Конвергенция нервных импульсов. Принцип концентрации возбуждения

Процессы обработки информации, поступающей в нервный центр (если он сенсорный), или формирование команд к исполнительным органам (в ефекторному центре) обусловлены взаимодействием нейронов посредством синаптических контактов. В таком случае можно обнаружить явления, что называют дивергенцией и конвергенцией (рис. 37).

Дивергенция - это способность нейрона устанавливать многочисленные связи с другими нейронами. Вследствие этого одна и та же клетка может участвовать в различных нервных процессах и реакциях, контролировать большое число других нейронов, то есть каждый нейрон может обеспечить распространение импульсов - иррадиацию возбуждения. Процессы дивергенции более типичны для афферентных отделов ЦНС.

Конвергенция - схождение различных путей проведения нейрон-ных импульсов к одной и той же нервной клетки, больше присуща нервным центрам эфферентных отделов.

Большинство нервных центров представлено скоплением разнообразных нейронов. Среди них бывают как возбуждающие, так и тормозные нейроны, нейроны сенсорные и моторные (афферентные или эфферентные). их довольно сложное взаимодействие и обеспечивает выполнение соответствующих функций.

Взаимодействие рефлексов

В процесс регуляции большинства сложных функций организма, организации рефлекторного ответа очень часто привлекаются несколько нервных центров, которые могут размещаться даже на различных этажах ЦНС. Обусловлено это філогенетичними особенностями формирования ЦНС. Появление "младшего" отдела сопровождалась формированием в нем новых центров регуляции. Но и "старые" нервные центры, расположенные в низших отделах, сохраняли свойственные им функции. При этом терялась абсолютная автономность отдельных сегментов ЦНС, все большая часть функций "переходила" высшим отделам. Этот процесс получил название енцефалізації функций. Поскольку головной мозг формировался поэтапно, от заднего мозга до переднего с его большими полушариями, то с формированием коры больших полушарий происходит подчинение ей других отделов ЦНС, то есть кортикалізація функций.

Поскольку каждый из нервных центров отвечает за определенные рефлексы, во время их взаимодействия можно говорить о взаимодействии различных рефлексов. Это взаимодействие осуществляется на основе определенных закономерностей, которые позволяют ЦНС решать свои функциональные задачи как с целенаправленного регулирования различных систем организма, так и организации его поведения в конкретных, постоянно меняющихся условиях внешней среды.

Можно выделить такие принципы координации функций ЦНС.

1. Торможение в ЦНС.

Важной частью нейронных цепей, образующих рефлекторные дуги, является наличие тормозных нейронов (рис. 38). Вследствие этого ослабляется или совсем прекращается интенсивный процесс возбуждения, что в основном обеспечивает упорядочение проявления рефлекса. Пример торможения - реципрокне торможения мышц-антагонистов на уровне мотонейронов спинного мозга (рис. 38, а). Процесс тормозного влияния запускается через специальные тормозные клетки Реншо, содержащихся в спинном мозге. При поступлении афе

Рис. 38. Торможение в ЦНС : а - участие тормозных интернейронов спинного мозга (Г) в регуляции деятельности мышц-антагонистов: торможение (-) мотонейрона мышцы-разгибателя (МР) во время возбуждения (+) мотонейрона мышцы-сгибателя (МЗ); б - поворотное (постсинаптичне) торможения (МН - мотонейрон, Г - тормозная клетка Реншо; М - мышца); в - торможения нейронов промежуточного мозга с участием тормозной корзинного клетки (Г); г - пресинаптичне торможения (Г - тормозная клетка; Н - нейрон; Пр - пресинаптичне волокно; за Екклсом)

рентной импульсации они активируются одновременно с нейронами, которые возбуждаются, обеспечивая реципрокный взаимосвязь при осуществлении двигательных рефлексов: мотонейроны одних мышц возбуждаются, а их антагонистов - тормозятся.

Второй, довольно распространенный, тип первичного торможения - возвратное торможение (рис. 38, б). Клетки Реншо располагаются еще и таким образом, что через коллатерали возбужденного мотонейрона вызывают его торможение. Это типичный пример отрицательной обратной связи, когда подавляется чрезмерная импульсация.

2. Иррадиация и концентрация нервных процессов.

Возбуждение, возникшее в одном из центров, может распространяться через коллатерали и синапсы на другие центры. Процесс иррадиации чаще всего развивается в случае действия сильного раздражителя. Например, во время сильного давления на лапку лягушки сокращаются не одна, а все конечности. Через некоторое время иррадиация меняется на явление концентрации возбуждения в необходимом центре. Это обусловлено действием тормозных синаптических связей. Процессы иррадиации и концентрации основываются на свойствах конвергенции и дивергенции.

3. Явления суммации и окклюзии

(рис. 39). Суммация (облегчение) оказывается во время воздействия нескольких подпороговых стимулов (с разных рецепторов), каждый из которых, действуя отдельно, не вызывает ответа. А их суммация (при условии рядом расположенных синаптических полей) способствует проявлению ответа нервного центра (явление облегчения).

Рис. 39. Схема, иллюстрирующая явление облегчения (1) и окклюзии (2) нервного импульса: а - в центральных кругах изображены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон (В, 2); пунктирными линиями обведены нейроны, которые возбуждаются только за одновременного раздражения обеих нервных волокон; б -в центральной части, образованной кругами, перекрещивающихся расположены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон

Противоположное явление - окклюзии (заклинивания) - развивается при тех же условиях расположения синаптических полей, но при одновременном действии нескольких раздражителей надграничної силы. Суммарная ответ может быть меньшим, чем арифметическая сумма ответов на каждый из раздражителей в отдельности, что происходит за "перекрытия" как на уровне рецептора, так и общих центральных нейронов.

4. Принцип "общего конечного пути"

(рис. 40). Он основывается на явлении конвергенции. Афферентных входов в ЦНС значительно больше, чем эфферентных выходов. Следовательно, один и тот же рефлекс можно вызвать, раздражая различные рефлекторные поля.

5. Принцип доминантного очага.

Содержание принципа заключается в том, что в случае одновременного возбуждения нескольких нервных центров один из очагов может стать доминантным. Вследствие этого к нему могут активно привлекаться (иррадиировать) возбуждения из других очагов, что приведет к суммации возбуждения, усиливая доминантное возбуждение. Высокую возбудимость нейронов обусловливают соответствующая аферентна импульсация (например из переполненного мочевого пузыря), гуморальные влияния. В результате оказывается, что для организма функция этого центра в конкретный временной промежуток становится важнейшей.

Основные признаки доминантного очага следующие:

1) стойкость возбуждения во времени;

2) повышенная возбудимость;

3) способность к суммации. Доминанта - это физиологическое основание возникновения взаимосвязей между отдельными нервными центрами при формировании условных рефлексов, основа внимания.

Рис. 40. а - клетки спинномозговых

ганглий; б - промежуточные нейроны; в - мотонейроны; г - мышцу (зачеркнуто тела нейронов, которые тормозят нервные импульсы; за Шеррингтоном)

Следующим важным принципом координации в ЦНС является принцип дивергенции. Благодаря коллатералям аксона и множеству вставочных нейронов один нейрон способен устанавливать многочисленные синаптические контакты с различными нейронами в ЦНС. Эта способность нейрона называется дивергенцией или расхождением. Благодаря дивергенции один нейрон может участвовать в различных нервных реакциях и контролировать большое число нейронов. Кроме дивергенции, в ЦНС существует и конвергенция. Конвергенция – это схождение различных путей проведения нервных импульсов к одной и той же клетке. Частным случаем конвергенции является принцип общего конечного пути. Этот принцип был открыт Ч. Шеррингтоном для мотонейрона спинного мозга. Действительно, активность мотонейрона спинного мозга определяется влиянием со стороны структур самого спинного мозга, различных афферентаций с поверхности тела, посылок от структур ствола, мозжечка (через ствол), базальных ганглиев, коры мозга и т.д.

Большое значение в координации процессов в ЦНС имеет временное и пространственное облегчение (или суммация). Временное облегчение проявляется в повышении возбудимости нейронов в ходе последовательных ВПСП в результате ритмических стимуляций нейрона. Это вызвано тем, что длительности ВПСП продолжаются дольше, чем рефрактерный период аксона. Пространственное облегчение в нервномцентренаблюдается при одновременной стимуляции, например, двух аксонов. При раздельной стимуляции каждого из аксонов возникают подпороговые ВПСП в определенной группе нейронов в нервном центре. Совместное раздражение этих аксонов дает большее количество нейронов с надпороговым возбуждением (возникает ПД).

