Общая теория относительности Последовательна ли она? Отвечает ли она физической реальности? Специальная теория относительности Эйнштейна: кратко и простыми словами.

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

(1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца. Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час - скорость человека плюс скорость поезда. Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна , независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет. Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов ». Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc 2 , в которой E - энергия, m - масса, а c - скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба .


Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности . Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.


Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой. В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры ». «Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии - науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Еще в начале 20-го века была сформулирована теория относительности. Что это такое и кто ее создатель, знает сегодня каждый школьник. Она настолько увлекательна, что ею интересуются даже люди, далекие от науки. В этой статье доступным языком описывается теория относительности: что это такое, каковы ее постулаты и применение.

Говорят, что к Альберту Эйнштейну, ее создателю, прозрение пришло в один миг. Ученый будто бы ехал на трамвае по швейцарскому Берну. Он посмотрел на уличные часы и вдруг осознал, что эти часы остановятся, если трамвай разгонится до скорости света. В этом случае времени бы не стало. Время в теории относительности играет очень важную роль. Один из постулатов, сформулированных Эйнштейном, - разные наблюдатели воспринимают действительность по-разному. Это относится в частности ко времени и расстоянию.

Учет положения наблюдателя

В тот день Альберт понял, что, выражаясь языком науки, описание любого физического явления или события зависит от того, в какой системе отсчета находится наблюдатель. К примеру, если какая-нибудь пассажирка трамвая уронит очки, они упадут по отношению к ней вертикально вниз. Если же посмотреть с позиции стоящего на улице пешехода, то траектория их падения будет соответствовать параболе, так как трамвай движется и одновременно падают очки. Таким образом, система отсчета у каждого своя. Предлагаем подробнее рассмотреть основные постулаты теории относительности.

Закон распределенного движения и принцип относительности

Несмотря на то что при смене систем отсчета описания событий меняются, существуют и универсальные вещи, которые остаются неизменными. Для того чтобы понять это, нужно задаться вопросом не падения очков, а закона природы, который вызывает это падение. Для любого наблюдателя, независимо от того, в движущейся или неподвижной системе координат он находится, ответ на него остается неизменным. Этот закон называется законом распределенного движения. Он одинаково действует как в трамвае, так и на улице. Иными словами, если описание событий всегда зависит от того, кто их наблюдает, то это не относится к законам природы. Они являются, как принято выражаться на научном языке, инвариантными. Вот в этом и состоит принцип относительности.

Две теории Эйнштейна

Данный принцип, как и любую другую гипотезу, необходимо было сначала проверить, соотнеся его с природными явлениями, действующими в нашей реальности. Эйнштейн вывел 2 теории из принципа относительности. Хотя они и родственные, но считаются отдельными.

Частная, или специальная, теория относительности (СТО) основывается на положении о том, что для всевозможных систем отсчета, скорость движения которых постоянна, законы природы остаются одними и теми же. Общая теория относительности (ОТО) данный принцип распространяет на любые системы отсчета, в том числе и те, которые движутся с ускорением. В 1905 году А. Эйнштейн опубликовал первую теорию. Вторую, более сложную в плане математического аппарата, завершил к 1916 году. Создание теории относительности, как СТО, так и ОТО, стало важным этапом в развитии физики. Остановимся подробнее на каждой из них.

Специальная теория относительности

Что это такое, в чем ее суть? Давайте ответим на этот вопрос. Именно этой теорией предсказывается множество парадоксальных эффектов, противоречащих нашим интуитивным представлениям о том, как устроен мир. Речь идет о тех эффектах, которые наблюдаются тогда, когда скорость движения приближается к скорости света. Наиболее известным среди них является эффект замедления времени (хода часов). Часы, которые движутся относительно наблюдателя, для него идут медленнее, нежели те, которые находятся у него в руках.

В системе координат при движении со скоростью, приближенной к скорости света, время растягивается относительно наблюдателя, а длина объектов (пространственная протяженность), напротив, сжимается вдоль оси направления этого движения. Данный эффект ученые называют сокращением Лоренца-Фицджеральда. Еще в 1889 году его описал Джордж Фицджеральд, итальянский физик. А в 1892 году Хендрик Лоренц, нидерландец, дополнил его. Этот эффект объясняет отрицательный результат, который дает опыт Майкельсона-Морли, в котором скорость движения нашей планеты в космическом пространстве определяется замером "эфирного ветра". Таковы основные постулаты теории относительности (специальной). Эйнштейн дополнил эти преобразования массы, сделанной по аналогии. Согласно ей, по мере того, как скорость тела приближается к скорости света, масса тела увеличивается. Например, если скорость составит 260 тыс. км/с, то есть 87% от скорости света, с точки зрения наблюдателя, который находится в покоящейся системе отсчета, масса объекта удвоится.

