Чем больше сила трения тем. Виды сил трения

Уроки 7–8. Всё о силе трения

С трением мы сталкиваемся на каждом шагу, но без трения мы не сделали бы и шага. Невозможно представить себе мир без сил трения. В отсутствие трения многие кратковременные движения продолжались бы бесконечно. Земля сотрясалась бы от непрерывных землетрясений, т.к. тектонические плиты постоянно сталкивались бы между собой. Все ледники сразу же скатились бы с гор, а по поверхности Земли носилась бы пыль от прошлогоднего ветра. Как хорошо, что всё-таки есть на свете сила трения! С другой стороны, трение между деталями машин приводит к их износу и дополнительным расходам. Приблизительные оценки показывают, что научные исследования в трибологии – науки о трении – могли бы сберечь от 2 до 10% национального валового продукта.

Классический закон трения. Два самых главных изобретения человека – колесо и добывание огня – связаны с силой трения. Изобретение колеса позволило значительно уменьшить силу, препятствующую движению, а добывание огня поставило силу трения на службу человеку. Однако до сих пор учёные далеки от полного понимания физических основ силы трения. И вовсе не оттого, что людей с некоторых пор перестало интересовать это явление. Первая формулировка законов трения принадлежит великому Леонардо (1519 г.), который утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна силе прижатия, направлена против направления движения и не зависит от площади контакта. Этот закон был заново открыт через 180 лет Г.Амонтоном, а затем уточнён в работах Ш.Кулона (1781 г.). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов. До сих пор именно эта формула:

где Fтр – сила трения, N – составляющая силы прижатия, нормальная к поверхности контакта, а – коэффициент трения, – является единственной формулой, которую можно найти в учебниках по физике.

В течение двух столетий экспериментально доказанный закон (1) никто не смог опровергнуть и до сих пор он звучит так, как и 200 лет назад:

1. Сила трения прямо пропорциональна нормальной составляющей силы, сжимающей поверхности скользящих тел, и всегда действует в направлении, противоположном направлению движения.

2. Сила трения не зависит от величины поверхности соприкосновения.

3. Сила трения не зависит от скорости скольжения.

4. Сила трения покоя всегда больше силы трения скольжения.

5. Сила трения зависит только от свойств двух материалов, которые скользят друг по другу.

Потираем руки и проверяем основной закон трения. Сила трения – одна из диссипативных сил. Другими словами, вся работа, расходуемая на её преодоление, переходит в тепло. Значения m, приводимые в инженерных справочниках, позволяют оценивать этот нагрев в проектируемых приборах и устройствах (см. таблицу). Ну а мы попробуем найти количество выделяющейся тепловой энергии, когда, разогреваясь, потираем руки или разогреваем с их помощью охлаждённые участки тела.

Пусть мы сжимаем ладони с силой 0,5 Н, и для трения кожи о кожу составляет 0,5. Тогда сила трения, которую мы преодолеваем при скольжении одной ладони по поверхности другой, будет равна 0,25 Н. Если считать, что, разогреваясь, мы за одну секунду совершаем четыре движения ладони, и каждое из них по 0,1 м, то мощность, расходуемая на преодоление силы трения, составляет 0,1 Вт. За 10 с такого разогрева в области контакта ладоней выделится 1 Дж тепловой энергии. Пусть всё тепло идёт на разогрев участка поверхности кожи площадью 0,01 м 2 и толщиной 0,001 м, который имеет массу около 10 –5 кг и удельную теплоёмкость, близкую к теплоёмкости воды (4 кДж/(кг. °С). Значит, наш разогрев приведёт к нагреву этого участка на 25 °С. Видно, что оценка нагрева получилась явно завышенной. Большая часть тепла от разогрева, конечно, уходит в ткани, расположенные под кожей и разносится по телу с кровотоком, но и оставшейся части тепловой энергии оказывается достаточно, чтобы поднять температуру кожи на несколько градусов.

Тормозной путь. Две машины столкнулись на перекрёстке. Повреждения небольшие, т.к. каждый успел почти полностью затормозить перед аварией. Поэтому и виноватым себя считать никто не хочет. Приехавший инспектор решил, что виноват тот, у кого длина тормозного пути – чёрного следа от колёс – больше. Почему?