Противоположное облегчению в ЦНС существует явление окклюзии. Окклюзия – это взаимодействие двух потоков возбуждения между собой. Впервые окклюзия была описана Ч. Шеррингтоном. Сущность окклюзии заключается во взаимном угнетении рефлекторных реакций, при котором суммарный эффект оказывается значительно меньше, чем сумма взаимодействующих реакций. Согласно Ч. Шеррингтону, явление окклюзии объясняется перекрытием синаптических полей, образуемых афферентными звеньями взаимодействующих реакций. В связи с этим при поступлении двух афферентных посылок ВПСП вызывается каждым из них отчасти в одних и тех же мотонейронах спинного мозга. Окклюзия используется в электрофизиологических экспериментах для определения общего звена для двух путей распространения импульсов.



Принцип доминанты

Этот принцип был открыт А.А. Ухтомским. Он считал принцип доминанты основой складывающихся координационных отношений.А.А. Ух-
томский сформулировал учение о доминанте как рабочем принципе деятельности нервной системы и векторе поведения.

В своих работах он подчеркивал роль доминанты как образователя сложнейших афферентных синтезов из огромной массы текущей информации. А.А. Ухтомский сделал вывод о том, что доминанта определяет вероятность возникновения той или иной рефлекторной реакции в ответ на текущее раздражение.

Доминанта – временно господствующая в нервной системе группа нервных центров (или система рефлексов), определяющая характер текущей ответной реакции организма на внешние и внутренние раздражения и целенаправленность его поведения.

Как общий принцип работы нервных центров доминанта подчиняется определенным закономерностям. А.А. Ухтомский сформулировал следующие свойства доминанты:

1) повышенную возбудимость;

2) стойкость возбуждения;

3) инертность возбуждения;

4) способность к суммированию возбуждения.

Кроме того, доминанта способна переходить в тормозное состояние и вновь растормаживаться. Доминанта одновременно с созданием и подкреплением самой себя приводит к сопряженному торможению центров антагонистических рефлексов. Сопряженное торможение не является процессом подавления всяческой деятельности, а представляет собой процесс переработки этой деятельности согласно с направлением доминирующего поведения. Процесс сопряженного торможения в процессе формирования доминанты играет важную роль. Состояние возбуждения в центре, подкрепленное возбуждениями из самых отдаленных источников, будучи инертным (стойким), в свою очередь, снижает способность других центров реагировать на импульсы, имеющие к ним прямое отношение. Но торможение в других центрах наступает лишь тогда, когда возбуждение в формирующемся нервном центре достигает достаточной величины. Именно сопряженное торможение играет наиболее важную роль при формировании доминанты, и это торможение должно быть своевременным, то есть иметь координирующее значение для работы других органов организма в целом. Относительно повышенной возбудимости следует отметить, что не сила возбуждения в центре, а способность к дальнейшему повышению возбуждения под влиянием нового приходящего импульса может сделать центр доминирующим. А.А. Ухтомский подчеркивает важное свойство доминирующего центра достаточно интенсивно, продолжительно и стойко накапливать и поддерживать в себе возбуждение, что приобретает значение господствующего фактора в работе прочих центров. Это и создает предпосылки для хронического свойства доминанты, ее инертности. Весьма категорично А.А. Ухтомский высказывается относительно суммирования возбуждений. Он считал, что судьба доминанты решается тем, будет ли центр суммировать свои возбуждения под влиянием доходящих до него импульсов или они застанут его неспособным к суммированию.

Определяющую роль при формировании доминантного очага играет состояние развивающегося в нем стационарного возбуждения, в основе которого лежат различные физико-химические процессы. Определенный уровень стационарного возбуждения чрезвычайно важен для дальнейшего хода реакции. Если этот уровень возбуждения мал, то диффузная волна может поднять его до состояния, характерного для доминанты, то есть создать в нем повышенную возбудимость. Если же уровень возбуждения в центре и без того высок, то при приходе новой волны возбуждения возникает эффект торможения. А.А. Ухтомский не рассматривал доминантный очаг «как центр сильного возбуждения». Он считал, что определяющая роль в этом процессе принадлежит не количественному, а качественному фактору – повышенной возбудимости (отзывчивости на приходящие волны возбуждения и способности центра суммировать эти возбуждения). Именно такой центр – наиболее возбудимый, отзывчивый и впечатлительный в данный момент – отвечает на приходящий стимул, который анатомически даже не относится к нему; именно такой центр, первым вступая в работу, предопределяет на какой-то более или менее продолжительный промежуток времени новый ход реакции. Одной из основных черт доминанты является ее направленность (векторность).

Формирование доминанты не является привилегированным процессом определенных этажей нервной системы: он может складываться в нервных центрах любого отдела центральной нервной системы в зависимости от условий подготовки развития возбуждения в них и сопряженного торможения антагонистических рефлексов.

В своих работах, посвященных доминанте, А.А. Ухтомский использовал понятие функционального центра. Этим подчеркивалось, что сложившиеся определенные констелляции связанных между собой центров, морфологически далеко разбросанных по мозговой массе, функционально связаны единством действий, своей векторной направленностью на определенный результат.

Постепенно формируясь, такая рабочая констелляция проходит несколько стадий.

Сначала доминанта в центрах вызывается ее непосредственным раздражителем (метаболиты, гормоны, электролиты во внутренней среде организма, рефлекторные влияния). На этой стадии, названной стадией укрепления наличной доминанты по преимуществу, она привлекает к себе в качестве поводов к возбуждению самые разнообразные внешние раздражения. В констелляцию посредством генерализованного возбуждения наряду с необходимыми для данного акта нервными центрами вовлекаются и посторонние клеточные группы. В этом достаточно неэкономичном процессе проявляется диффузная отзывчивость доминирующей констелляции к различным раздражениям. Но постепенно в процессе повторного осуществления данного поведенческого акта диффузная отзывчивость сменяется избирательным реагированием только на те раздражения, которые создали данную доминанту.

Следующая стадия – это стадия выработки адекватного раздражителя для данной доминанты и вместе с тем стадия предметного выделения данного комплекса раздражителей из среды. В результате происходит подбор биологически интересных рецепций для доминанты, что приводит к образованию новых адекватных поводов для той же доминанты. Теперь выполнение доминантного акта происходит более экономично, ненужные для него нервные группы затормаживаются. При повторении доминанты репродуцируются в свойственный только им единый ритм возбуждения.

Единство действия достигается способностью данной совокупности нервных образований взаимно влиять друг на друга с точки зрения усвоения ритма, то есть синхронизации активности нервных центров. Процесс синхронизации темпов и ритмов активности нервных центров, входящих в состав определенной констелляции, делает ее доминирующей.

Основным аппаратом управления ритмами в тканях и органах, по Ухтомскому, является кора головного мозга, обеспечивающая обоюдный процесс подчинения темпов и сроков жизнедеятельности темпам и срокам сигналов из внешней среды и подчинение сроков в постепенно осваиваемой среде потребностям организма.

Кора больших полушарий принимает участие при восстановлении доминант. Восстановление доминанты по кортикальному следу может быть эскизным, то есть более экономичным. При этом комплекс органов, участвующих в переживании восстановленной доминанты, может быть сокращенным и ограничиться только кортикальным уровнем. Полное или эскизное возобновление доминанты возможно лишь в том случае, если возобновится хотя бы частично раздражитель, ставший для нее адекватным. Это обусловлено тем, что между доминантой как внутренним состоянием и данным комплексом раздражителей была установлена прочная адекватная связь. При кортикальном воспроизведении доминанты, которое является подвижным сочетанием ее кортикальных компонентов, происходит интеркортикальное обогащение новыми рецепциями кортикальных же компонентов доминанты.

Кортикальный след, по которому доминанта может быть пережита заново, представляет собой своего рода интегральный образ, своеобразный продукт пережитой ранее доминанты. В нем в единое целое сплетены соматические и эмотивные признаки доминанты с ее рецептивным содержанием, то есть с комплексом раздражений, с которыми она была связана в прошлом. При создании интегрального образа важную роль играют как периферические, так и кортикальные компоненты. Интегральный образ – это своеобразная памятка пережитой доминанты и вместе с тем ключ к ее воспроизведению с той или иной степенью полноты.

Если доминанта восстанавливается по своим кортикальным компонентам, то есть более экономично, с малой инерционностью, то при новых условиях она всегда обходится с помощью прежнего опыта. А.А. Ухтомский, раскрывая биологический смысл эскизно протекающих доминант, писал, что их смысл заключается в том, чтобы «… по поводу новых и новых данных среды очень быстро перебрать свой арсенал прежних опытов для того, чтобы из них путем очень быстрых их сопоставлений избрать более или менее идущую к делу доминанту, чтобы применить ее к новому заданию. Целесообразность или нецелесообразность выбранной доминанты прошлого решает дело».