Подтверждения СТО

Все эти положения, как бы они ни противоречили здравому смыслу, со времени Эйнштейна находят прямое и полное подтверждение во множестве экспериментов. Один из них провели ученые Мичиганского университета. Этим любопытным опытом подтверждается теория относительности в физике. Исследователи поместили на борт авиалайнера, который регулярно совершал трансатлантические рейсы, сверхточные Каждый раз после возвращения его в аэропорт показания этих часов сверялись с контрольными. Оказалось, что часы на самолете каждый раз все больше отставали от контрольных. Конечно, речь шла лишь о незначительных цифрах, долях секунды, но сам факт весьма показателен.

Последние полвека исследователи изучают элементарные частицы на ускорителях - огромных аппаратных комплексах. В них пучки электронов или протонов, то есть заряженных разгоняются до тех пор, пока их скорости не приближаются к скорости света. После этого ими обстреливаются ядерные мишени. В данных опытах нужно учитывать то, что масса частиц увеличивается, в противном случае результаты эксперимента не поддаются интерпретации. В этом отношении СТО уже давно не просто гипотетическая теория. Она стала одним из инструментов, которые используются в прикладной инженерии, наравне с ньютоновскими законами механики. Принципы теории относительности нашли большое практическое применение в наши дни.

СТО и законы Ньютона

Кстати, говоря о (портрет этого ученого представлен выше), следует сказать, что специальная теория относительности, которая, казалось бы, им противоречит, в действительности воспроизводит уравнения законов Ньютона практически в точности, если ее использовать для описания тел, скорость движения которых намного меньше скорости света. Другими словами, если применяется специальная теория относительности, физика Ньютона вовсе не отменяется. Эта теория, напротив, дополняет и расширяет ее.

Скорость света - универсальная константа

Используя принцип относительности, можно понять, почему в данной модели строения мира очень важную роль играет именно скорость света, а не что-то еще. Этим вопросом задаются те, кто только начинает знакомство с физикой. Скорость света является универсальной константой благодаря тому, что она определена в качестве таковой естественнонаучным законом (подробнее об этом можно узнать, изучив уравнения Максвелла). Скорость света в вакууме, в силу действия принципа относительности, в любой системе отсчета является одинаковой. Можно подумать, что это противоречит здравому смыслу. Выходит, что до наблюдателя одновременно доходит свет как от неподвижного источника, так и от движущегося (независимо от того, с какой скоростью он движется). Однако это не так. Скорости света, благодаря особой ее роли, отводится центральное место не только в специальной, но и в ОТО. Расскажем и о ней.

Общая теория относительности

Она используется, как мы уже говорили, для всех систем отсчета, не обязательно тех, скорость движения которых относительно друг друга является постоянной. Математически эта теория выглядит намного сложнее, нежели специальная. Этим и объясняется то, что между их публикациями прошло 11 лет. ОТО включает в себя специальную в качестве частного случая. Следовательно, законы Ньютона также входят в нее. Однако ОТО идет намного дальше ее предшественниц. К примеру, в ней по-новому объясняется гравитация.

Четвертое измерение

Благодаря ОТО мир становится четырехмерным: время добавляется к трем пространственным измерениям. Все они неразрывны, следовательно, нужно говорить уже не о пространственном расстоянии, существующем в трехмерном мире между двумя объектами. Речь теперь идет о простанственно-временных интервалах между различными событиями, объединяющими как пространственную, так и временную удаленность их друг от друга. Другими словами, время и пространство в теории относительности рассматриваются как некий четырехмерный континуум. Его можно определить как пространство-время. В данном континууме те наблюдатели, которые движутся относительно друг друга, будут иметь разные мнения даже о том, одновременно ли произошли два каких-либо события, или же одно из них предшествовало другому. Однако причинно-следственные связи при этом не нарушаются. Другими словами, существования такой системы координат, где два события происходят в разной последовательности и не одновременно, не допускает даже ОТО.

