие за ядерное время , необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульсачастицы и ядра-мишени и называется потенциальным рассеянием .

Деле́ние ядра́ - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

Ядерная реакция деления - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны игамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

19. Цепная реакция, её особенности.

Цепная реакция - химическая и ядерная реакция, в которой появление активной частицы (свободного радикала или атома в химическом, нейтрона в ядерном процессе) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R ) с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой - происходит цепная реакция.

К цепным реакциям в химии относятся процессы окисления (горение, взрыв), крекинга, полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности.

В ядерной цепной реакции (которая была так названа по аналогии с химической) активными частицами являются нейтроны, которые инициируют один из видов ядерной реакции - деление ядер. Цепная ядерная реакция является основой для ядерной энергетики и ядерного оружия.

20. Термоядерная реакция.

Термоядерная реакция - слияние двух атомных ядер с образованием нового, более тяжелого ядра, за счет кинетической энергии их теплового движения.

Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание так как одноименно положительно заряжены.

Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество можно достичь ядерной реакции синтеза.

Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звездах.

Реакции синтеза между ядрами легких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.

Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде:

+ энергия (17,6 МэВ) .

Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица . Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза .

Термоядерная реакция также используется в термоядерном оружии.


Похожая информация.


С открытием Менделеева изменилась вся мировая наука. Значение периодического закона химических элементов стало важно не только для химии, но и физики, космологии, геохимии.

Открытие Менделеева

Периодический закон был открыт Дмитрием Менделеевым в 1871 году. Разные учёные XIX века пытались найти закономерность и упорядочить все известные элементы. Менделеев установил, что химические свойства элементов меняются и повторяются с возрастанием относительной атомной массы.

Рис. 1. Менделеев.

На основе этого он расставил 63 известных элемента по шести периодам и восьми группам. Каждый период начинался металлом и заканчивался неметаллом. Менделеев оставил пробелы в таблице для неоткрытых элементов и сделал перерасчёт относительной атомной массы некоторых элементов.

Например, считалось, что атомная масса бериллия - 13,5, а не 9, как это известно сейчас. По логике Менделеева металл необходимо было поместить между углеродом с атомной массой 12 и азотом с атомной массой 14. Однако это нарушало бы принцип периодического закона: металл оказался бы между двумя неметаллами. Поэтому Менделеев предположил, что место бериллия между литием (7) и бором (9), т.е. атомная масса бериллия должна быть примерно 9, а валентность - II или III.

Математическая точность Менделеева впоследствии подтвердилась экспериментально, пропущенные учёным клетки постепенно стали заполняться. При этом Менделеев не знал о существовании элементов, их ещё предстояло открыть, но уже смог определить их порядковый номер, атомную массу, валентность, свойства.

В этом заключается главное значение открытия периодического закона Менделеева. Несмотря на новые знания, нахождение новых элементов и расширение таблицы, принцип периодического закона сохраняется и подтверждается до сих пор.

Рис. 2. Современная таблица Менделеева.

Наиболее подробно Менделеев описал три фантомных элемента - экабор, экаалюминий, экасилиций. Они были открыты в 70-80-х годах XIX века и названы соответственно скандием, галлием, германием.

Современность

Открытие, сделанное Менделеевым, повлияло на развитие науки. Если раньше новые элементы находились случайно, то с периодической таблицей химики целенаправленно, ориентируясь на пустые клетки, стали искать элементы. Так были открыты многие редко встречающиеся элементы, например, рений.

Рис. 3. Рений.

Таблица также дополнилась:

  • инертными газами;
  • радиоактивными элементами.

Кроме того, в конце XIX века благодаря теории строения атома стало известно, что свойства элементов находятся в зависимости не от относительной массы атомов, как это вывел Менделеев, а от заряда ядер. При этом порядковый номер элементов совпал с показателем заряда атома. Это позволило связать химию и физику и продолжить изучение внутриатомной энергии.

Таблица Менделеева охватывает всю неорганическую химию и даёт чёткое представление о химических, физических свойствах элементов и их месте во Вселенной.

Что мы узнали?

Периодический закон Менделеева повлиял на развитие химии и других смежных наук. Менделееву удалось предсказать многие элементы, которые были открыты позже. Он рассчитал для них атомную массу, определил их свойства. Значения подтверждались с нахождением элементов. Периодическая таблица задала направление химии: учёные стали искать элементы, ориентируясь на её пробелы.