Пусть машина выезжала на перекрёсток со скоростью , и её водитель, увидев другую машину, стал тормозить, оставив на дороге след длиной L. Если считать, что к моменту столкновения вся кинетическая энергия автомобиля перешла в работу по преодолению силы трения (в тепло), то где m – масса автомобиля, а g – ускорение свободного падения. Откуда следует, что длина тормозного пути пропорциональна квадрату скорости автомобиля. Значит, тот, кто подъезжал к перекрёстку с большей скоростью, имеет и большую длину тормозного пути. Так, например, для = 0,7 длина тормозного пути 30 м соответствует скорости движения 73 км/ч, что на 13 км/ч больше разрешённой скорости движения по улицам города.

А почему все шины чёрные? Все изготовители шин используют один и тот же процесс – вулканизацию жидкой резины, при котором одной из добавок служит угольная пудра. В результате длинные молекулы жидкой резины сшиваются между собой, что превращает её в эластичный и прочный материал. Так как частички угля чёрные и их относительно много (около 25% по весу), то и резина становится чёрной. Чем больше добавлять угольной пудры, состоящей практически из одного углерода, тем более жёсткой, прочной и менее прилипчивой будет резина.

Как нажимать на газ и тормоз, чтобы быстрее разогнаться и остановиться? Некоторые водители, увидев, что на светофоре зажёгся зелёный свет, вдавливают педаль газа до самого пола, пытаясь как можно быстрее набрать максимальную скорость. Свидетели такого старта слышат свист проскальзывающих относительно дороги шин. Со стороны это выглядит, действительно, очень впечатляюще. Но как на самом деле? Неужели, для того чтобы машина приобрела наибольшее ускорение, надо заставлять колёса скользить по дорожному покрытию? Конечно, нет.

Известно, что движущей силой автомобиля служит сила трения его колёс о дорожное покрытие. Если резко нажать на педаль газа, вызвав проскальзывание шин относительно асфальта, то максимальное ускорение будет пропорционально силе трения скольжения, которая всегда меньше максимальной силы трения покоя. Поэтому быстрее ускоряются не те, кто сжигает резину покрышек, а те, кто использует силу трения покоя (т.е. не допускает скольжения) в том диапазоне, где она превышает силу трения скольжения.

Резкое торможение, как и ускорение, может привести к скольжению колёс по дорожному покрытию, а значит, к уменьшению силы, тормозящей автомобиль. Ведь тормозящей силой является тоже сила трения. Поэтому, нажав очень резко на педаль газа и допустив проскальзывание, мы увеличиваем тормозной путь. Чтобы минимизировать тормозной путь, в современных автомобилях устанавливают систему ABS (Antilock Brake System), которая, препятствуя скольжению колёс по дорожному покрытию, трансформирует резкое нажатие на тормоз в последовательность нескольких торможений. Эффективность ABS-торможения особенно высока на мокрых дорогах, когда максимальная сила трения покоя может в несколько раз превышать силу трения скольжения.

Зависимость силы трения, действующей на тело, от силы, которая может привести или приводит к движению тела для сухого и мокрого дорожного покрытия

Для чего нужен рисунок на шинах автомобиля? Если машина въезжает в лужу, а вода не успевает выскочить из-под колеса, то сцепление с дорогой теряется, и колесо может вращаться вокруг оси, не испытывая трения. В этом случае машина теряет движущую силу и становится неуправляемой. Вот почему на покрышках автомобильных шин находятся канавки, помогающие воде выбираться из-под колеса, что помогает резине шин даже в лужах быстро находить контакт с покрытием дороги. Зимой большинство водителей «обувают» свои машины в зимнюю резину. Если ездить на летних покрышках зимой, то узкие канавки быстро забьются снегом, а он, превратившись в лёд, сделает из автомобиля прекрасное средство для неуправляемого скольжения по дорогам. Поэтому покрышки, приспособленные для езды по заснеженным и обледенелым дорогам, имеют широкие канавки и гораздо большую поверхность контакта с дорожным покрытием. Ну а если предстоит ехать по бездорожью, то покрышки должны быть глубоко рифлёными, т.к. грязь, имеющая большую вязкость, просто не пролезет через канавки, когда будет двигаться под весом наезжающего колеса.

Покрышки автомобильных шин, предназначенные для летних (слева),
зимних (в середине) дорог и бездорожья (справа)

Гонки «Формулы-1» – война шин. Каждый пилот гоночного болида хочет иметь хорошее сцепление с дорогой, чтобы обеспечить быстрый старт. Но это значит, что шины его автомобиля должны хорошо прилипать к дорожному покрытию. Ведь только тогда максимальная сила трения покоя будет велика. Но такая прилипчивая шина всегда будет оставлять на дороге след из частичек, прилипших навсегда к дорожному покрытию. Другими словами, износ шин с высоким сцеплением тоже высок. Поэтому на гонках «Формулы-1» средний ресурс шины около 200 км, в то время как у обычных шин он может составлять несколько десятков тысяч километров.