ОТО и закон всемирного тяготения

Согласно закону всемирного тяготения, открытому Ньютоном, сила взаимного притяжения существует во Вселенной между любыми двумя телами. Земля с этой позиции вращается вокруг Солнца, так как между ними имеются силы взаимного притяжения. Тем не менее, ОТО заставляет взглянуть с другой стороны на это явление. Гравитация, согласно данной теории, - следствие "искривления" (деформации) пространства-времени, которое наблюдается под воздействием массы. Чем тело тяжелее (в нашем примере, Солнце), тем больше "прогибается" под ним пространство-время. Соответственно, его гравитационное поле тем сильнее.

Для того чтобы лучше понять суть теории относительности, обратимся к сравнению. Земля, согласно ОТО, вращается вокруг Солнца, как маленький шарик, который катится вокруг конуса воронки, созданной в результате "продавливания" Солнцем пространства-времени. А то, что мы привыкли считать силой тяжести, является на самом деле внешним проявлением данного искривления, а не силой, в понимании Ньютона. Лучшего объяснения феномена гравитации, чем предложенное в ОТО, на сегодняшний день не найдено.

Способы проверки ОТО

Отметим, что ОТО проверить непросто, так как ее результаты в лабораторных условиях почти соответствуют закону всемирного тяготения. Однако ученые все-таки провели ряд важных экспериментов. Их результаты позволяют сделать вывод о том, что теория Эйнштейна является подтвержденной. ОТО, кроме того, помогает объяснить различные явления, наблюдаемые в космосе. Это, например, небольшие отклонения Меркурия от своей стационарной орбиты. С точки зрения ньютоновской классической механики их нельзя объяснить. Это также то, почему электромагнитное излучение, исходящее от далеких звезд, искривляется при прохождении его вблизи от Солнца.

Результаты, предсказанные ОТО, на самом деле существенно отличаются от тех, которые дают законы Ньютона (портрет его представлен выше), лишь тогда, когда присутствуют сверхсильные гравитационные поля. Следовательно, для полноценной проверки ОТО необходимы либо очень точные измерения объектов огромной массы, либо черные дыры, поскольку наши привычные представления по отношению к ним неприменимы. Поэтому разработка экспериментальных способов проверки этой теории является одной из главных задач современной экспериментальной физики.

Умы многих ученых, да и далеких от науки людей занимает созданная Эйнштейном теория относительности. Что это такое, мы вкратце рассказали. Эта теория переворачивает наши привычные представления о мире, поэтому интерес к ней до сих пор не угасает.

Одной из жемчужин научной мысли в тиаре знаний человечества с которой мы вошли в 21й век является Общая Теория Относительности (далее ОТО). Данная теория подтверждена бесчисленными опытами, скажу больше, нет ни одного эксперимента, где наши наблюдения хоть на чуть–чуть, хоть на кропалюшечку отличались бы от предсказаний Общей Теории Относительности. В пределах ее применимости, естественно.

Сегодня я хочу рассказать вам, что же это за зверь такой Общая Теория Относительности. Почему она такая сложная и почему на самом деле она такая простая. Как вы уже поняли, объяснение пойдет на пальцах™ , посему прошу не судить слишком строго за весьма вольные трактовки и не вполне корректные аллегории. Я хочу, чтобы прочитав данное объяснение любой гуманитарий , без багажа знаний дифференциального исчисления и интегрирования по поверхности, смог уяснить себе основы ОТО. В конце концов исторически это одна из первых научных теорий, начинающих уходить вдаль от привычного повседневного человеческого опыта. С ньютоновской механикой все просто, на ее объяснение хватит и трех пальцев - вот сила, вот масса, вот ускорение. Вот яблоко на голову падает (все видели как яблоки падают?), вот ускорение его свободного падения, вот силы на него действующие.

С ОТО не все так просто - искривления пространства, гравитационные замедления времени, черные дыры - все это должно вызывать (и вызывает!) у неподготовленного человека массу смутных подозрений - а не по ушам ли ты мне ездишь, чувачок? Какие–такие искривления пространства? Кто их видел эти искривления, откуда они берутся, как подобное вообще можно себе представить?

Попробуем разобраться.

