Фигуры вписанные в круг. Что такое окружность как геометрическая фигура: основные свойства и характеристики

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Чтобы в общих чертах представить себе, что такое окружность, взгляните на кольцо или обруч. Можно также взять круглый стакан и чашку, поставить вверх дном на лист бумаги и обвести карандашом. При многократном увеличении полученная линия станет толстой и не совсем ровной, и края ее будут размытыми. Окружность как геометрическая фигура не имеет такой характеристики, как толщина.

Окружность: определение и основные средства описания

Окружность - это замкнутая кривая, состоящая из множества точек, расположенных в одной плоскости и равноудаленных от центра окружности. При этом центр находится в той же плоскости. Как правило, он обозначается буквой О.

Расстояние от любой из точек окружности до центра называется радиусом и обозначается буквой R.

Если соединить две любые точки окружности, то полученный отрезок будет называться хордой. Хорда, проходящая через центр окружности, - это диаметр, обозначаемый буквой D. Диаметр делит окружность на две равные дуги и по длине вдвое превышает размер радиуса. Таким образом, D = 2R, или R = D/2.

Свойства хорд

  1. Если через две любые точки окружности провести хорду, а затем перпендикулярно последней - радиус или диаметр, то этот отрезок разобьет и хорду, и дугу, отсеченную ею, на две равные части. Верно и обратное утверждение: если радиус (диаметр) делит хорду пополам, то он перпендикулярен ей.
  2. Если в пределах одной и той же окружности провести две параллельные хорды, то дуги, отсеченные ними, а также заключенные между ними, будут равны.
  3. Проведем две хорды PR и QS, пересекающиеся в пределах окружности в точке T. Произведение отрезков одной хорды всегда будет равно произведению отрезков другой хорды, то есть PT х TR = QT х TS.

Длина окружности: общее понятие и основные формулы

Одной из базовых характеристик данной геометрической фигуры является длина окружности. Формула выводится с использованием таких величин, как радиус, диаметр и константа "π", отражающая постоянство отношения длины окружности к ее диаметру.

Таким образом, L = πD, или L = 2πR, где L - это длина окружности, D - диаметр, R - радиус.

Формула длины окружности может рассматриваться как исходная при нахождении радиуса или диаметра по заданной длине окружности: D = L/π, R = L/2π.

Что такое окружность: основные постулаты

  • не иметь общих точек;
  • иметь одну общую точку, при этом прямая называется касательной: если провести радиус через центр и точку касания, то он будет перпендикулярен касательной;
  • иметь две общие точки, при этом прямая называется секущей.

2. Через три произвольные точки, лежащие в одной плоскости, можно провести не более одной окружности.

3. Две окружности могут соприкасаться только в одной точке, которая расположена на отрезке, соединяющем центры этих окружностей.

4. При любых поворотах относительно центра окружность переходит сама в себя.

5. Что такое окружность с точки зрения симметрии?

  • одинаковая кривизна линии в любой из точек;
  • относительно точки О;
  • зеркальная симметрия относительно диаметра.

6. Если построить два произвольных вписанных угла, опирающихся на одну и ту же дугу окружности, они будут равны. Угол, опирающийся на дугу, равную половине то есть отсеченную хордой-диаметром, всегда равен 90°.

7. Если сравнивать замкнутые кривые линии одинаковой длины, то получится, что окружность отграничивает участок плоскости наибольшей площади.

Окружность, вписанная в треугольник и описанная около него

Представление о том, что такое окружность, будет неполным без описания особенностей взаимосвязи этой с треугольниками.

  1. При построении окружности, вписанной в треугольник, ее центр всегда будет совпадать с точкой пересечения треугольника.
  2. Центр окружности, описанной около треугольника, располагается на пересечении срединных перпендикуляров к каждой из сторон треугольника.
  3. Если описать окружность около то ее центр будет находиться на середине гипотенузы, то есть последняя будет являться диаметром.
  4. Центры вписанной и описанной окружностей будут находиться в одной точке, если базой для построения является

Основные утверждения об окружности и четырехугольниках

  1. Вокруг выпуклого четырехугольника можно описать окружность лишь тогда, когда сумма его противоположных внутренних углов равняется 180°.
  2. Построить вписанную в выпуклый четырехугольник окружность можно, если одинакова сумма длин его противоположных сторон.
  3. Описать окружность вокруг параллелограмма можно, если его углы прямые.
  4. Вписать в параллелограмм окружность можно в том случае, если все его стороны равны, то есть он является ромбом.
  5. Построить окружность через углы трапеции можно, только если она равнобедренная. При этом центр описанной окружности будет располагаться на пересечении четырехугольника и срединного перпендикуляра, проведенного к боковой стороне.