Если же доминанта восстанавливается почти с прежней полнотой, которая предусматривает оживление работы всей соматической констелляции, то она приживается с большей инерцией, занимая более или менее продолжительный период жизнедеятельности организма. Подбирая при этом вновь биологически интересные для себя раздражения из новой среды, доминанта по новым данным переинтегрирует старый опыт.

Общий план строения и функций нервной системы

Строение нервных клеток . Как уже говорилось, основная часть нервной клетки – сома или тело, в которой находится ядро, протоплазма и различные органеллы. От тела отходят отростки: дендриты, которые собирают информацию от других клеток, и аксон, который передает ее другим клеткам. Аксон заканчивается синапсами, которые образуют контакт с последующими клетками. В синапс включают пресинапс, синаптическую щель, постсинапс. В зависимости от места окончания различают аксосоматические контакты, аксодендритические, аксоаксональные и дендро-дендритические.

^ . Назначение нервной системы – сбор и обработка информации об изменениях внешней и внутренней среды организма и организация адекватных реакций на эти изменения с целью адаптации, поддержания гомеостаза, развития и воспроизведения живого существа. Весь клеточный состав нервной системы делится на три части: рецепторные нейроны – собирают информацию, вставочные нейроны –передают ее, и эффекторные нейроны – активируют соответствующие исполнительные органы. На всех этапах восприятия, обработки и использования информации происходит ее кодирование и декодирование.

^ Конвергенция и дивергенция возбуждений в нервной системе . Один из основных принципов строения нервной системы – это сочетание последовательного и параллельного проведения возбуждения. На каждой клетке имеется от нескольких единиц до нескольких тысяч контактов других клеток (конвергенция влияний). В свою очередь, аксоны клеток по своему ходу отдают коллатерали на другие клетки. В сферу их действия включаются от нескольких до нескольких тысяч других клеток (дивергенция влияний). Конвергенция и дивергенция влияний обеспечивает возможность взаимодействия возбуждений, идущих из самых различных источников.

^ Взаимодействие «модально-специфической» и «модально-неспеци-фической» информации . Другой принцип работы нервной системы определяется двойственностью ее функций. С одной стороны, при восприятии разного рода раздражителей и организации на них адекватного поведения необходимо сохранить специфику сведений о модальности действующего стимула. С другой стороны, каждое изменение во внешней или внутренней среде требует реакции со стороны исполнительных органов. Причем любое изменение среды должно иметь возможность вызвать активацию любого исполнительного органа. Эта проблема решается благодаря тому, что пути передачи информации о модальности действующего раздражителя строго специфичны. Эти пути и мозговые структуры, обрабатывающие информацию определенной модальности (свет, звук, запах, мышечно-суставная чувствительность и т. д.) называются проекционными. Для них характерна передача «из точки в точку», по принципу экранного строения с точным сохранением топологии, локализации соответствующих проекций.

Для того, чтобы обеспечить вторую функцию – связь любого изменения внешней и внутренней среды с любым исполнительным органом в нервной системе, как уже говорилось, существует возможность переключения, встречи возбуждений разного рода. Для этого служат разного рода скопления нервных клеток. Это, прежде всего, образования ретикулярной формации. Ретикулярная формация - это структура, элементы которой закладываются в центральной части спинного мозга, поднимаются в продолговатый, средний мозг и в таламус. Другие образования – это ассоциативные ядра и области коры и третьи – это клетки, передающие информацию на эффекторы. Во всех этих образованиях информация о модальности стимула исчезает. Передается информация о новизне, интенсивности и биологической значимости раздражителя и, соответственно, о необходимости включения тех или иных двигательных программ, работы желез и т.д. Таким образом, взаимодействие нервных путей, передающих модально-специфическую и модально-неспецифическую информацию, дает возможность реализовать любые формы поведения при сохранении стабильности восприятия окружающего мира, а также сигналов из внутренней среды организма, схемы тела, чувства позы и т. д.

При нарушении нормальных условий взаимодействия этих путей возникает патология в работе нервной системы и психики.

Надежность . В процессе передачи и обработки информации необходимо обеспечить надежность в работе нервной системы. Эта проблема решается, прежде всего, как уже говорилось, за счет дублирования путей передачи одной и той же информации. От всех проводящих путей по ходу их вверх или вниз в соседние структуры отходят коллатерали – отростки. Это и обеспечивает дублирование и дополнительные связи систем между собой.

Надежность обеспечивается также за счет того, что многие и восходящие и нисходящие проводящие пути имеют перекрест. Часть из них идет прямо, а другая часть переходит на другую сторону билатерально устроенных частей нервной системы.

Повышается надежность и за счет того, что вследствие особенностей свойств отдельных нейронов и архитектуры соединений между ними достигается возникновение длительного времени следовой активации в ответ даже на очень короткие изменения среды, особенно, если эти изменения биологически значимы. С одной стороны, следовые процессы возникают за счет длительного удерживания нейроном состояния повышенной активности, а также состояния повышенной возбудимости. С другой стороны, наличие в нервной системе обратных связей внутри отдельных структур и двусторонних связей между структурами возникает реверберация возбуждений. Эти же свойства нервной системы лежат в основе возникновения застойных очагов возбуждения в условиях разного рода патологии.

^ Развитие нервной системы

Нервная система развивается из эктодермы, внешнего листка зародыша. Здесь вначале образуется утолщенная пластинка, которая сворачивается в трубку в направлении от поверхности кпереди. Внутри трубки – полое пространство, из которого потом произойдут канал спинного мозга и внутримозговые желудочки, заполненные внутримозговой жидкостью – ликвором. Нервные клетки внутри этой трубки перемещаются, образуют группы, у них развиваются отростки двух типов – дендриты, которые собирают информацию от других клеток и аксоны, которые передают информацию другим клеткам.

За счет такого перемещения нервных клеток передняя часть трубки утолщается. Здесь образуется три утолщения: прозенцефалон - передний мозг, мезенцефалон - средний мозг и ромбенцефалон - задний мозг. Передний мозг затем делится на теленцефалон - конечный мозг и на диенцефалон - промежуточный мозг, а ромбенцефалон на задний мозг и продолговатый мозг. Продолговатый мозг переходит в спинной мозг. Часть мозга от продолговатого до промежуточного составляет ствол мозга.

Составные части всех отделов нервной системы: скопления нервных клеток и соединения их отростков, проводящие пути, а также нейроглия, число клеток которой на порядок выше, чем число нервных клеток. Нейроглия играет роль опоры, питания, изоляции нервных клеток и т. д. Предполагают также, что она имеет прямое отношение к памяти.

^ Составные части отделов мозга

1. Теленцефалон – конечный мозг включает в себя следующие образования.

Большие полушария головного мозга – неопаллиум – новая кора (серое веществе – нервные клетки) и ее проводящие пути, интер (внутри) корковые и интра (вне) корковые, восходящие и нисходящие. Новая кора имеет шесть слоев клеток: первый - плексиморфный, состоит в основном из волокон и небольших клеток, второй – наружный слой зернистых клеток, третий – слой малых пирамид, четвертый – внутренний слой зернистых клеток, пятый слой – большие пирамиды, шестой – полиморфные клетки. Сенсорные – афферентные влияния подходят, в основном, к четвертому слою. Пирамиды – эфферентные клетки. От больших пирамид прецентральной извилины отходит пирамидный путь. У приматов значительная часть его волокон заканчивается непосредственно на мотонейронах, у более низкоорганизованных животных между пирамидными клетками и мотонейронами имеются вставочные нейроны. Пирамидный путь реализует произвольные движения. Внутри больших полушарий находятся латеральные желудочки мозга (первый и второй желудочки). Большие полушария делят на несколько основных долей: лобная, теменная, височная, затылочная. В затылочной коре находятся высшие отделы анализатора зрения, в височной – слуха, в теменной (постцентральная извилина) - поверхностной (кожной) и глубокой (мышечно-суставной) чувствительности. В прецентральной извилине расположен отдел коры, осуществляющий реализацию и регуляцию высших моторных функций.

