Частота микроволнового излучения. Плоские вакуумные триоды

СВЧ-поле

СВЧ-поле, СВЧ-поля


Слитно или раздельно? Орфографический словарь-справочник. - М.: Русский язык . Б. З. Букчина, Л. П. Какалуцкая . 1998 .

Смотреть что такое "СВЧ-поле" в других словарях:

    Сущ., кол во синонимов: 1 поле (76) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    СВЧ-поле - СВЧ по/ле, СВЧ поля/ … Слитно. Раздельно. Через дефис.

    пороговое магнитное СВЧ поле - Значение амплитуды напряженности переменного магнитного поля в магнитном материале, выше которого составляющие тензора магнитной проницаемости зависят от амплитуды переменного магнитного поля. [ГОСТ 19693 74] Тематики материалы магнитные …

    Пашня, луг, поляна, нива; фон, равнина, степь. В чистом поле, в широком раздолье. Фон картины. Поля шляпы, поля (края, закраины) книги. См. арена, край, место. одного поля ягоды... Словарь русских синонимов и сходных по смыслу выражений. под.… … Словарь синонимов

    ГОСТ 23769-79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения - Терминология ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения оригинал документа: 39. π вид колебаний Ндп. Противофазный вид колебаний Вид колебаний, при котором высокочастотные напряжения …

    электровакуумный прибор СВЧ - ЭВП СВЧ Электронный прибор СВЧ, в котором электромагнитное СВЧ поле взаимодействует с электронными потоками или с волнами электронного потока, распространяющимися в вакууме или наполняющем прибор разреженном газе. [ГОСТ 23769 79] Тематики приборы … Справочник технического переводчика

    Электровакуумный прибор СВЧ - 2. Электровакуумный прибор СВЧ ЭВП СВЧ Vacuum tube Электронный прибор СВЧ, в котором электромагнитное СВЧ поле взаимодействует с электронными потоками или с волнами электронного потока, распространяющимися в вакууме или наполняющем прибор… … Словарь-справочник терминов нормативно-технической документации

    Активный резонатор СВЧ - 132. Активный резонатор СВЧ Active cavity Резонатор СВЧ, в котором СВЧ поле взаимодействует с рабочим электронным потоком Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

    Пассивный резонатор СВЧ - 134. Пассивный резонатор СВЧ Passive cavity Резонатор СВЧ, в котором СВЧ поле не взаимодействует с рабочим электронным потоком Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

    активный резонатор СВЧ - Резонатор СВЧ, в котором СВЧ поле взаимодействует с рабочим электронным потоком. [ГОСТ 23769 79] Тематики приборы и устройства защитные СВЧ Обобщающие термины конструктивные элементы EN active cavity … Справочник технического переводчика

Книги

  • Электродинамика плотных электронных пучков в плазме , Кузелев М.В.. Рассмотрены электромагнитные свойства плотных электронных пучков применительно к проблемам транспортировки энергии, их релаксации в плазме, усиления и генерацииэлектромагнитного излучения в…

Cекция "Tехника и технология переработки гидробионтов и сельскохозяйственного сырья"

ВОЗДЕЙСТВИЕ ЭЛЕКТРОМАГНИТНОГО СВЧ-ПОЛЯ НА ОРГАНИЗМ ЧЕЛОВЕКА

Краев А.А. (кафедра физики, МГТУ)

Почти невозможно заранее рассчитать количество лучистой энергии, поглощенной телом человека в данном участке электромагнитного поля и преобразованной в теплоту. Величина этой энергии сильно зависит от основных электрических характеристик, положения, размеров и структуры мышечной и жировой тканей и направления падения волны, т. е. другими словами, эта величина зависит от входного сопротивления данной сложной структуры. Направление поляризации падающей волны относительно оси тела также играет существенную роль. В каждом отдельном случае для установления симптомов требуется точное исследование существующих условий. Действительное повышение температуры тела зависит от таких параметров окружающей среды, как температура и влажность, и от механизма охлаждения тела.

Облучение в сверхвысокочастотном интенсивном поле живых тканей приводит к изменению их свойств, которые связаны с тепловыми последствиями поглощения излучения. Для изучения этих изменений живые ткани можно разделить на два класса:

б) ткани, не содержащие кровеносных сосудов.