Шины гоночных болидов «Формулы-1» очень широкие и совсем «лысые»

Известно, что автомобильные гонки проходят на лысой резине или шинах с несколькими очень неглубокими канавками. Канавки в шинах гоночных машин не нужны, т.к. они увеличивают сцепление с дорогой только тогда, когда она мокрая. А при мокрой дороге гонки отменяют.

Для производства шин гоночных автомобилей используется специальная липкая резина. Поэтому сила трения этих шин на сухой дороге растёт с увеличением площади контакта, таким образом вступая в противоречие с классическим законом, справедливым для трения твёрдых и неэластичных поверхностей. Чтобы обеспечить максимальную силу трения, шины колёс гоночных автомобилей делают очень широкими (до 0,38 м), что также позволяет лучше рассеивать тепло, образующееся при трении о дорожное покрытие.

Чистая резина прилипает к дороге лучше, чем грязная. Поэтому перед самым стартом покрышки с помощью специальных устройств и процедур нагревают до 80°С, очищая их поверхность, обеспечивая хорошее прилипание к дорожному покрытию. Кстати, шины гоночных автомобилей иногда надувают азотом, т.к. влага, содержащаяся в обычном воздухе, при нагревании шин испаряется и увеличивает давление в колёсах, что создаёт дополнительные трудности в управлении.

О чём поют колёса? Шум, издаваемый колёсами автомобилей, – одна из основных проблем больших городов. Огромные средства тратятся ежегодно на борьбу с этим шумом, т.к. стоимость одного километра звукопоглощающего барьера, устанавливаемого вдоль шоссе, близка к миллиону долларов. Есть несколько теорий возникновения этого шума. В одной из них считается, что он возникает из-за колебаний деформированных участков внешней части покрышки, после того как они распрямляются. Другая связывает появление шума с отлипанием резины от дороги. Ну а самая романтичная гипотеза объясняет шум тем, что причиной всему воздух, двигающийся по канавкам автомобильных покрышек, как по трубам органа, и поэтому поющий.

Классики не всегда правы. Уже в XIX в. стало ясно, что закон Амонтона–Кулона не даёт правильного описания силы трения, а коэффициенты трения отнюдь не являются универсальными характеристиками. Прежде всего было отмечено, что коэффициенты трения зависят не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Выяснилось, например, что сила трения в вакууме всегда больше, чем при нормальных условиях.

Как отмечает лауреат Нобелевской премии по физике (1965) Р.Фейнман в своих лекциях, «…таблицы, в которых перечислены коэффициенты трения “стали по стали, меди по меди” и прочее, всё это сплошное надувательство, ибо в них этими мелочами пренебрегают, а ведь они-то и определяют значение . Трение “меди о медь” и т.д. – это на самом деле трение “о загрязнения, приставшие к меди”».

Можно, конечно, пойти по другому пути и, изучая трение «меди по меди», измерять силы при движении идеально отполированных и дегазированных поверхностей в вакууме. Но тогда два таких куска меди просто слипнутся, и коэффициент трения покоя начнёт расти со временем, прошедшим с начала контакта поверхностей. По тем же причинам коэффициент трения скольжения будет зависеть от скорости (расти с её уменьшением). Значит, точно определить силу трения для чистых металлов тоже невозможно.

Тем не менее для сухих стандартных поверхностей классический закон трения почти точен, хотя причина такого вида закона до самого последнего времени оставалась непонятной. Ведь теоретически оценить коэффициент трения между двумя поверхностями никто так и не смог.

Как атомы трутся друг о друга? – спрашиваем у учёных. Сложность изучения трения заключается в том, что место, где этот процесс происходит, скрыт от исследователя со всех сторон. Несмотря на это, учёные уже давно пришли к заключению, что сила трения связана с тем, что на микроскопическом уровне (т.е. если посмотреть в микроскоп) соприкасающиеся поверхности очень шероховатые, даже если они отполированы. Поэтому скольжение двух поверхностей друг по другу может напоминать фантастический случай, когда перевёрнутые Кавказские горы трутся, например, о Гималаи.