В состав конечного мозга входит старая кора : гиппокампальные структуры (гиппокамп, зубчатая извилина и свод). Гиппокамп еще называют обонятельным мозгом, т. к. сюда подходят окончания от структур, передающих активацию обонятельных рецепторов. Но у гиппокампа имеется много иных функций. Гиппокамп и лобная доля новой коры – главные информационные структуры головного мозга высших животных и человека. Древняя кора - расположена под полушариями головного мозга - это ядра и проводящие пути прозрачной перегородки. Волокна от ядер прозрачной перегородки идут к гиппокампу по своду или через зубчатую извилину. Во внутренней толще больших полушарий расположены базальные ядра, Они включают стриопаллидарный комплекс (бледный шар, хвостатое ядро, скорлупа, ограда, нуклеус аккумбенс – прилежащее ядро). Основная функция стриопаллидарного комплекса – реализация двигательных программ. К базальным ядрам относят и миндалевидное тело – амигдала (кроме других функций, имеет непосредственное отношение к реализации эмоций).

Билатеральные части переднего мозга соединены между собой проводящими путями – комиссурами (корпус каллозум – мозолистое тело, передняя и задняя комиссуры).

Часть мозга между теленцефалоном и спинным мозгом называется стволом мозга . Ствол мозга включает промежуточный мозг (основные части: таламус и гипоталамус), (промежуточный мозг не все авторы включают в состав ствола мозга), средний мозг (четверохолмие, центральное серое вещество, ядра черепных нервов и проходящие волокна), задний мозг (варолиев мост и мозжечок) и продолговатый мозг. В центральной части ствола мозга расположены: третий желудочек, сильвиев водопровод и четвертый желудочек.

К варолиеву мосту, который лежит между средним и продолговатым мозгом, под острым углом сходятся ножки мозга, которые образованы проводящими путями переднего мозга. Расходясь кпереди, они образуют продырявленное пространство (субстанция перфората), сквозь которое проходят мозговые сосуды, обеспечивающие кровью глубинные структуры мозга. Ножки мозга представляют собой нисходящие пути от коры к переднему рогу спинного мозга, к двигательным ядрам черепно-мозговых нервов и к мозжечку. Ножки мозга условно можно разделить на три части: наружную, среднюю и внутреннюю. Снаружи проходят волокна затылочно-височно-мостового пути, медиально проходят лобно-мостовые пути, которые затем направляются к мозжечку, образуя корково-мосто-мозжечковые пути. В средней части ножек мозга проходят волокна корковоспинномозгового пути и корково-ядерного путей таким образом, что волокна, иннервирующие мышцы лица, расположены медиально, мышцы верхних конечностей посередине, а мышцы нижних конечностей – латерально.

Промежуточный мозг включает следующие образования.

^ Зрительный бугор – таламус, расположен по обе стороны третьего желудочка, кзади округлен (подушка), кпереди заострен (передний бугорок). Полоски белого вещества - проводящих путей делят таламус на отдельные ядра, число их - до 150 ядер, основные: передние, вентролатеральные, медиальные и внутрипластинчатые - интраламинарные. Забугорье – метаталамус включает медиальное (слух) и латеральное (зрение) коленчатые тела.

^ Таламус и метаталамус являются важнейшими афферентными центрами, коллектором восходящих афферентных импульсаций, несущих информацию об изменениях состояния рецепторов поверхностной (рецепторы от кожи) и глубокой чувствительности (рецепторы мышц и суставов). Здесь находятся также ядра клеток, которые анализируют импульсацию от органов зрения, слуха, вкуса.

^ Надбугорье – эпиталамус . К нему относятся поводок и шишковидное тело (корпус пинеалис). Шишковидное тело соединено с мозгом двумя пластинками белого вещества. Верхняя пластинка переходит в поводки, связанные между собой спайкой поводков, нижняя пластинка направлена вниз к задней комиссуре мозга. Шишковидное тело относится к эндокринной системе, находится в тесных взаимоотношениях с передней долей гипофиза (см. ниже), с надпочечниками, принимает участие в развитии половых признаков.

^ Подбугорье – гипоталамус . В нижней части гипоталамуса располагаются серый бугор и воронка (инфундибулум). Воронка заканчивается нижним придатком мозга – гипофизом. Гипофиз – одна из важнейших эндокринных желез.

Гипоталамус составляют 32 пары высодифференцированных ядер. Их делят на три группы: передняя, средняя и задняя.
Передний отдел: паравентрикулярные, супрахиазмальные, латеральные и медиальные части супраоптических ядер.
Средний отдел: задние отделы супраоптических ядер, ядра центрального серого вещества III желудочка, передняя часть мамиллоинфундибулярных ядер, паллидоинфундибулярные и интерфорникальное ядра.

Задний отдел гипоталамуса состоит из мамиллоинфундибулярных ядер (задняя часть), субталамического ядра (люисово тело), мамиллярного тела.
Каждая группа ядер реализует регуляцию той или иной функции. Передние отделы гипоталамуса имеют отношение преимущественно к интеграции функций парасимпатической нервной системы. Задние отделы осуществляют интеграцию функций симпатической нервной системы. Нейроны средней группы ядер обеспечивают регуляцию деятельности желез внутренней секреции, обмен веществ.

В подбугорье различают также субталамическую область, которая включает: субталамическое ядро, неопределенную зону, поля Форелля (Н1 и Н2) и некоторые другие образования. Субталамическая область является частью экстрапирамидной системы, принимающей участие в организации движений.

Гипоталамус – важнейший центр регуляции вегетативных функций. Он связан вегетативными волокнами со следующими образованиями: гипофиз, эпифиз, серое вещество в окружности III желудочка и сильвиева водопровода (который соединяет Ш и IV желудочки), вегетативные ядра продолговатого мозга, ретикулярная формация ствола мозга, клетки боковых рогов спинного мозга. Ядра гипоталамуса имеют также многочисленные связи между собой, с ядрами зрительного бугра, со стриопаллидарной системой, с миндалевидным ядром, с обонятельным мозгом и т. д.

Средний мозг расположен вокруг сильвиева водопровода, который соединяет третий и четвертый желудочки головного мозга. Он включает четверохолмие – это крыша среднего мозга (тегментум), и основание – ножки мозга, которые, как уже говорилось, подходят к варолиеву мосту, лежащему между средним и продолговатым мозгом. В четверохолмии находятся волокна и ядра, которые относятся к анализаторам зрения и слуха. Верхние холмики соединены нервными проводниками с наружными коленчатыми телами – зрение, нижние холмики соединены тяжами белого вещества с внутренними коленчатыми телами - первичные слуховые центры.

От ядер четверохолмия начинаются волокна тегменто-спинального (покрышечно-спинномозгового) пути, которые участвуют в реализации старт-рефлексов (вздрагивание на неожиданный стимул). В средней части расположены ядра среднего мозга. На границе ножек мозга с покрышкой - четверохолмием расположено ядро черного вещества (субстанция нигра) (лежит в виде пластинки на проводящих путях) - основа дофаминергической нейромедиаторной системы. Между четверохолмием и черным веществом находятся красное ядро, ядра нервов: –глазодвигательного (III пара - нервус окуломоторис) - на уровне верхних холмиков и блокового (IV пара - нервус трохлеарис, тоже управляет движениями глаз) – на уровне нижних холмиков, задние продольные пучки, обеспечивают, в основном,содружественноые движения глаз. В оральном отделе среднего мозга, кпереди от верхних холмиков находятся ядра этих задних продольных пучков. В латеральном отделе среднего мозга проходит медиальная петля (передает к новой коре информацию от кожи, мышц, суставов). Медиальная петля – это мощный ствол афферентных волокон, который составляют два пути: бульботаламический, несущий импульсы глубокой чувствительности от тонкого и клиновидного ядер продолговатого мозга (ядра Голля (мышцы и суставы ног)и Бурдаха (мышцы и суставы верхних конечностей)) в зрительный бугор, и спиноталамический, являющийся проводником поверхностной (кожной) чувствительности.

В окружности водопровода среднего мозга находится мощный слой ретикулярной формации. Красное ядро и черное вещество, расположенные в среднем мозге, относят к стриопаллидарной системе, которая включает также корпус стриатум: скорлупа и бледный шар (базальные ядра конечного мозга).

Мост головного мозга (варолиев мост) лежит между средним и продолговатым мозгом. Вентральная часть моста – толстый белый вал, который образуют поперечные волокна. Дорзальная поверхность моста – дно четвертого желудочка – ромбовидная ямка. В каудальной части моста находятся ядра черепно-мозговых нервов: с V по VIII пары (тройничный, отводящий, лицевой и преддверно-улитковый). На поперечном срезе моста границу между его дорсальной и центральной частями образует трапециевидное тело, которое относят к системе слухового анализатора.

В вентральной части моста находятся продольные волокна пирамидного пути, рассеянного здесь на множество мелких пучков между собственными ядрами моста, с которыми он имеет коллатеральные связи.