Периодическая система элементов явилась одним из наиболее ценных обобщений в химии. Она представляет собой как бы конспект химии всех элементов, график по которому можно читать свойства элементов и их соединений. Система позволила уточнить положение, величины атомных масс, значение валентности некоторых элементов. На основе таблицы можно было предсказать существование и свойства еще неоткрытых элементов. Менделеев сформулировал периодический закон и предложил его графическое отображение, однако в то время нельзя было определить природу периодичности. Смысл периодического закона был выявлен позже, в связи с открытиями по строению атома.

1. В каком году был открыт периодический закон?

2. Что Менделеев взял за основу систематизации элементов?

3. Как гласит закон открытый Менделеевым?

4. В чем разница с современной формулировкой?

5. Что называется атомной орбиталью?

6. Как изменяются свойства в периодах?

7. Как подразделяются периоды?

8. Что называется группой?

9. Как подразделяются группы?

10. Какие виды электроновы вы знаете?

11. Как происходит заполнение энергетических уровней?

Лекция №4: Валентность и степень окисления. Периодичность изменения свойств.

Происхождение понятия валентности. Валентность химических элементов является одним из самых важных их свойств. Понятие валентности было введено в науку Э. Франкландом в 1852 г. Вначале понятие носило исключительно стехиометрический характер и вытекало из закона эквивалентов. Смысл понятия валентности вытекал из сопоставления величин атомной массы и эквивалента химических элементов.

С установлением атомно-молекулярных представлений понятие валентности приобрело определенный структурно-теоретический смысл. Под валентностью стали понимать способность одного атома данного элемента присоединять к себе то или иное число атомов другого химического элемента. За единицу валентности была принята соответствующая способность атома водорода, поскольку отношение атомной массы водорода к его эквиваленту равно единице. Таким образом валентность химического элемента определяли как способность его атома присоединять то или иное число атомов водорода. Если данный элемент не образовывал соединений с водородом, его валентность определялась как способность его атома замещать то или иное число атомов водорода в его соединениях.

Такое представление о валентности подтверждалось для простейших соединений.

На основе представления о валентности элементов возникло представление и о валентности целых групп. Так, например, группе OH, поскольку она присоединяла один атом водорода или замещала один атом водорода в других его соединениях, приписывалась валентность, равная единице. Однако представление о валентности теряло свою однозначность, когда дело касалось соединений более сложных. Так, например, в перекиси водорода H 2 O 2 валентность кислорода должна быть признана равной единице, поскольку в этом соединении на каждый атом кислорода приходится один атом водорода. Однако известно, что каждый атом кислорода в H 2 O 2 соединен с одним атомом водорода и одной одновалентной группой OH, т. е. кислород двухвалентен. Подобным образом валентность углерода в этане C 2 H 6 должна быть признана равной трем, так как в этом соединении на каждый атом углерода приходится по три атома водорода, но, поскольку каждый атом углерода соединен с тремя атомами водорода и одной одновалентной групой CH 3 , валентность углерода в C 2 H 6 равна четырем.



Следует заметить, что при формировании представлений о валентности отдельных элементов указанные осложняющие обстоятельства не принимались во внимание, а учитывался только состав простейших соединений. Но и при этом оказалось, что у многих элементов валентность в различных соединениях не одинакова. Особенно это было заметно для соединений некоторых элементов с водородом и кислородом, в которых проявлялась различная валентность. Так, в соединении с водородом валентность серы оказалась равной двум, а с кислородом – шести. Поэтому стали различать валентность по водороду и валентность по кислороду.

В дальнейшем в связи с представлением о том, что в соединениях одни атомы поляризованы положиельно, а другие отрицательно, понятие о валентности в кислородных и водородных соединениях было заменено понятием о положительной и отрицательной валентности.

Различные значения валентности у одних и тех же элементов проявлялись также в их различных соединениях с кислородом. Другими словами, одни и те же элементы оказались способны проявлять различную положительную валентность. Так появилось представление о переменной положительной валентности некоторых элементов. Что касается отрицательной валентности неметаллических элементов, то она, как правило, оказалась у одних и тех же элементов постоянной.

Элементов, проявляющих переменную положительную валентность, оказалось большинство. Однако для каждого из таких элементов характерной оказалась его максимальная валентность. Такая максимальная валентность получила название характеристичной .

В дальнейшем, в связи с возникновением и развитием электронной теории строения атома и химической связи, валентность стали связывать с числом электронов, переходящих от одного атома к другому, или с числом химических связей, возникающих между атомами в процессе образования химического соединения.