Прежде думали, что механизм трения несложен: поверхность покрыта неровностями, и трение есть результат следующих друг за другом циклов «подъём–спуск» скользящих частей. Но это неправильно, ведь тогда не было бы потерь энергии, а при трении расходуется энергия. Поэтому более правильной можно считать следующую модель трения. При скольжении трущихся поверхностей микронеровности задевают друг за друга, и в точках соприкосновения противостоящие друг другу атомы сцепляются. При дальнейшем относительном движении тел эти сцепки рвутся, и возникают колебания атомов, подобные тем, какие происходят при отпускании растянутой пружины. Со временем эти колебания затухают, а их энергия превращается в тепло, растекающееся по обоим телам. В случае скольжения мягких тел возможно также разрушение микронеровностей, так называемое «пропахивание», в этом случае механическая энергия расходуется на разрушение атомарных связей.

Таким образом, если мы хотим изучать трение, нам надо ухитриться двигать песчинку, состоящую из несколько атомов, вдоль поверхности на очень маленьком расстоянии от неё, измеряя при этом силы, действующие на эту песчинку со стороны поверхности. Это стало возможным после изобретения атомно-силового микроскопа (АСМ) Г.Биннингом и Г.Рорером, которым в 1986 г. была присуждена Нобелевская премия по физике. Создание такого микроскопа, способного чувствовать силы притяжения и отталкивания между отдельными атомами, дало возможность наконец «пощупать», что такое силы трения, открыв новую область науки о трении – нанотрибологию.

Основой АСМ служит микрозонд, обычно сделанный из кремния и представляющий собой тонкую пластинку-консоль (её называют кантилевером, от англ. cantilever – консоль, балка). На конце кантилевера (длина 500 мкм, ширина 50 мкм, толщина 1 мкм) делается очень острый шип (высота 10 мкм, радиус закругления 1–10 нм), оканчивающийся группой из одного или нескольких атомов. При перемещении микрозонда вдоль поверхности образца остриё шипа приподнимается и опускается, очерчивая микрорельеф поверхности, подобно скользящей по грампластинке игле. На выступающем конце кантилевера (над шипом) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда шип опускается и поднимается на неровностях поверхности, отражённый луч отклоняется, и это отклонение регистрируется фотодетектором. Данные фотодетектора используются в системе обратной связи, которая может обеспечивать либо постоянное удаление шипа от поверхности образца, либо постоянную силу давления острия на образец.

В первом случае пьезоэлектрический преобразователь может регистрировать движение кантилевера, прыгающего от одного атома исследуемой поверхности к другому, строя таким образом объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность таких микроскопов составляет примерно 0,1–1 нм по горизонтали и 0,01 нм по вертикали. Смещая зонд по горизонтали, можно получить серию рельефов и с помощью компьютера построить трёхмерное изображение.

С помощью АСМ с начала 1990-х гг. проводятся систематические исследования силы трения микрозондов при их скольжения вдоль различных поверхностей и зависимости этих сил от силы прижатия. Оказалось, что для обычно используемых зондов, сделанных из кремния, микроскопическая сила трения скольжения составляет около 60–80% от прижимающей силы, которая составляет не более 10 нН. Как и следовало ожидать, сила трения скольжения растёт с размером микрозонда, т.к. количество атомов, одновременно его притягивающих, увеличивается. Таким образом, сила трения скольжения микрозонда зависит от площади его контакта с поверхностью, что противоречит классическому закону трения. Оказалось также, что сила трения скольжения не становится нулевой при отсутствии силы, прижимающей микрозонд к поверхности. Да это и понятно, т.к. окружающие микрозонд атомы поверхности так близко к нему расположены, что притягивают его даже в отсутствие внешней силы сжатия. Поэтому и основное предположение классического закона – о прямой пропорциональной зависимости силы трения от силы сжатия – тоже не соблюдается в нанотрибологии.

Однако все эти расхождения между основным законом и данными нанотрибологии, полученными с помощью АСМ, легко устраняются. При увеличении силы, прижимающей скользящее тело, увеличивается количество микроконтактов, а значит, увеличивается и суммарная сила трения скольжения. Поэтому никаких противоречий между только что полученными данными и старым законом нет.

Зависимость силы трения скольжения микрозонда от внешней силы N, прижимающей его к графитовой поверхности. Радиус кривизны зонда 17 нм (вверху) и 58 нм (внизу). При малых N зависимость нелинейная, а при больших приближается к линейной (пунктир). Данные взяты из статьи Х.Холшера и А.Шварца (2002)

Долгое время было принято считать, что, принуждая одно тело скользить по другому, мы ломаем малые неоднородности одного тела, которые цепляются за неоднородности поверхности другого, и для того, чтобы ломать эти неоднородности, и нужна сила трения. Поэтому старые представления часто связывают силу возникновение силы трения с повреждением микровыступов трущихся поверхностей, их так называемым износом. Нанотрибологические исследования с помощью АСМ и других современных методик показали, что сила трения между поверхностями может существовать даже тогда, когда они не повреждаются. Причиной такой силы трения служат постоянно возникающие и рвущиеся адгезионные связи между трущимися атомами.