От собственных ядер моста берут начало поперечные волокна к мозжечку, которые составляют его средние ножки и относятся к корково-мостомозжечковому пути. Поэтому существует прямая зависимость между развитием коры больших полушарий, вентральной части моста и мозжечка. В связи с этим мост наиболее развит у человека.

В дорсальной части моста находятся чувствительные пути: в латеральных отделах – спиноталамический путь, более медиально – медиальная петля, содержащая бульботаламический путь. В оральной части моста спиноталамический путь и бульботаламический сливаются в один плотный ствол – в медиальную петлю, идущую дорсолатерально в мосту и в среднем мозге.

^ Продолговатый мозг
Верхний отдел продолговатого мозга граничит с мостом, внизу переходит без особой границы в спинной мозг. Оральный отдел продолговатого мозга открывается в полость IV желудочка, образуя задний угол ромбовидной ямки. Кнаружи от краев этой ямки находятся веревчатые тела – нижние ножки мозжечка.

В вентральном отделе продолговатого мозга проходят нисходящие волокна двигательного – пирамидного тракта: корковоспинномозговой путь – стволы пирамид. Перекрест пирамидного тракта или верхний отдел шейного отдела спинного мозга условно считают нижней границей продолговатого мозга.

На дорсальной поверхности продолговатого мозга различимы задние канатики, в которых проходят восходящие волокна глубокой чувствительности - пучки Голля и Бурдаха (тонкий и клиновидный).

В центральной части продолговатого мозга (поперечный срез) располагаются волокна перекреста медиальной петли, несущие импульсы глубокой чувствительности от ядер Голля и Бурдаха к зрительному бугру, к таламусу.

Вентролатеральные отделы продолговатого мозга занимают нижние оливы, Соответственно им на поверхности продолговатого мозга проявляется продольный валик. Оливы отделяются от пирамид боковой передней бороздой. Нижние оливы относятся к двигательной системе. Дорсальнее нижних олив проходят чувствительные пути спиномозжечкового тракта, а также чувствительный спиноталамический путь.

В дорсальном отделе продолговатого мозга располагаются ядра каудальной группы черепных нервов: XI и XII пары (добавочный и подъязычный нервы).

В дорсальной части продолговатого мозга расположен мощный слой ретикулярной формации.

^ Ромбовидная ямка . В области ромбовидной ямки лежат ядра III –XII пар нервов, проекция которых на дно четвертого желудочка имеет большое значение в диагностике поражения ствола мозга. (I и II пары: n. olfactorius - обонятельный и n. opticus – зрительный, их ядра лежат выше - в конечном и промежуточном мозге)

^ Перечень ядер, лежащих в ромбовидной ямке .

Оральный отдел продолговатого мозга открывается в полость IV желудочка, образуя задний угол ромбовидной ямки. Кнаружи от краев этой ямки находятся веревчатые тела – нижние ножки мозжечка.

Верхний угол ромбовидной ямки: ядра III пары (n. oculomotoris - глазодвигательный), IV (n. trochlearis - блоковый)

Наружные углы – ядра вестибулярных и слуховых нервов – VIII пара (преддверно-улитковые нервы)
Кнутри от них – чувствительное ядро тройничного нерва – V пара
Еще более кнутри – ядро одиночного пути (вкусовое ядро - n. solitarius) которое относится к системе IX и X нервов – языкоглоточного и блуждающего нервов.
В нижнем углу расположены ядра XII пары нервов – (подъязычные нервы), латерально к нему расположено дорсальное ядро блуждающего нерва (X пара). Парамедианно кпереди от ядра XII нерва расположено двигательное ядро IX и X нервов и верхнее и нижнее слюноотделительные ядра парасимпатической нервной системы.

В верхней части срединного возвышения располагается бугорок лицевого нерва (VII пара), образованный волокнами внутреннего колена лицевого нерва, огибающими ядро отводящего нерва (VI пара – n. abducens).
XI пара – добавочный нерв, обеспечивает движение некоторых мышц шеи

Л. О. Бадалян (Детская неврология): Чувствительность кожи лица, слизистых оболочек глаза,ротовой полости, носоглотки, гортани, а также иннервация мимических мышц, мышц глазного яблока, мягкого неба, глотки, голосовых связок, языка обеспечивается черепными нервами. В отличие от смешанных спинномозговых нервов, содержащих и чувствительные и двигательные волокна, 12 пар черепных нервов делятся на 6 чисто двигательных (III – глазодвигательный, IV – блоковый, VI – отводящий, VII – лицевой (барабанная струна – часть лицевого нерва, несет импульсацию от органа вкуса к ядру одиночного пути), XI – добавочный, XII –подъязычный), 3 смешанных (V – тройничный, IX – языкоглоточный, X – блуждающий), 3 пары относятся к органам чувств (I – обонятельный, II –зрительный, VIII – преддверно-улитковый). В то же время по своему происхождению, строению и функциям черепные нервы существенно не отличаются от спинномозговых.

Мозжечок расположен в задней черепной ямке под мостом мозга и продолговатым мозгом. Сверху он отделен от затылочных долей больших полушарий мозжечковым наметом. В мозжечке различают два полушария и червь, которые покрыты тонким слоем серого вещества – корой мозжечка.
Мозжечок крепится к мозгу тремя ножками: передние подходят к промежуточному мозгу, средние – к среднему, задние – к продолговатому.
Древний мозжечок – маленькая долька – клочок, лежащая на основании полушария у средней ножки мозжечка, и связанная с клочком часть червя – узелок. Старый мозжечок – червь, новый мозжечок – полушария.

Восходящие пути мозжечка:
Нижние ножки – задний спинно-мозжечковый путь, вестибуломозжечковый путь –от вестибулярного ядра Бехтерева, бульбомозжечковый путь – от ядер Голля и Бурдаха (глубокая чувствительность), ретикуло-мозжечковый путь, оливомозжечковый путь – от нижней оливы.

В нижней ножке проходят эфферентные пути, направляющиеся к переднему рогу спинного мозга, мозжечково-ретикулоспинномозговой, мозжечково- вестибулоспинномозговой (через латеральное вестибулярное ядро Дейтерса) и мозжечково-оливоспинномозговой путь.
В наиболее мощных средних ножках мозжечка проходят мостомозжечковые волокна – часть корково-мосто-мозжечковых путей, идущих от верхней лобной извилины и нижних отделов затылочной и височной долей через мост к коре мозжечка.

В верхних ножках мозжечка проходят афферентный путь от спинного мозга (передний спиномозжечковый путь) и нисходящий мозжечково-руброспинномозговой путь. Этот путь идет от зубчатого ядра полушария мозжечка через красное ядро к переднему рогу спинного мозга.

Спинной мозг – цилиндрический стволик, расположенный в позвоночном канале. Длина спинного мозга взрослого человека – 42 – 46 см.
В спинном мозге имеется 31 – 32 сегмента.: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 – 2 копчиковых. По длиннику спинного мозга имеются два утолщения: шейное (C5 – Th1)и поясничное (L 1-2 и S 1-2), соответственно для обеспечения работы верхних и нижних конечностей. Внизу – мозговой конус, концевая нить, до копчиковых позвонков.
На уровне каждого сегмента от спинного мозга отходит две пары передних и задних корешков. Задние корешки на небольшом расстоянии от выхода имеют утолщение - спинальный узел, имеющий чувствительные клетки. На каждой стороне передний и задний корешки соединяются в один стволик – спинномозговой канатик. Корешки спинного мозга имеют строго сегментарное распределение. Смешанный спинномозговой нерв далее делится на четыре ветви. Передняя ветвь иннервирует кожу и мышцы конечностей и передней поверхности тела. Задняя ветвь иннервирует заднюю поверхность туловища. Оболочечная (менингеальная) ветвь иннервирует оболочки спинного мозга. Соединительная ветвь направляется к симпатическим узлам.

Передние ветви нескольких сегментов объединяются, образуя сплетения, из которых выходят периферические нервы. Как правило, периферические нервы смешанные, т. е. имеют в своем составе чувствительные, двигательные и вегетативные волокна.

Имеются сплетения: шейное, плечевое, поясничное, крестцовое, копчиковое.
Центр спинного мозга занимает серое вещество – тела нервных клеток (их расположение напоминает бабочку), боковые, передние и задние отделы – белое вещество – восходящие и нисходящие волокна – отростки нервных клеток.