Электровалентность и ковалентность. Положительная или отрицательная валентность элемента – проще всего определить, если два элемента образовывали ионное соединение: считалось, что элемент, атом которого стал положительно заряженным ионом, проявил положительную валентность, а элемент, атом которого стал отрицательно заряженным ионом, – отрицательную. Численное значение валентности считалось равным величине заряда ионов. Поскольку ионы в соединениях образуются посредством отдачи и присоединения атомами электронов, величина заряда ионов обусловливается числом отданных (положительный) и присоединенных (отрицательный) атомами электронов. В соответствии с этим положительная валентность элемента измерялась числом отданных его атомом электронов, а отрицательная валентность – числом электронов, присоединенных данным атомом. Таким образом, поскольку валентность измерялась величиной электрического заряда атомов, она и получила название электровалентности. Ее называют также ионной валентностью.

Среди химических соединений встречаются такие, в молекулах которых атомы не поляризованы. Очевидно, для них понятие о положительной и отрицательной электровалентности неприменимо. Если же молекула составлена из атомов одного элемента (элементарные вещества), теряет смысл и обычное понятие о стехиометрической валентности. Однако, чтобы оценивать способность атомов присоединять то или иное число других атомов, стали использовать число химических связей, которые возникают между данным атомом и другими атомами при образовании химического соединения. Поскольку эти химические связи, представляющие собой электронные пары, одновременно принадлежащие обоим соединенным атомам, называются ковалентными, способность атома образовать то или иное число химических связей с другими атомами получила название ковалентности. Для установления ковалентности используются структурные формулы, в которых химические связи изображаются черточками.

Степень окисления и окислительное число. При реакциях образования ионных соединений переход электронов от одних реагирующих атомов или ионов к другим сопровождается соответствующим изменением величины или знака их электровалентности. При образовании соединений ковалентной природы такого изменения электровалентного состояния атомов фактически не происходит, а только имеет место перераспределение электронных связей, причем валентность исходных реагирующих веществ не изменяется. В настоящее время для характеристики состояния элемента в соединениях введено условное понятие степени окисления . Численное выражение степени окисления называют окислительным числом .

Окислительные числа атомов могут иметь положительное, нулевое и отрицательное значения. Положительное окислительное число определяется числом электронов, оттянутых от данного атома, а отрицательное окислительное число – числом притянутых данным атомом электронов. Окислительное число может быть приписано каждому атому в любом веществе, для чего нужно руководствоваться следующими простыми правилами:

1. Окислительные числа атомов в любых элементарных веществах равны нулю.

2. Окислительные числа элементарных ионов в веществах ионной природы равны значениям электрических зарядов этих ионов.

3. Окислительные числа атомов в соединениях ковалентной природы определяются при условном расчете, что каждый отянутый от атома электрон придает ему заряд, равный +1, а каждый притянутый электрон – заряд, равный –1.

4. Алгебраическая сумма окислительных чисел всех атомов любого соединения равна нулю.

5. Атом фтора во всех его соединениях с другими элементами имеет окислительное число –1.

Определение степени окисления связано с понятием об электроотрицательности элементов. С использованием этого понятия формулируется еще одно правило.

6. В соединениях окислительное число отрицательно у атомов элементов с большей электроотрицательностью и положительно – у атомов элементов с меньшей электроотрицательностью.

Понятие степени окисления, таким образом, пришло на смену понятию электровалентности. В связи с этим представляется нецелесообразным пользоваться и понятием ковалентности. Для характеристики элементов лучше применять понятие валентности, определяя ее числом электронов, используемых данным атомом для образования электронных пар, независимо от того, притягиваются они к данному атому, или, наоборот, оттягиваются от него. Тогда валентность будет выражаться числом без знака. В отличие от валентности степень окисления определяется числом электронов, оттянутых от данного атома, – положительная, или притянутых к нему, – отрицательная. Во многих случаях арифметические значения валентности и степени окисления совпадают – это вполне естественно. В некоторых же случаях числовые значения валентности и степени окисления отличаются друг от друга. Так, например, в молекулах свободных галогенов валентность обоих атомов равна единице, а степень окисления – нулю. В молекулах кислорода и перекиси водорода валентность обоих атомов кислорода равна двум, а степень окисления их в молекуле кислорода равна нулю, а в молекуле перекиси водорода – минус единице. В молекулах азота и гидразина – N 4 H 2 – валентность обоих атомов азота равна трем, а степень окисления в молекуле элементарного азота – нулю, а в молекуле гидразина – минус двум.

Очевидно, что валентность характеризует атомы, только входящие в состав какого-либо соединения, хотя бы гомоядерного, т. е. состоящего из атомов одного элемента; о валентности же отдельных атомов говорить бессмысленно. Степень же окисления характеризует состояние атомов как входящих в какое-либо соединение, так и существующих отдельно.