Почему лёд скользкий? Узнать, почему можно скользить по льду, удалось учёным только сейчас. А началось всё давным-давно, в 1849 г. Братья Джеймс и Вильям Томсоны (последнему впоследствии за большие заслуги было присвоен титул лорда Кельвина) выдвинули гипотезу, согласно которой лёд под нами плавится оттого, что мы на него давим. И поэтому мы скользим уже не по льду, а по образовавшейся плёнке воды на его поверхности.

Действительно, если увеличить давление, то температура плавления льда понизится. Происходит это вот почему. Известно, что плотность льда меньше плотности воды, и поэтому, когда лёд сжимают, он, «пытаясь» уменьшить деформацию, вызванную ростом давления, «понижает» температуру плавления. Это одно из проявления так называемого принципа Ле Шателье: внешнее воздействие, выводящее систему из термодинамического равновесия, вызывает в ней процессы, стремящиеся ослабить результаты этого воздействия. Расчёты и эксперименты показали, что для того, чтобы понизить температуру плавления льда на один градус, необходимо давление увеличить до 121 атм (1,22 МПа). Попробуем посчитать, какое давление оказывает спортсмен на лёд, когда скользит по нему на одном коньке длиной 20 см и толщиной 0,3 см. Если считать, что масса спортсмена 75 кг, то его давление на лёд составит около 12 атм. Таким образом, стоя на коньках, мы едва ли сможем понизить температуру плавления льда больше, чем на 1 °С. Значит, объяснить скольжение по льду в коньках и тем более в обычной обуви, опираясь на принцип Ле Шателье, невозможно, если за окном, например, –10 °С.

В 1939 г., когда стало ясно, что понижением температуры плавления скользкость льда не объяснить, Ф.Бауден и Т.Хьюз предположили, что тепло, необходимое для плавления льда под коньком, даёт сила трения. Однако эта теория не могла объяснить, почему так тяжело бывает даже стоять на льду, не двигаясь. С начала 1950-х гг. учёные стали считать, что лёд скользкий из-за тонкой плёнки воды, образующейся на его поверхности в силу каких-то неизвестных причин. Только в конце 1990-х гг. изучение того, как рассеивает лёд рентгеновские лучи, действительно показало, что его поверхность не является упорядоченной кристаллической структурой, а скорее похожа на жидкость.

Учёные объяснили это тем, что расположенные на поверхности льда молекулы воды находятся в особых условиях. Силы, заставляющие их находиться в узлах гексагональной решётки, действуют на них только снизу. Поэтому поверхностным молекулам ничего не стоит «уклониться от советов» молекул, находящихся в решётке, и если это происходит, то к такому же решению приходят сразу несколько поверхностных слоёв молекул воды. В результате на поверхности льда образуется плёнка жидкости, служащая хорошей смазкой при скольжении.

Кстати, тонкие плёнки жидкости образуются не только на поверхности льда, но и многих других кристаллов. Толщина жидкой плёнки увеличивается с ростом температуры, т.к. более высокая тепловая энергия молекул вырывает из гексагональных решёток больше поверхностных слоёв. Наличие примесей (молекул, отличных от воды) тоже мешает поверхностным слоям образовывать кристаллические решётки. Поэтому увеличить толщину жидкой плёнки можно, растворив в ней какие-либо примеси, например, обычную соль. Этим и пользуются коммунальные службы, когда борются зимой с обледенением дорог и тротуаров.

Схематическое изображение поперечного среза льда. Беспорядочное расположение молекул воды на поверхности соответствует плёнке жидкости, а гексагональная структура в толще – кристаллическому льду. Серые кружки – атомы кислорода, белые – водорода

Трение качения – это совсем другое. В идеальном случае, когда колесо, сделанное из несжимаемого материала, по инерции катится по гладкой недеформируемой поверхности, никакие силы трения на это колесо не действуют. Колесо, касаясь поверхности в одной точке, вращается вокруг этой точки, потом точкой касания и центром вращения становится другая точка и т.д. Так как точка касания не движется относительно поверхности, то и сила трения скольжения отсутствует.