Крылья бабочки образуют передние, боковые и задние рога спинного мозга. В задние рога через задние корешки в спинной мозг входят волокна от спинномозговых узлов, скоплений нервных клеток, воспринимающих информацию от интероцепторов, рецепторов состояния внутренних органов, от экстероцепторов – рецепторов состояния поверхности кожи и от проприоцепторов – рецепторов состояния скелетной мускулатуры.

В передних рогах лежат мотонейроны и другие клетки, передающие возбуждение к исполнительным органам. Волокна этих клеток образуют передние корешки спинного мозга, которые выходят из передних рогов спинного мозга.
В боковых рогах спинного мозга расположены преимущественно вегетативные симпатические или парасимпатические нейроны, иннервирующие внутренние органы.

В боковых рогах спинного мозга на уровне сегментов С8-L3 располагаются эфферентные нейроны симпатической нервной системы. На уровне С8-Th1 находится симпатический цилиоспинальный центр. На уровне крестцовых сегментов S2-S4 находится спинальный парасимпатический центр регуляции функций тазовых органов.

Белое вещество спинного мозга условно делят на три столба: задний, передний и боковой. В передней части бабочки правая и левая половины серого вещества соединяются: срединное промежуточное вещество, в центре находится центральный спинномозговой канал.

Задние канатики – восходящие проводники глубокой чувствительности. Медиально расположены проводники глубокой чувствительности от нижних конечностей (тонкий пучок Голля), латерально – от верхних конечностей – (клиновидный пучок Бурдаха) В задних канатиках проходят также проводники тактильной чувствительности.
В боковых канатиках спинного мозга располагаются восходящие и нисходящие проводники
Восходящие пути: вдоль латерального края спинномозгового столба идут волокна спиномозжечкового пути_ переднего (Говерса) и заднего (Флексига).

Кнутри от пути Говерса проходят восходящие пути поверхностной чувствительности (латеральный спиноталамический путь) В боковых канатиках проходит также восходящий спинопокрышечный путь, несущий проприоцептивную информацию к буграм четверохолмия.
В боковых канатиках идут и нисходящие пути: это волокна пирамидного пути (латеральный корково-спинномозговой путь) –задние отделы боковых канатиков, у средней части заднего рога. Кпереди от пирамидного пути проходит красноядерно-спинномозговой путь (экстрапирамидная система управления движением), а также ретикулоспиномозговой путь.

Все нисходящие пути заканчиваются у клеток переднего рога.
Передние канатики спинного мозга составлены преимущественно нисходящими путями от передней центральной извилины, стволовых и подкорковых образований к передним рогам спинного мозга: передний неперекрещенный пирамидный путь, вестибулоспинальный путь, оливоспиномозговой путь и покрышечноспиномозговой путь.

^ Вегетативная нервная система

Вегетативная нервная система – это совокупность ядер и путей, регулирующих внутреннюю среду организма: процессы обмена веществ, деятельность внутренних органов, гладкой мускулатуры, желез внутренней секреции и т. д.
Между вегетативной и соматической системами существует тесная связь. Все двигательные реакции получают вегетативно-трофическое обеспечение.
Анатомически выделяются специализированные вегетативные центры и узлы.

^ Основной принцип работы вегетативной системы – рефлекторный . Афферентное звено вегетативного рефлекса начинается от разнообразных рецепторов, которые расположены во всех органах. От интерорецепторов по вегетативным волокнам или по смешанным периферическим нервам импульсы достигают первичных сегментарных центров (спинальных или стволовых). От них по эфферентным каналам проводятся регулирующие влияния к соответствующим органам.

В отличие от соматического спинального мотонейрона вегетативные сегментарные эфферентные пути двухнейронны: волокна от клеток боковых рогов прерываются в узлах, лежащих вне спинного мозга, а уже постганглионарный нейрон достигает органа.
Центры вегетативной нервной системы расположены в боковых рогах спинного мозга, в стволе, высшие центры – в коре головного мозга.

Вегетативная нервная система условно делится на симпатическую (сегменты C8-L3) и парасимпатическую (ядра находятся в среднем и в продолговатом мозгу, а также в крестцовых отделах спинного мозга). Парасимпатическая система – более древняя. В ее функции входит стабилизация внутренней среды. Симпатическая – более молодая. В ее функции входит преимущественно адаптация внутренней среды к изменяющимся внешним условиям. Однако любой орган находится под влиянием той и другой системы.
Ядра парасимпатической системы: в среднем мозге: парасимпатическое ядро Якубовича и центральное хвостовое ядро. От них отходят волокна в составе глазодвигательного нерва к ресничатому ганглию.В продолговатом мозгу – бульбарный отдел.: секреторные и слюноотделительные ядра, верхнее и нижнее, иннервирующие слезную и слюноотделительную железу. В задней части - ядро блуждающего нерва, который иннервирует все внутренние органы, гладкую мускулатуру сердца, легких, кишечника, отдает волокна к железам внутренней скреции.

^ Основные принципы строения нервной системы
Назначение нервной системы – сбор и обработка информации об изменениях внешней и внутренней среды организма и организация адекватных реакций на эти изменения с целью 1)поддержания гомеостазиса, 2)адаптации к изменениям внешней и внутренней среды, 3)развития и воспроизведения живого существа.
Весь клеточный состав нервной системы делится на три части: рецепторные нейроны – собирают информацию, вставочные нейроны –обрабатывают и передают ее, и эффекторные нейроны – активируют соответствующие исполнительные органы.
Нервная система делится на центральную (головной и спинной мозг) и периферическую (разного рода рецепторы и вегетативная нервная система (симпатическая и парасимпатическая).
Особенность всех рецепторных клеток – их тела находятся в специальных органах чувств (глаз, ухо, вестибулярный аппарат, нос), либо в чувствительных клетках, расположенных в разных частях тела и в чувствительных ганглиях (кожа, мышцы, сухожилия, суставы, внутренние органы), т. е. вне черепной коробки и позвоночного столба. Внутри черепной коробки и позвоночного столба находятся вторые и последующие нейроны.
Все вставочные нейроны расположены в пределах головного и спинного мозга.

Отличия расположения нейронов, связанных с исполнительными органами: мотонейроны, связанные с мышцами, расположены внутри позвоночного столба, в спинном мозге. Нейроны симпатической нервной системы, непосредственно связанные с работой внутренних органов, расположены в симпатических ганглиях, расположенных вдоль позвоночного столба (к этим ганглиям подходят нейроны, расположенные в боковых отделах спинного мозга). Эффекторные нейроны парасимпатической системы расположены в иннервируемых ими органах.
Краткое перечисление структур головного мозга, их взаимосвязей и функций.

Как уже говорилось, особенность функционирования мозговых структур заключается во взаимодействии сенсорных проекционных систем,(восприятие света, звука, мышечно-суставное чувство), работающих по экранному принципу: передача из точки в точку (анализаторы, по И. П. Павлову) ассоциативных образований, реализующих связи между этими системами и эффекторными клетками (мотонейроны, нейроны, управляющие работой желез внешней и внутренней секреции и т. д.). Развитие нервной системы в эволюционном плане происходило в виде надстройки все новых образований, управляющих все более сложными функциями организма, в увеличении количества нервных клеток и связей между ними.
Мозг делят на несколько основных частей: спинной мозг, продолговатый мозг, задний мозг (в него входят мост и мозжечок) средний мозг (четверохолмия и лежащие под ними ядра и проводящие пути), межуточный мозг (таламус, гипоталамус и проводящие пути, проходящие через них), конечный мозг - теленцефалон. Теленцефалон составляют: древняя кора (прозрачная перегородка), старая кора (гиппокамп), новая кора (полушария большого мозга) и ближайшая подкорка (базальные ядра: стриопаллидарная система –бледный шар, прилежащее ядро, хвостатое ядро, скорлупа, ограда и миндалевидное тело).
Необходимо подчеркнуть, что любая, даже самая простая форма целенаправленной деятельности осуществляется всем мозгом в целом. Однако каждая мозговая структура имеет и свою основную функцию.

Перечень анализаторов.

Зрение. Сетчатка состоит из пяти слоев клеток: рецепторы света (палочки реализуют восприятие черно-белого света, колбочки – цветного) передают информацию биполярным клеткам, горизонтальные клетки, управляют связями между рецепторами и биполярными клетками, биполярнуе клетки связывают рецепторы света с ганглиозными клетками. Амакриновые клетки регулируют связи между биполярами и ганглиозными клетками. От ганглиозных клеток сетчатки идут зрительные нервы, далее перекрест – хиазма, зрительные тракты, верхние бугорки четверохолмия среднего мозга, наружные коленчатые тела – в составе таламуса (межуточный мозг), далее - зрительная лучистость, поле 17, или V1 (V от слова visual – зрительный) Это первичное зрительное поле (фиссура калькарина – шпорная борозда) расположено на внутренней части затылочной доли новой коры больших полушарий. Вокруг первичного поля расположены вторичные зрительны поля – ассоциативные. Есть также прямые пути от сетчатки в гипоталамус для регуляции состояния организма в зависимости от сезонных изменений освещенности.