Вопросы для закрепления темы:

1. Кем было введено понятие «валентность»?

2. Что называется валентностью?

3. В чем отличие валентности и степени окисления?

4. Какой бывает валентность?

5. Как определяется степень окисления?

6. Всегда ли валентность и степень окисления элемента равны?

7. По какому элементу определяется валентность элемента?

8. Что характеризует валентность элемента, а что степень окисления?

9. Может ли быть валентность элемента отрицательной?

Лекция№ 5: Скорость химической реакции.

Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход.

Периодический закон и периодическая система химических элементов в свете теории строения атома

1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Ещё в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц, и периодический закон это подтверждает.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.

Периодический закон в свете теории строения атомов

Понятие

физ. смысл

характеристика понятия

Заряд ядра

Равен порядковому номеру элемента

Основная характеристика элемента, определяет химические свойства, так как с ростом заряда ядра увеличивается количество электронов в атоме, в том числе и на внешнем уровне. Следовательно, изменяются свойства

Периодичность


С увеличением заряда ядра наблюдается периодическая повторяемость строения внешнего уровня, следовательно, периодически изменяются свойства. (Внешние электроны – валентные)

Периодическая система в свете теории строения атома

Понятие

Физ. смысл

Характеристика понятия

Порядковый номер

Равен числу протоновв ядре.

Равен числу электронов в атоме.


Период

Номер периода равен числу электронных оболочек

Горизонтальный ряд элементов.

1,2,3 – малые; 4,5,6 – большие; 7 – незавершенный.

В 1 периоде всего два элемента и больше быть не может. Это определяется формулой N = 2n 2

Каждый период начинается щелочным металлом и заканчивается инертным газом.

Первые два элемента любого периода s - элементы, последние шесть р – элементы, между ними d - и f – элементы.

В периоде слева направо:

1.

2. заряд ядра – увеличивается

3. количество энерг. уровней – постоянно

4. кол-во электронов на внеш.уровне - увеличивается

5. радиус атомов – уменьшается

6. электроотрицательность – увеличивается

Следовательно, внешние электроны удерживаются сильнее, и металлические свойства ослабевают, а неметаллические усиливаются

В малых периодах этот переход происходит через 8 элементов, в больших – через 18 или 32.

В малых периодах валентность увеличивается от 1 до 7 один раз, в больших – два раза. В том месте, где происходит скачок в изменении высшей валентности, период делится на два рядя.

От периода к периоду происходит резкий скачок в изменении свойств элементов, так как появляется новый энергетический уровень.

Группа

Номер группы равен числу электронов на внешнем уровне (для элементов главных подгрупп)

Вертикальный ряд элементов.

Каждая группа делится на две подгруппы: главную и побочную. Главную подгруппу составляют s – ир – элементы, побочную -d - и f – элементы.

Подгруппы объединяют наиболее сходные между собой элементы.

В группе, в главной подгруппе сверху вниз:

1. относит. атомная масса – увеличивается

2. число электронов на внеш. уровне – постоянно

3. заряд ядра – увеличивается

4. кол – во энерг. уровней – увеличивается

5. радиус атомов - увеличивается

6. электроотрицательность – уменьшается.

Следовательно, внешние электроны удерживаются слабее, и металлические свойства элементов усиливаются, неметаллические- ослабевают.

Элементы некоторых подгрупп имеют названия:

1а группа – щелочные металлы

2а – щелочноземельные металлы

6а – халькогены

7а – галогены

8а – инертные газы (имеют завершённый внешний уровень)

Выводы:

1. Чем меньше электронов на внешнем уровне и больше радиус атома, тем меньше электроотрицательность и легче отдавать внешние электроны, следовательно, тем сильнее выражены металлические свойства

Чем больше электронов на внешнем уровне и меньше радиус атома, тем больше электроотрицательность и тем легче принимать электроны, следовательно, тем сильнее неметаллические свойства.

2. Для металлов характерна отдача электронов, для неметаллов – прием.

Особое положение водорода в периодической системе

Водород в периодической системе занимает две клетки (в одной из них заключен в скобки) – в 1 группе и в 7 – ой.

В первой группе водород стоит потому, что у него, как и у элементов первой группы, на внешнем уровне один электрон.

В седьмой группе водород стоит потому, что у него, как и у элементов седьмой группы, до завершения энергетического

ЗНАЧЕНИЕ ПЕРИОДИЧЕСКОГО ЗАКОНА