Многоугольник называется вписанным в выпуклую кривую, а кривая – описанной около многоугольника, если все вершины многоугольника лежат на кривой (рис. 1). Многоугольник называется описанным вокруг выпуклой кривой, а кривая – вписанной в многоугольник, если каждая его сторона касается кривой. Если же кривая касается всех прямых, на которых лежат стороны многоугольника, причем некоторых из них она касается в точках, не принадлежащих сторонам, то она называется вневписанной. В качестве кривой чаще всего рассматривается окружность. Так, например, всякий треугольник имеет одну описанную окружность, одну вписанную и три вневписанных (рис. 2).

Но уже не всякий четырехугольник имеет вписанную или описанную окружность. Описанная вокруг четырехугольника окружность существует лишь в том случае, если сумма его противоположных углов равна 180°. А для того чтобы в четырехугольник можно было вписать окружность, необходимо и достаточно, чтобы каждая сумма длин одной пары противоположных сторон была равна сумме длин второй пары сторон.

Вписанная и описанная окружности существуют у любого правильного многоугольника (рис. 3). Этот факт использовался еще в древности для нахождения отношения длины окружности к ее радиусу.

Нетрудно обнаружить тот факт, что если на плоскости задана замкнутая кривая и равносторонний треугольник, то вокруг всегда можно описать равносторонний треугольник со сторонами, параллельными сторонам данного (рис. 4). Менее очевидным является утверждение о том, что вокруг любой замкнутой кривой можно описать квадрат.

Вписанные и описанные фигуры рассматриваются и в пространстве.

В этом случае вместо многоугольника рассматривается многогранник, а вместо выпуклой линии – выпуклая поверхность, чаще всего сфера.

Сфера называется описанной около многогранника, а многогранник – вписанным в сферу, если все вершины многогранника лежат на сфере. Сфера называется вписанной в многогранник, а многогранник описанным около сферы, если плоскости всех его граней касаются сферы.

У правильных многогранников существуют описанные и вписанные сферы, поскольку вершины правильного многогранника равноудалены от его центра (рис. 5). Для того чтобы у других многогранников существовали описанная и вписанная сферы, требуются определенные условия. Например, около прямой призмы или пирамиды можно описать сферу, если можно описать окружность около ее основания (рис. 6).

Иногда рассматривают конус, вписанный в сферу; сферу, вписанную в конус, цилиндр и т.п. (рис. 7).

На могильной плите Архимеда, как завещал ученый, был изображен цилиндр с вписанным шаром, а эпитафия говорила о величайшем открытии Архимеда о том, что объемы этих тел относятся как 3:2. Когда римский оратор и общественный деятель Цицерон, живший в І в. до н. э., был в Сицилии, он еще видел этот заросший кустами и терновником памятник с шаром и цилиндром.

Вписанные и описанные многоугольники. Правильные многоугольники

Вписанный в круг многоугольник .

Описанный около круга многоугольник .

Описанный около многоугольника круг .

Вписанный в многоугольник круг .

Радиус вписанного в треугольник круга .

Радиус описанного около треугольника круга .
Правильный многоугольник .

Центр и апофема правильного многоугольника .
Соотношения сторон и радиусов правильных многоугольников .

Вписанным в круг называется многоугольник, вершины которого расположены на окружности (рис.54). Описанным около круга называется многоугольник, стороны которого являются касательными к окружности

(рис.55).

Соответственно, окружность, проходящая через вершины многоугольника ( рис.54 ), называется описанной около многоугольника ; окружность, для которой стороны многоугольника являются касательными (рис.55), на зывается вписанной в многоугольник . Для произвольного многоугольника невозможно вписать в него и описать около него окружность. Для треуголь ника это всегда возможно.

Радиус r вписанного круга выражается через стороны a , b , c треугольника:

Радиус R описанного круга выражается формулой:

В четырёхугольник можно вписать окружность, если суммы его противоположных сторон равны. Для параллелограммов это возможно только для ромба (квадрата ). Центр вписанного круга расположен в точке пересечения диагоналей. Около четырёхугольника можно описать круг, если сумма его противоположных углов равна 180º. Для параллелограммов это возможно только для прямоугольника (квадрата ). Центр описанного круга лежит в точке пересечения диагоналей. Вокруг трапеции можно описать круг , если только она равнобочная.

Правильный многоугольник – это многоугольник с равными сторонами и углами.