Слух: рецепторы внутреннего уха – отростки волосковых клеткок расположены на базилярной мембране улитки, тела этих клеток - в спиральном ганглии – лежит на дне улитке. Аксоны этих клеток разветвляются и идут к двум ядрам –верхнее и нижнее кохлеарные ядра, и к трапециевидному телу – лежат в области моста (задний мозг). Далее латеральная петля, верхние бугорки четверохолмия (средний мозг) и внутренние коленчатые тела (межуточный мозг). От коленчатых тел идет лучистость в височные доли больших полушарий.

Равновесие: рецепторы вестибулярного аппарата во внутреннем ухе – волосковые клетки расположены в мешочках (макула и утрикула) и полукружных каналах внутреннего уха. Тела рецепторных клеток образуют гассеров узел – лежит в улитке. Аксоны клеток гассерова узла идут в четыре ядра в области моста (в ромбовидной ямке), от этих ядер далее связи вестибулярного аппарата со спинным мозгом, с мозжечком, с новой корой.

Обоняние: Рецепторы расположены в полости носа. От полости носа волокна (филаменты) идут к обонятельной луковице. Далее обонятельный тракт, обонятельный треугольник, обонятельный бугорок, обонятельный мозг в гиппокампе, новая кора.

Вкус: Рецепторы в языке, три пути (барабанная струна - часть лицевого нерва, тройничный и блуждающий нервы) идут к ядру одиночного (солитарного) тракта в продолговатом мозгу, от него путь к таламусу и далее к новой коре.

Мышечно-суставная чувствительность: рецепторы в мышцах, в сухожилиях и в суставах, тела их клеток лежат в чувствительных спинномозговых ганглиях, далее в задней части спинного мозга волокна этих клеток образуют пучки Голля (нижние конечности и нижняя часть туловища) и Бурдаха (верхние конечности и верхняя часть туловища), которые подходят к ядрам Голля и Бурдаха в продолговатом мозгу, долее - медиальная петля, чувствительные ядра в таламусе, постцентральная извилина в теменной доле больших полушарий.

Тактильная чувствительность: Рецепторы в коже головы, конечностей и туловища, чувствительные спинномозговые ганглии и чувствительные ядра черепных нервов (тройничный нерв), клетки задних рогов спинного мозга, передне-боковой пучок в спинном мозге, медиальная петля, ядра таламуса, постцентральная извилина в теменной доле коры.

Боль: рецепторы в коже, пути те же, как и у тактильной чувствительности.

Висцеральная чувствительность: рецепторы внутренних органов, чувствительные ганглии, спинной мозг, таламус, новая кора. Чувствительность плохо локализуется, т. к. в коре мало представлена.

Нервные проводники всех видов чувствительности по ходу своего проведения отдают коллатерали в другие структуры мозга: в ретикулярную формацию продолговатого мозга, среднего мозга, таламуса, а также к гипоталамусу, к прозрачной перегородке, к гиппокампу и к ассоциативным полям новой коры. Здесь происходит дивергенция и конвергенция разного рода влияний на нервную систему.

^ Организация исполнительных программ . Исполнительные программы условно можно разделить на те, которые регулируют состояние гомеостазиса, роста и развития организма, и на те, которые организуют разного рода движения и взаимодействие с внешней средой.

В реализации программ первого рода большую роль играет взаимодействие гипоталамуса, эпифиза (шишковидная железа, лежит над таламусом), гипофиза (центральная железа внутренней секреции, управляется ядрами гипоталамуса), ретикулярной формации и вегетативной нервной системы, симпатической и парасимпатической.

Движения организуют такие структуры как: прецентральная извилина больших полушарий новой коры – моторная кора, (от нее идет пирамидный путь, который организует произвольные движения), премоторная кора, лобная доля, базальные ядра (теленцефалон), красное ядро (средний мозг), нижняя олива (продолговатый мозг), мозжечок и передние рога спинного мозга. Все эти структуры связаны между собой двусторонними связями.

Специфическая функция живого организма, которая отличает его от любой искусственной его имитации - это способность огорчаться и радоваться, т. е. испытывать состояния удовольствия, страха, и других положительных и отрицательных эмоций. Показано, что к реализации этих состояний непосредственное отношение имеет лимбическая система. Сюда относят: гиппокамп, гипоталамус, миндалину и определенные участки новой коры (поясная извилина, парагиппокампальная извилина, грушевидная извилина, энторинальная кора и др.). Они, наряду с новой корой, определяют также переход головного мозга от бодрствования ко сну и торможение реакций, осуществление которых неадекватно текущей ситуации. Это торможение может быть как безусловным (внешним, по терминологии И. П. Павлова), так и выработанным, возникающим в результате обучения – внутренним торможением. В лимбической системе обнаружены центры удовольствия и наказания.

Следует отметить также, что в центральной нервной системе имеются специфические тормозные системы, локальные и общемозговые

  • Аллергия (определение). Общая этиология и общий патогенез. Виды гиперчувствительности
  • Анатомия верхних дыхательных путей собаки с брахиоцефалическим синдромом. Розовым отмечены места сужения дыхательных путей.
  • Нейронные сети l

    Нейронные сети - это раздел искусственного интеллекта, в котором для обработки сигналов используются явления, аналогичные происходящим в нейронах живых существ. Важнейшая особенность сети, свидетельствующая о ее широких возможностях и огромном потенциале, состоит в параллельной обработке информации всеми звеньями. При громадном количестве межнейронных связей это позволяет значительно ускорить процесс обработки информации. Во многих случаях становится возможным преобразование сигналов в реальном времени. Кроме того, при большом числе межнейронных соединений сеть приобретает устойчивость к ошибкам, возникающим на некоторых линиях. Функции поврежденных связей берут на себя исправные линии, в результате чего деятельность сети не претерпевает существенных возмущений.

    l Другое не менее важное свойство - способность к обучению и обобщению накопленных знаний. Нейронная сеть обладает чертами искусственного интеллекта. Натренированная на ограниченном множестве данных сеть, способна обобщать полученную информацию и показывать хорошие результаты на данных, не использовавшихся в процессе обучения.

    l Характерная особенность сети состоит также в возможности ее реализации с применением технологии сверхбольшой степени интеграции. Различие элементов сети невелико, а их повторяемость огромна. Это открывает перспективу создания универсального процессора с однородной структурой, способного перерабатывать разнообразную информацию.

    l Использование перечисленных свойств на фоне развития устройств со сверхбольшой степенью интеграции (VLSI) и повсеместного применения вычислительной техники, вызвало в последние годы огромный рост интереса к нейронным сетям и существенный прогресс в их исследовании. Создана база для выработки новых технологических решений, касающихся восприятия, искусственного распознавания и обобщения видеоинформации, управления сложными системами, обработки речевых сигналов и т.п. Искусственные нейронные сети в практических приложениях, как правило, используются в качестве подсистемы управления или выработки решений, передающей исполнительный сигнал другим подсистемам, имеющим иную методологическую основу.

    l Функции, выполняемые сетями, подразделяются на несколько групп: аппроксимация; классификация и распознавание образов; прогнозирование; идентификация и оценивание; ассоциативное управление. l Аппроксимирующая сеть играет роль универсального аппроксиматора функции нескольких переменных, который реализует нелинейную функцию вида у = f{x), где х - входной вектор, а у - реализованная функция нескольких переменных. Множество задач моделирования, идентификации, обработки сигналов удается сформулировать в аппроксимационной постановке. l Для классификации и распознавания образов сеть накапливает в процессе обучения знания об основных свойствах этих образов, таких, как геометрическое отображение структуры образа, распределение главных компонентов (РСА), или о других характеристиках. При обобщении акцентируются отличия образов друг от друга, которые и составляют основу для выработки классификационных решений.Функции нейронных сетей l В области прогнозирования задача сети формулируется как предсказание будущего поведения системы по имеющейся последовательности ее предыдущих состояний. По информации о значениях переменной в моменты времени, предшествующие прогнозированию, сеть вырабатывает решение о том, чему должно быть равно оцениваемое значение исследуемой последовательности в текущий момент времени. l