При соответствующем регулировании выходной мощности генератора сверхвысоких частот и продолжительности облучения различные ткани, содержащие кровеносные сосуды, могут быть нагреты практически до любой температуры. Температура тканей, начинает повышаться сразу же после подвода к ней СВЧ-энергии. Этот рост температуры продолжается в течение 15-20 мин и может на 1-2 °С повысить температуру ткани по сравнению со средней температурой тела, после чего температура начинает падать. Падение температуры в облучаемом участке происходит в результате резкого увеличения в нем потока крови, что приводит к соответствующему отводу теплоты.

Отсутствие кровеносных сосудов в некоторых частях тела делает их особенно уязвимыми к облучению сверхвысокими частотами. В этом случае теплота может поглощаться только окружающими сосудистыми тканями, к которым она может поступать только путем теплопроводности. Это в частности справедливо для тканей глаза и таких внутренних органов, как желчный пузырь, мочевой пузырь и желудочно-кишечный тракт. Малое количество кровеносных сосудов в этих тканях затрудняет процесс авторегулирования температуры. Кроме того, отражения от граничных поверхностей полостей тела и областей расположения костного мозга при определенных условиях приводит в образованию стоячих волн. Чрезмерное возрастание температуры в отдельных участках действия стоячих волн может вызвать повреждение ткани. Отражения такого рода вызываются также металлическими предметами, расположенными внутри или на поверхности тела.

При интенсивном облучении этих тканей СВЧ-полем наблюдается их перегрев, приводящий к необратимым изменениям. В то же время СВЧ-поля малой мощности благотворно воздействуют на организм человека, что используется в медицинской практике.

Головной и спинной мозг чувствительны к изменениям давления, и поэтому повышение температуры в результате облучения головы может иметь серьезные последствия. Кости черепной коробки вызывают сильные отражения, из-за чего оценить поглощенную энергию очень трудно. Повышение температуры мозга происходит наиболее быстро, когда голова облучается сверху или когда облучается грудная клетка, так как нагретая кровь из грудной клетки непосредственно направляется к мозгу. Облучение головы вызывает состояние сонливости с последующим переходом к бессознательному состоянию. При длительном облучении появляются судороги, переходящие затем в паралич. При облучении головы неизбежно наступает смерть, если температура мозга повышается на 6 °С.

Глаз - это один из наиболее чувствительных к облучению энергией СВЧ органов, потому что он имеет слабую терморегуляционную систему и выделяющаяся теплота не может отводиться достаточно быстро. После 10 мин облучения мощностью 100 Вт на частоте 2450 МГц возможно развитие катаракты (помутнения хрусталика глаза), в результате чего белок хрусталика коагулирует и образует видимые белые вкрапления. На этой частоте наибольшая температура возникает около задней поверхности хрусталика, который состоит из протеина, легко повреждаемого при нагревании.

Мужские половые органы в высшей степени чувствительны к тепловому воздействию и, следовательно, особенно уязвимы при облучении. Безопасная плотность излучения в виде максимального уровня

5 мВт/см 2 значительно ниже, чем для других чувствительных к облучению органов. В результате облучения семенников может наступить временное или постоянное бесплодие. Повреждение половых тканей рассматривают особо, так как некоторые генетики считают, что небольшие дозы облучения не приводят к каким-либо физиологическим нарушениям, в то же время могут вызвать мутации генов, которые остаются скрытыми в течение нескольких поколений.

Сверхвысокочасто́тное излуче́ние

Презентация к уроку «Шкала электромагнитных волн»

учителя МАОУ лицея №14

Ермаковой Т.В.



Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн

  • Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твёрдыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

Свойства СВЧ-излучения


  • В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более

широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров.

  • Свойства СВЧ-излучения

  • Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным. Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролёта электрона и межэлектродная ёмкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить своё направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.
  • ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯ

В магнетроне, изобретённом в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения - принцип объёмного резонатора.