Однако в реальных условиях дорожное покрытие, и материал, из которого сделан диск колеса, не являются абсолютно жёсткими. Рассмотрим сначала первый случай. Если поставить колесо на мягкую поверхность, надавить сверху с силой P и пытаться, вращая его, продвинуть вперёд со скоростью v, то мы столкнёмся с силой сопротивления качению Fк. Колесо деформирует поверхность под собой так, что впереди появляется бугорок, который всё время приходится преодолевать. Горизонтальная составляющая сил реакции этого бугорка и представляет собой силу трения качения Fк. Вертикальные составляющие сил сопротивления бугорка компенсируются силой тяжести автомобиля. Так как высота бугорка пропорциональна весу колеса (или укреплённого на нём автомобиля), то и сила трения качения Fк тоже пропорциональна весу автомобиля и силе реакции со стороны дороги N: Fк = кN.

Качение несжимаемого колеса радиуса R по несжимаемой поверхности. K – точка касания и мгновенный центр вращения колеса с угловой скоростью , результатом которого является движение центра колеса О со скоростью

При качении мягкого колеса по твёрдой дороге на переднюю часть соприкасающейся с дорогой поверхности колеса всё время «наезжают». Поэтому она сжимается больше, чем задняя, и сила реакции от передней части колеса, направленная противоположно движению, тоже больше. Сила трения качения равна разности горизонтальных составляющих сил реакции от передней и задней частей колеса. Так как сжатие колеса пропорционально весу машины (или силе реакции опоры), то Fк = кN.

Возникновение силы трения при качении твёрдого колеса по мягкой дороге

Силы трения качения определяются жёсткостью материалов колеса и дорожного покрытия. Чем больше жёсткость, тем меньше величина трения качения. Поэтому, чтобы сократить расходы на топливо, необходимо как можно сильнее накачивать автомобильные колеса, делая их более жёсткими. Достаточно пощупать колёса грузовика, чтобы убедиться в этом. У пассажирского автомобиля давление в колёсах гораздо меньше, т.к. с жёсткими колёсами пассажиры будут ощущать все неровности дороги. В результате его шины больше деформируются, и соответственно растёт сила трения качения.

Возникновение силы трения при качении мягкого колеса по жёсткой дороге. При качении мягкого колеса деформация его передних участков больше, что приводит к появлению горизонтальной составляющей силы, действующей со стороны дороги, и силы, тормозящей движение, – силы трения качения

Сила, необходимая для преодоления трения качения, пропорциональна весу автомобиля и, вообще говоря, не зависит от скорости его движения. Чтобы измерить эту силу, поместите машину на горизонтальный участок дороги, поставьте рычаг переключения скоростей в нейтральное положение (отсоедините колёса от двигателя) и выключите зажигание. После этого привяжите к автомобилю трос, а к нему – пружинные весы. Прикладывая к тросу силу, постарайтесь сдвинуть машину с места и равномерно тянуть её. Одновременно с этим ваш помощник должен смотреть на показания весов и записывать их. Если нет пружинных весов, можно использовать бытовые весы для взвешивания человека. Такими весами можно толкать машину, используя их в качестве прокладки. Сила трения качения для автомобиля массой 1000 кг в среднем составляет около 100 Н.

Для очень дальних перевозок построили железные дороги, где железное колесо катится по железному рельсу с очень малым коэффициентом трения качения. Тормозят поезда медленно, но эксплуатация их очень выгодна.

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой .
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное - траектория представляет собой отрезок прямой;
б) криволинейное - траектория представляет собой отрезок кривой.

Путь - это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение - это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение - это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь - это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:


Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:


Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение - это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x 0 + V x t , где x 0 - начальная координата тела, V x - скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с 2 , не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω :

Угловая скорость связана с линейной скоростью соотношением

где r - радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду - частота обращения - ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением , оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса - это мера инертности тела
Сила - это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом - Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости .

Закон Гука записывают в виде

где k - жёсткость пружины, x - деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N - сила реакции опоры, µ - коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R - расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести - это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила - сила тяжести.
Искусственный спутник Земли - это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила - сила тяжести, направленная к центру Земли
Первая космическая скорость - это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R - расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение ; если никаких сил не возникает - безразличное (см. рис. 3).


Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d -плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ - плотность жидкости, h - глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда : на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρ жидк - плотность жидкости, в которую погружено тело; V погр - объём погружённой части тела.

Условие плавания тела - тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс - векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса : сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность - это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h - высота подъёма

Энергия сжатой пружины:

где k - коэффициент жёсткости пружины, x - абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии : если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний . Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с -1 . Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l - длина маятника.

Период колебаний груза на пружине определяется по формуле

где k - жёсткость пружины, m - масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной , если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной , если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v - скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

Различают трение внешнее и внутреннее .

Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

Различают сухое и жидкое (или вязкое ) трение.

Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

Рассмотрим законы сухого трения (рис. 4.5).


Рис. 4.5

Рис. 4.6

Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя сила уравновешивается некоторой силой , направленной по касательной к трущейся поверхности, противоположной силе . В этом случае и есть сила трения покоя.

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления N :

μ 0 – коэффициент трения покоя , зависящий от природы и состояния трущихся поверхностей.

Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение F 0 , тело начнет скользить по опоре – трение покоя F тр.пок сменится трением скольжения F ск (рис. 4.6):

F тр = μ N , (4.4.1)

Где μ – коэффициент трения скольжения.

Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент трения μ ; здесь значительно меньше.

Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести , нормальная сила реакции опоры и сила сухого трения . Сила есть равнодействующая сил и ; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что

F = mg sin α, N = mg cos α.


Рис. 4.7
Если – тело остается неподвижным на наклонной плоскости. Максимальный угол наклона α определяется из условия (F тр) max = F или μ mg cosα = mg sinα, следовательно, tg α max = μ, где μ – коэффициент сухого трения.

F тр = μN = mg cosα,
F = mg sinα.

При α > α max тело будет скатываться с ускорением

a = g (sinα - μ cosα),
F ск = ma = F - F тр.


Если дополнительная сила F вн, направленная вдоль наклонной плоскости, приложена к телу, то критический угол α max и ускорение тела будут зависеть от величины и направления этой внешней силы.

В окружающем нас мире существует множество физических явлений: гром и молния, дождь и град, электрический ток, трение… Именно трению и посвящён наш сегодняшний доклад. Почему возникает трение, на что влияет, от чего зависит сила трения? И, наконец, трение - это друг или враг?

Что такое сила трения?

Немного разбежавшись, можно лихо прокатиться по ледяной дорожке. Но попробуйте сделать это на обычном асфальте. Впрочем, и пробовать не стоит. Ничего не получится. Виновницей вашей неудачи станет очень большая сила трения. По этой же причине сложно сдвинуть с места массивный стол или, скажем, пианино.

В месте соприкосновения двух тел всегда возникает взаимодействие, которое препятствует движению одного тела по поверхности другого. Его и называют трением. А величину этого взаимодействия - силой трения.

Виды сил трения

Представим себе, что вам надо передвинуть тяжелый шкаф. Вашей силы явно не хватает. Увеличим «сдвигающую» силу. Одновременно увеличивается и сила трения покоя. И направлена она в сторону противоположную движения шкафа. Наконец, «сдвигающая» сила «побеждает» и шкаф трогается с места. Теперь в свои права вступает сила трения скольжения. Но она меньше силы трения покоя и дальше шкаф передвигать значительно легче.

Вам, конечно, приходилось наблюдать, как 2-3 человека откатывают в сторону тяжелый автомобиль с внезапно заглохшим двигателем. Люди, толкающие автомобиль, никакие не силачи, просто на колеса автомобиля действует сила трения качения. Этот вид трения возникает при перекатывании одного тела по поверхности другого. Может катиться шарик, круглый или гранёный карандаш, колеса железнодорожного состава и т. д. Этот вид трения гораздо меньше силы трения скольжения. Поэтому совсем легко передвигать тяжелую мебель, если она снабжена колёсиками.

Но, и в этом случае сила трения направлена против движения тела, следовательно, уменьшает скорость тела. Если бы не её «вредный характер», разогнавшись на велосипеде или роликах, можно было бы наслаждаться ездой бесконечно долго. По этой же причине автомобиль с выключенным двигателем ещё какое-то время будет двигаться по инерции, а затем остановится.

Итак, запоминаем, различают 3 вида сил трения:

  • трение скольжения;
  • трение качения;
  • трение покоя.

Быстрота изменения скорости называется ускорением. Но, поскольку, сила трения замедляет движение, то это ускорение будет со знаком «минус». Правильно будет сказать, под действием трения тело движется с замедлением.

Какова природа трения

Если рассмотреть гладкую поверхность полированного стола или льда через лупу (увеличительное стекло), то вы увидите крохотные шероховатости, за которые и цепляется тело, скользящее или катящееся по его поверхности. Ведь подобные выступы есть и у тела, движущегося по этим поверхностям.

В точках соприкосновения молекулы настолько сближаются, что начинают притягиваться друг к другу. Но тело продолжает движение, атомы удаляются друг от друга, сцепки между ними рвутся. Это приводит в колебание освободившиеся от притяжения атомы. Примерно так, как колеблется освобожденная от растяжения пружина. Мы же воспринимаем эти колебания молекул как нагревание. Вот почему трение всегда сопровождается повышением температуры соприкасающихся поверхностей.