    В задачах управления динамическими процессами нейронная сеть выполняет, как правило, несколько функций. Во-первых, она представляет собой нелинейную модель этого процесса и идентифицирует его основные параметры, необходимые для выработки соответствующего управляющего сигнала. Во-вторых, сеть выполняет функции следящей системы, отслеживает изменяющиеся условия окружающей среды и адаптируется к ним. Она также может играть роль нейрорегулятора, заменяющего собой традиционные устройства. Важное значение, особенно при управлении роботами, имеют классификация текущего состояния и выработка решений о дальнейшем развитии процесса.Функции нейронных сетей l

    В задачах ассоциации нейронная сеть выступает в роли ассоциативного запоминающего устройства. Здесь можно выделить память автоассоциативного типа, в которой взаимозависимости охватывают только конкретные компоненты входного вектора, и память гетероассоциативного типа, с помощью которой сеть определяет взаимосвязи различных векторов. Даже если на вход сети подается вектор, искаженный шумом, либо лишенный отдельных фрагментов данных, то сеть способна восстановить полный и очищенный от шумов исходный вектор путем генерации соответствующего ему выходного вектора. l

    Различные способы объединения нейронов между собой и организации их взаимодействия, привели к созданию сетей разных типов. Каждый тип сети, в свою очередь, тесно связан с соответствующим методом подбора весов межнейронных связей (т.е. обучения). Функции нейронных сетей l Интересным представляется объединение различных видов нейронных сетей между собой, особенно сетей с самоорганизацией и обучаемых с учителем. Такие комбинации получили название "гибридные сети". Первый компонент - это сеть с самоорганизацией на основе конкуренции, функционирующая на множестве входных сигналов и группирующая их в кластеры по признакам совпадения свойств. Она играет роль препроцессора данных. Второй компонент - в виде сети, обучаемой с учителем (например, персептронной), сопоставляет входным сигналам, отнесенным к конкретным кластерам, соответствующие им заданные значения (постпроцессинг). Подобная сетевая структура позволяет разделить фазу обучения на две части: вначале тренируется компонент с самоорганизацией, а потом - сеть с учителем. Дополнительное достоинство такого подхода заключается в снижении вычислительной сложности процесса обучения, а также в лучшей интерпретации получаемых результатов

    Возбуждение в центральной нервной системе распространяется по различным конфигурациям нервных цепочек. Во всех изученных нервных сетях обнаружены:

    1) конвергенция путей, передающих информацию в высшие, а также в исполнительные центры;

    2) дивергенция путей, передающих те или иные сигналы;

    3) реверберация, или нейронные ловушки.

    Конвергенция - это схождение нескольких нервных путей к одним и тем же нейронам или нервным центрам.

    Конвергенция многих нервных путей к одному нейрону делает этот нейрон (или нервный центр) интегратором соответствующих сигналов. Его состояние (импульсация или торможение) в каждый момент времени определяются алгебраическим сложением массы возбуждающих и тормозных входов. Иными словами, суммой всех его ВПСП и ТПСП, поступающих на данный нейрон. Если речь идет о мотонейроне, т. е. конечном звене нервного пути к мускулатуре, говорят о принципе общего конечного пути. Например, у позвоночных на каждом мотонейроне спинного мозга и ствола головного мозга образуют синоптические окончания тысячи сенсорных, а также возбуждающих и тормозных вставочных нейронов разных уровней. Мощная конвергенция обнаруживается и на нейронах ретикулярной формации ствола мозга. Еще одной областью «применения» конвергенции являются «сенсорные воронки». Сущность воронок заключается в том, что количество входов в нее меньше, чем количество выходов. Благодаря конвергенции происходит «сжатие», уменьшение объема информации, поступающей от рецепторов к центральной нервной системе. Конвергенция участвует и в процессах пространственного облегчения и окклюзии.

    Дивергенция - это контактирование одного нейрона или нервного Центра со множеством нейронов или нервных центров. Так, существует разделение аксона чувствительного нейрона в спинном мозге на множество коллатералей. Получившиеся разветвления направляется к разным сегментам спинного мозга и в головной мозг.

    Дивергенция пути сигнала наблюдается у многих вставочных нейронов, у командных клеток. Благодаря дивергенции могут формироваться процессы параллельных вычислений, что обеспечивает высокий уровень быстродействия ЦНС. Дивергенция пути обеспечивает расширение области распространения сигнала. Тем самым формируется распространение процесса возбуждения на другие нервные центры, т. е. иррадиация, возбуждение или торможение.

    Процесс иррадиации играет положительную роль при формировании новых реакций организма, поскольку активация большого количества различных нервных центров позволяет выделить из их числа наиболее нужные для последующей деятельности и сформировать между ними функциональные связи, т. е. совершенствовать ответную реакцию организма. Благодаря этому процессу между различными нервными центрами возникают условные рефлексы.

    Иррадиация возбуждения может оказать и отрицательное воздействие на состояние и поведение организма. Так, иррадиация сильного возбуждения в центральной нервной системе нарушает тонкие взаимоотношения, сложившиеся между процессами возбуждения и торможения в нервных центрах, и приводит к расстройству двигательной деятельности. Например, при эпилепсии возбуждение из патологического очага иррадиирует на большое количество нервных центров коры больших полушарий.

    Часто стимулы , поступающие к нервному пулу по одному волокну, возбуждают гораздо большее число нервных волокон, покидающих пул. Этот феномен называют дивергенцией. Существуют два основных типа дивергенции, функциональная роль которых различна.

    На рисунке показан расходящийся тип дивергенции , при котором происходит распространение действия входящего сигнала на все большее количество нейронов по мере того, как сигнал проходит через последовательный ряд нейронов. Такой тип дивергенции характерен для кортикоспинального тракта, управляющего скелетными мышцами. При этом одна большая пирамидная клетка в двигательной области коры большого мозга при чрезвычайно облегченных условиях способна возбудить до 10000 мышечных волокон.

    Второй тип дивергенции, приводит к расхождению нервных путей с образованием многочисленных трактов. В данном случае сигнал передается в двух направлениях от пула. Например, информация, передаваемая в восходящем направлении по задним столбам спинного мозга, в нижней части головного мозга направляется двумя разными путями: (1) в мозжечок; (2) через нижние области головного мозга к таламусу и коре большого мозга. Аналогично в таламусе почти вся сенсорная информация передается одновременно в еще более глубокие структуры самого таламуса и различные области коры большого мозга.

    Конвергенция нервных сигналов

    Конвергенция означает объединение сигналов множественных входов на одном нейроне. На рисунке схематически изображена конвергенция сигналов, исходящих из одного источника. Это значит, что на одном нейроне заканчиваются многочисленные терминали нервных волокон одиночного тракта. Этот тип конвергенции важен, поскольку нейроны почти никогда не возбуждаются потенциалом действия одной входящей терминали. Но потенциалы действия многих терминалей, конвергирующих на нейроне, обеспечивают достаточную пространственную суммацию, чтобы сдвинуть мембранный потенциал нейрона до порогового уровня, необходимого для его возбуждения.

    Возможна также конвергенция сигналов (возбуждающих или тормозящих), исходящих из многих источников, как показано на рисунке. Например, на вставочных нейронах спинного мозга конвергируют сигналы от: (1) периферических нервных волокон, входящих в спинной мозг; (2) проприоспинальных волокон, идущих от одного сегмента спинного мозга к другому; (3) кортикоспинальных волокон из коры большого мозга; (4) нескольких других длинных нисходящих путей из головного в спинной мозг. Затем сигналы от вставочных нейронов сходятся на мотонейронах спинного мозга, непосредственно управляющих функцией скелетных мышц.

    Такая конвергенция позволяет осуществлять суммацию информации из различных источников, а ответная реакция нейрона является результатом интеграции всей этой информации. Конвергенция - один из важных способов, с помощью которых центральная нервная система коррелирует, интегрирует и сортирует различные типы информации.

    Иногда в ответ на сигнал, входящий в нервный пул , на выходе одновременно появляются возбуждающий сигнал, идущий в одном направлении, и тормозной сигнал, направляющийся по другому пути. Например, когда в спинном мозге одна группа нейронов посылает возбуждающий сигнал для движения ноги вперед, через другую группу нейронов передается сигнал, тормозящий мышцы, двигающие эту ногу назад, чтобы они не мешали движению вперед. Этот тип контура, называемый контуром с реципрокным торможением, характерен для всех нервных центров, управляющих мышцами-антагонистами.

    На рисунке показан механизм развития такого торможения . Входящее волокно одновременно стимулирует возбуждающий выход пула (нейрон 1) и вставочный тормозной нейрон (нейрон 2), секретирующий медиатор, который тормозит второй выход пула. Этот тип контура важен также для предупреждения гиперактивности во многих частях мозга.