На рис.56 показан правильный шестиугольник, а на рис.57 – правильный восьмиугольник. Правильный четырёхугольник – это квадрат; правильный треугольник – равносторонний треугольник. Каждый угол правильного многоугольника равен 180º (n – 2) / n , где n – число его углов. Внутри правильного многоугольника существует точка O (рис. 56), равноудалённая от всех его вершин (OA = OB = OC = … = OF), которая называется центром правильного многоугольника.Центрправильногомногоугольника также равноудалён от всех его сторон (OP = OQ = OR = …). Отрезки OP, OQ, OR, … называются апофемами ; отрезки OA, OB, OC, …– радиусы правильного многоугольника. В правильный многоугольник можно вписать окружность и около него можно описать окружность. Центры вписанной и описанной окружностей совпадают с центром правильного многоугольника. Радиус описанного круга - это радиус правильного многоугольника, a радиус вписанного круга - его апофема. Соотношения сторон и радиусов правильных многоугольников:

Для большинства правильных многоугольников невозможно выразить посредством алгебраической формулы соотношение между их сторонами и радиусами.

П р и м е р. Можно ли вырезать квадрат со стороной 30 см из круга

Диаметром 40 см?

Р е ш е н и е. Наибольший квадрат, заключённый в круг, есть вписанный

Квадрат. В соответствии с вышеприведенной формулой его

Сторона равна:

Следовательно, квадрат со стороной 30 см невозможно выре зать

из круга диаметром 40 см.

Для треугольника всегда возможны и вписанная окружность и описанная окружность.

Для четырехугольника окружность можно вписать только в том случае, если суммы его противоположных сторон одинаковы. Из всех параллелограммов только в ромб и квадрат можно вписать окружность. Ее центр лежит на пересечении диагоналей.

Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. Из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. Ее центр лежит на пересечении диагоналей.

Вокруг трапеции возможно описать окружность или в трапецию можно вписать окружность если трапеция равнобокая.

Центр описанной окружности

Теорема. Центр описанной около треугольника окружности является точкой пересечениясерединных перпендикуляров к сторонам треугольника.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

Центр Вписанная окружность

Определение . Вписанная в выпуклый многоугольник окружность - это окружность, которая касается всех сторон этого многоугольника (то есть каждая из сторон многоугольника является для окружностикасательной).

Центр вписанной окружности лежит внутри многоугольника.

Многоугольник, в который вписана окружность, называется описанным.

В выпуклый многоугольник можно вписать окружность, если биссектрисы всех его внутренних углов пересекаются в одной точке.

Центр вписанной в многоугольник окружности - точка пересечения его биссектрис.

Центр вписанной окружности равноудален от сторон многоугольника. Расстояние от центра до любой стороны равно радиусу вписанной окружности По свойству касательных, проведённых из одной точки, любая вершина описанного многоугольника равноудалена от точек касания, лежащих на сторонах, выходящих из этой вершины.

В любой треугольник можно вписать окружность. Центр вписанной в треугольник окружности называется инцентром.

В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. В частности, в трапецию можно вписать окружность, если сумма её оснований равна сумме боковых сторон.

В любой правильный многоугольник можно вписать окружность. Около любого правильного многоугольника можно также описать окружность. Центр вписанной и описанной окружностей лежат в центре правильного многоугольника.



Для любого описанного многоугольника радиус вписанной окружности может быть найден по формуле

Где S - площадь многоугольника, p - его полупериметр.

Правильный n-угольник - формулы

Формулы длины стороны правильного n-угольника

1. Формула стороны правильного n-угольника через радиус вписанной окружности:

2. Формула стороны правильного n-угольника через радиус описанной окружности:

Формула радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны:

4. Формула радиуса описанной окружности правильного треугольника через длину стороны:

6. Формула площади правильного треугольника через радиус вписанной окружности: S = r 2 3√3

7. Формула площади правильного треугольника через радиус описанной окружности:

4. Формула радиуса описанной окружности правильного четырехугольника через длину стороны:

2. Формула стороны правильного шестиугольника через радиус описанной окружности: a = R

3. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

6. Формула площади правильного шестиугольника через радиус вписанной окружности: S = r 2 2√3

7. Формула площади правильного шестиугольника через радиус описанной окружности:

S = R 2 3√3

8. Угол между сторонами правильного шестиугольника: α = 120°

Значение числа (произносится «пи» ) - математическая константа, равная отношению

длины окружности к длине её диаметра, оно выражается бесконечной десятичной дробью.

Обозначается буквой греческого алфавита «пи». Чему равно число пи? В простых случаях хватает знать первые 3 знака (3,14).

53. Найдем длину дуги окружности радиуса R, отвечающей центральному углу в n°

Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в 1 радиан.

Градусная мера угла в 1 радиан равна:

Так как дуга длиной π R (полуокружность), стягивает центральный угол в 180° , то дуга длиной R, стягивает угол в π раз меньший, т.е.

И наоборот

Так как π = 3,14, то 1 рад = 57,3°

Если угол содержит a радиан, то его градусная мера равна

И наоборот

Обычно при обозначении меры угла в радианах наименование «рад» опускают.

Например, 360° = 2π рад, пишут 360° = 2π

В таблице указаны наиболее часто встречающиеся углы в градусной и радианной мере.