Значит, существуют две причины, вызывающие это явление:

  • неровности на поверхности соприкасающихся тел;
  • силы межмолекулярного притяжения.

От чего зависит сила трения

Вероятно, вам приходилось замечать, резкое торможение санок, если они съезжают на участок, посыпанный песком. И ещё одно интересное наблюдение, когда на санках находится один человек, они проделают, съехав с горки, один путь. А если двое друзей будут съезжать вместе, санки остановятся быстрее. Следовательно, сила трения:

  • зависит от материала соприкасающихся поверхностей;
  • кроме того, трение возрастает с увеличением веса тела;
  • действует в сторону противоположную движению.

Замечательная наука физика еще и тем хороша, что многие зависимости можно выразить не только словами, но и в виде специальных знаков (формул). Для силы трения это выглядит так:

Fтр = kN где:

Fтр - сила трения.

k - коэффициент трения, который отражает зависимость силы трения от материала и чистоты его обработки. Скажем, если металл катится по металлу k=0,18, если вы мчитесь на коньках по льду k= 0,02 (коэффициент трения всегда меньше единицы);

N - это сила, действующая на опору. Если тело находится на горизонтальной поверхности, эта сила равна весу тела. Для наклонной плоскости она меньше веса и зависит от угла наклона. Чем круче горка, тем легче с нее скатиться и дольше можно проехать.

А, высчитав по этой формуле силу трения покоя шкафа, мы узнаем какую силу нужно приложить, чтобы сдвинуть его с места.

Работа силы трения

Если на тело действует сила, под действием которой тело перемещается, то всегда совершается работа. У работы силы трения свои особенности: ведь она не вызывает движение, а препятствует ему. Поэтому, совершаемая ею работа, всегда будет отрицательной, т.е. со знаком «минус», в какую бы сторону не двигалось тело.

Трение - это друг или враг

Силы трения сопровождают нас повсюду, принося ощутимый вред и… огромную пользу. Вообразим, что исчезло трение. Изумленный наблюдатель увидел бы: как рушатся горы, сами по себе выкорчевываются из земли деревья, ураганные ветры и морские волны бесконечно властвуют над землей. Все тела сползают куда-то вниз, транспорт разваливается на отдельные детали, поскольку болты без трения не выполняют свою роль, невидимый безобразник развязал бы все шнурки и узлы, мебель, не удерживаемая силами трения, сползла в самый низкий угол комнаты.

Попытаемся убежать, спастись от этого хаоса, но без трения не сможем сделать, ни шагу. Ведь именно трение помогает нам при ходьбе отталкиваться от земли. Теперь понятно, почему зимой скользкие дороги посыпают песком….

И в то же время иногда трение наносит значительный вред. Люди научились уменьшать и увеличивать трение, извлекая из него огромную пользу. Например, для перетаскивания тяжелых грузов придумали колеса, заменив трение скольжение - качением, которое, значительно меньше трения скольжения.

Потому, что катящемуся телу не приходится цеплять множество мелких неровностей поверхности, как при скольжении тел. Затем снабдили колёса шинами с глубоким рисунком (протекторами).

А вы заметили, что все шины резиновые и чёрные?

Оказывается, резина хорошо удерживает колеса на дороге, а уголь, добавляемый в резину, придает ей чёрный цвет, нужную жёсткость и прочность. Кроме того, позволяет при авариях на дороге, измерить тормозной путь. Ведь при торможении резина оставляет четкий чёрный след.

При необходимости уменьшить трение, используют смазочные масла и сухую графитовую смазку. Замечательным изобретением явилось создание разного вида шарикоподшипников. Их применяют в самых различных механизмах от велосипеда до новейшего самолёта.

Бывает ли трение в жидкостях

Когда тело в воде неподвижно, то трение о воду не происходит. Но стоит ему начать движение, возникает трение, т. е. вода оказывает сопротивление движению в ней любых тел.

Значит, и берег, создавая трение, «тормозит» воду. А, так как трение воды о берег уменьшает её скорость, то на средину реки заплывать не стоит, ведь там течение гораздо сильнее. Рыбы и морские животные имеют такую форму, чтобы трение их тел о воду было минимальным.

Такую же обтекаемость конструкторы придают и подводным лодкам.

Наше знакомство с другими природными явлениями будет продолжаться. До новых встреч, друзья!

Если это сообщение тебе пригодилось, буда рада видеть тебя