  • МАГНЕТРОН Представляет собой двухэлектродную электронную лампу, которая генерирует СВЧ-излучение за счет движения электронов под действием взаимно перпендикулярных электрического и магнитного полей. Применяется в качестве генераторной лампы радио- и радиолокационных передатчиков СВЧ-диапазона.

1 - катод; 2 - токоподводы нагревателя; 3 - анодный блок; 4 - объемные резонаторы; 5 - выходная петля связи; 6 - коаксиальный кабель.

  • Магнетрон

  • Основан на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объёмного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные "сгустки", так что электроны пересекают зазор резонатора только в определённые моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передаётся резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания.

1 - катод; 2 - резонатор; 3 - отражательная пластина; 4 - резонаторные сетки; 5 - выходная петля связи; 6 - управляющая сетка.

  • Клистрон

  • Представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне. Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча.
  • Лампа бегущей волны (ЛБВ).

  • Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц.

Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора

  • Плоские вакуумные триоды

  • диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.
  • Генератор на диоде Ганна

  • После Второй мировой войны начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США. Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта - морского судна или самолета.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • Здесь на помощь приходят связные искусственные спутники Земли; выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи. Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • Термообработка. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Промышленность выпускает также СВЧ-печи бытового назначения.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ


  • Термообработка. Американские военные представили мощный СВЧ-излучатель, "тепловое" оружие, которое способно разгонять толпы демонстрантов и устанавливать невидимую "стену", через которую человек не сможет пройти. Установка получила название "Система активного сдерживания (отбрасывания)" (Active Denial System, ADS), прозвано "тепловой луч" и "микроволновая пушка"
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • . СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона.

Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов. Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства.

  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • В настоящее время в мире существуют два основных стандарта на уровень безопасного излучения. Один из них разработан Американским Национальным Институтом Стандартов (ANSI) и предлагает считать безопасным излучение с плотностью мощности в 10 мВт/см2. Для микроволновых печей стандартом является плотность мощности в 1 мВт/см2 на расстоянии 5 см от печи.

Европейский стандарт (в том числе и российский) предполагает, что уровень плотности излучения не должен превышать 10 мкВт (0.01 мВт) на квадратный сантиметр на расстоянии 50 см. от источника излучения

  • Безопасность при использовании СВЧ-устройств

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.

Свойства сверхвысокочастотных волн

В современной жизни сверхвысокочастотные волны используются весьма активно. Взгляните на ваш сотовый телефон – он работает в диапазоне сверхвысокочастотного излучения.

Все технологии, такие как Wi-Fi, беспроводной Wi-Max, 3G, 4G, LTE (Long Term Evolution), радиоинтерфейс малого радиуса действия Bluetooth , системы радиолокации и радионавигации используют сверхвысокочастотные (СВЧ) волны.

СВЧ нашли применение в промышленности и медицине. По-другому СВЧ волны ещё называют микроволнами. Работа бытовой микроволновой печи также основана на применении СВЧ излучения.

Микроволны – это те же самые радиоволны, но длина волны у таких волн составляет от десятков сантиметров до миллиметра. Микроволны занимают промежуточное место между ультракороткими волнами и излучением инфракрасного диапазона. Такое промежуточное положение оказывает влияние и на свойства микроволн. Микроволновое излучение обладает свойствами, как радиоволн, так и световых волн. Например, СВЧ излучению присущи качества видимого света и инфракрасного электромагнитного излучения.


Станция мобильной сети стандарта LTE

Микроволны, длина волны которых составляет сантиметры, при высоких уровнях излучения способны оказывать биологическое воздействие. Кроме этого сантиметровые волны хуже проходят через здания, чем дециметровые.

СВЧ излучение можно концентрировать в узконаправленный луч. Это свойство напрямую сказывается на конструкции приёмных и передающих антенн, работающих в диапазоне СВЧ. Никого не удивит вогнутая параболическая антенна спутникового телевидения, принимающая высокочастотный сигнал, словно вогнутое зеркало, собирающее световые лучи.

Микроволны подобно свету распространяются по прямой и перекрываются твёрдыми объектами, наподобие того, как свет не проходит сквозь непрозрачные тела. Так, если в квартире развернуть локальную Wi-Fi сеть, то в направлении, где радиоволна встретит на своём пути препятствия, вроде перегородок или перекрытий, сигнал сети будет меньше, чем в направлении более свободном от преград.

Излучение от базовых станций сотовой связи GSM довольно сильно ослабляют сосновые леса, так как размеры и длина иголок приблизительно равны половине длины волны, и иголки служат своеобразными приёмными антеннами, тем самым ослабляя электромагнитное поле. Также на ослабление сигнала станций влияют и густые тропические леса. С ростом частоты увеличивается затухание СВЧ–излучения при перекрытии его естественными препятствиями.


Аппаратуру сотовой связи можно обнаружить даже на столбах электроснабжения

Распространение микроволн в свободном пространстве, например, вдоль поверхности земли ограничено горизонтом, в противоположность длинным волнам, которые могут огибать земной шар за счёт отражения в слоях ионосферы.

Данное свойство СВЧ излучения используется в сотовой связи. Область обслуживания делиться на соты, в которых действует базовая станция, работающая на своей частоте. Соседняя базовая станция работает уже на другой частоте, чтобы рядом расположенные станции не создавали помех друг другу. Далее происходит так называемое повторное использование радиочастот .

Поскольку излучение станции перекрывается горизонтом, то на некотором удалении можно установить станцию, работающую на той же частоте. В результате мешать такие станции друг другу не будут. Получается, что экономиться полоса радиочастот, используемая сетью связи.


Антенны базовых станций GSM

Радиочастотный спектр является природным, ограниченным ресурсом, наподобие нефти или газа. Распределением частот в России занимается государственная комиссия по радиочастотам – ГКРЧ. Чтобы получить разрешение на развёртывание сетей беспроводного доступа порой ведутся настоящие "корпоративные войны" между операторами мобильных сетей связи.

Почему микроволновое излучение используется в системах радиосвязи, если оно не обладает такой дальностью распространения, как, например, длинные волны?

Причина в том, что чем выше частота излучения, тем больше информации можно передавать с его помощью. К примеру, многие знают, что оптоволоконный кабель обладает чрезвычайно высокой скоростью передачи информации исчисляемой терабитами в секунду.

Все высокоскоростные телекоммуникационные магистрали используют оптоволокно. В качестве переносчика информации здесь служит свет, частота электромагнитной волны которого несоизмеримо выше, чем у микроволн. Микроволны в свою очередь имеют свойства радиоволн и беспрепятственно распространяются в пространстве. Световой и лазерные лучи сильно рассеиваются в атмосфере и поэтому не могут быть использованы в мобильных системах связи.

У многих дома на кухне есть СВЧ–печь (микроволновка), с помощью которой разогревают пищу. Работа данного устройства основана на поляризационных эффектах микроволнового излучения. Следует отметить, что разогрев объектов, с помощью СВЧ–волн происходит в большей степени изнутри, в отличие от инфракрасного излучения, которое разогревает объект снаружи внутрь. Поэтому нужно понимать, что разогрев в обычной и СВЧ–печи происходит по-разному. Также микроволновое излучение, например, на частоте 2,45 ГГц способно проникать внутрь тела на несколько сантиметров, а производимый нагрев ощущается при плотности мощности в 20 50 мВт/см 2 при действии излучения в течение нескольких секунд. Понятно, что мощное СВЧ–излучение может вызывать внутренние ожоги, так как разогрев происходит изнутри.

На частоте работы микроволновки, равной 2,45 Гигагерцам, обычная вода способна максимально поглощать энергию сверхвысокочастотных волн и преобразовывать её в тепло, что, собственно, и происходит в микроволновке.

В то время пока идут неутихающие споры о вреде СВЧ-излучения военные уже имеют возможность проверить на деле так называемую "лучевую пушку". Так в Соединённых штатах разработана установка, которая "стреляет" узконаправленным СВЧ-лучём.

Установка на вид представляет собой что-то вроде параболической антенны, только невогнутой, а плоской. Диаметр антенны довольно большой – это и понятно, ведь необходимо сконцентрировать СВЧ-излучение в узконаправленный луч на большое расстояние. СВЧ-пушка работает на частоте 95 Гигагерц, а её эффективная дальность "стрельбы" составляет около 1 километра. По заявлениям создателей – это не предел. Вся установка базируется на армейском хаммере.

По словам разработчиков, данное устройство не представляет смертельной угрозы и будет применяться для разгона демонстраций. Мощность излучения такова, что при попадании человека в фокус луча, у него возникает сильное жжение кожи. По словам тех, кто попадал под такой луч, кожа будто бы разогревается очень горячим воздухом. При этом возникает естественное желание укрыться, сбежать от такого эффекта.

Действие данного устройства основано на том, что микроволновое излучение частотой 95 ГГц проникает на пол миллиметра в слой кожи и вызывает локальный нагрев за доли секунды. Этого достаточно, чтобы человек, оказавшийся под прицелом, ощутил боль и жжение поверхности кожи. Аналогичный принцип используется и для разогрева пищи в микроволновой печи, только в микроволновке СВЧ-излучение поглощается разогреваемой пищей и практически не выходит за пределы камеры.

На данный момент биологическое воздействие микроволнового излучения до конца не изучено. Поэтому, чтобы не говорили создатели о том, что СВЧ-пушка не вредна для здоровья, она может причинить вред органам и тканям человеческого тела.

Стоит отметить, что СВЧ-излучение наиболее вредно для органов с медленной циркуляцией тепла – это ткани головного мозга и глаз. Ткани мозга не имеют болевых рецепторов, и почувствовать явное воздействие излучения не удастся. Также с трудом вериться, что на разработку "отпугивателя демонстрантов" будут отпускаться немалые деньги – 120 миллионов долларов. Естественно, это военная разработка. Кроме этого нет особых преград, чтобы увеличить мощность высокочастотного излучения пушки до такого уровня, когда его уже можно использовать в качестве поражающего оружия. Также при желании её можно сделать и более компактной.

В планах военных создать летающую версию СВЧ-пушки. Наверняка её установят на какой-нибудь беспилотник и будут управлять им удалённо.

Вред микроволнового излучения

В документах на любой электронный прибор, который способен излучать СВЧ-волны упоминается так называемый SAR. SAR – это удельный коэффициент поглощения электромагнитной энергии. Простым языком – это мощность излучения, которая поглощается живыми тканями тела. Измеряется SAR в ваттах на килограмм. Так вот, для США определён допустимый уровень в 1,6 Вт/кг. Для Европы он чуть больше. Для головы 2 Вт/кг, для остальных частей тела и вовсе 4 Вт/кг. В России действуют более строгие ограничения, а допустимое излучение меряется уже в Вт/см 2 . Норма составляет 10 мкВт/см 2 .

Несмотря на то, что СВЧ излучение принято считать неионизирующим, стоит отметить, что оно в любом случае оказывает влияние на любые живые организмы. Например, в книге "Мозг в электромагнитных полях" (Ю. А. Холодов) приводятся результаты множества экспериментов, а также тернистая история внедрения норм на облучение электромагнитными полями. Результаты весьма любопытны. Микроволновое излучение влияет на многие процессы, протекающие в живых организмах. Если интересно, почитайте.

Из всего этого следует несколько простых правил. Как можно меньше болтать по мобильному телефону. Держать его подальше от головы и важных частей тела. Не спать со смартфоном в обнимку. По возможности использовать гарнитуру. Держаться подальше от базовых станций сотовой связи (речь идёт о жилых и рабочих помещениях). Не секрет, что антенны подвижной связи ставят на крышах жилых домов.

Также стоит "швырнуть камень в огород" мобильного интернета при использовании смартфона или планшета. Если вы "сидите в интернете", то устройство постоянно передаёт данные базовой станции. Даже если излучение по мощности небольшое (всё зависит от качества связи, помех и удалённости базовой станции), то при длительном использовании негативный эффект обеспечен. Нет, вы не облысеете и не начнёте светиться. В мозгу нет болевых рецепторов. Поэтому он будет устранять "проблемы" по "мере сил и возможностей". Просто будет сложнее сконцентрироваться, усилится усталость и пр. Это как пить яд малыми дозами.