Как можно понять из названия Общей Теории Относительности, суть ее в том, что в общем–то все в мире относительно. Шутка. Хотя и не очень.

Скорость света это та величина, относительно которой относительны все остальные вещи в мире. Любые системы отсчета равноправны, куда бы они ни двигались, что бы они ни делали, даже крутились бы на месте, даже двигались бы с ускорением (что есть серьезный удар под дых Ньютону с Галилеем, которые думали, что только равномерно и прямолинейно двигающиеся системы отсчета могут быть относительными и равноправными, да и то, лишь в рамках элементарной механики) - все равно, всегда можно найти хитрый трюк (по–научному это называется преобразование координат ), при помощи которого можно будет безболезненно переходить из одной системы отсчета в другую, практически ничего не теряя по пути.

Сделать такой вывод Эйнштейну помог постулат (напомню - логическое утверждение, принимаемое на веру без доказательств в силу своей очевидности) "о равенстве гравитации и ускорения" . (внимание, здесь происходит сильное упрощение формулировок, но в общих чертах все верно - эквивалентность эффектов равноускоренного движения и гравитации находится в самом сердце ОТО).

Доказать сей постулат, или хотя бы мысленно его попробовать на вкус весьма просто. Пожалуйте в "лифт Эйнштейна".

Идея сего мысленного эксперимента в том, что если вас заперли в лифте без окон и дверей, то нет ни малейшего, совершенно ни единого способа узнать, в какой ситуации вы находитесь: или лифт продолжает стоять как и стоял на уровне первого этажа, и на вас (и все остальное содержимое лифта) действует обычная сила притяжения, т.е. сила гравитации Земли, или же всю планету Земля убрали у вас из–под ног, а лифт стал подниматься вверх, с ускорением равным ускорению свободного падения g =9.8м/с 2 .

Что бы вы ни делали, какие бы опыты ни ставили, какие бы измерения окружающих предметов и явлений ни производили - различить эти две ситуации невозможно, и в первом и во втором случае все процессы в лифте будут проходить совершенно одинаково.

Читатель со звездочкой (*) наверняка знает один хитрый выход из этого затруднения. Приливные силы. Если лифт очень (очень–очень) большой, километров 300 в поперечнике, теоретически можно отличить гравитацию от ускорения, измерив силу гравитации (или величину ускорения, мы же пока еще не знаем что есть что) в разных концах лифта. Такой огромный лифт будет чуть–чуть сжиматься приливными силами в поперечнике и чуть–чуть вытягиваться ими же в продольной плоскости. Но это уже пошли хитрости. Если лифт достаточно мал, никаких приливных сил вы обнаружить не сможете. Так что не будем о грустном.

Итого, в достаточно маленьком лифте можно считать, что гравитация и ускорение это одно и то же . Казалось бы мысль очевидная, и даже тривиальная. Чего тут такого нового или сложного, скажете вы, это же и ребенку должно быть понятно! Да, в принципе, ничего сложного. Вовсе не Эйнштейн это придумал, такие вещи были известны гораздо раньше.

Эйнштейн же решил выяснить как будет вести себя луч света в подобном лифте. А вот у этой мысли оказались очень далеко идущие последствия, о которых до 1907го года никто всерьез не задумывался. В смысле, задумывались, если честно, многие, но так глубоко заморочиться решился только один.

Представим себе, что мы посветили в нашем мысленном лифте Эйнштейна фонариком. Луч света вылетел из одной стенки лифта, из точки 0) и полетел параллельно полу в сторону противоположной стенки. Покуда лифт стоит на месте, логично предположить, что луч света ударится в противоположную стенку аккурат напротив начальной точки 0), т.е. прилетит в точку 1). Лучи света же по прямой линии распространяются, в школу все ходили, в школе все это учили и юный Альбертик тоже.

Несложно догадаться, что если лифт поехал вверх, то за время покуда луч летел по кабине, она успеет сместиться чуточку вверх.
И если лифт будет двигаться с равномерным ускорением, то луч попадет на стенку в точке 2), то есть при взгляде со стороны будет казаться, что свет двигался как бы по параболе.

Ну, понято, что на самом деле никакой параболы нет. Луч как летел прямо, так и летит. Просто покуда он летел по своей прямой, лифт успел уехать чуточку наверх, вот нам и кажется , что луч по параболе двигался.

Все утрировано и преувеличенно, конечно. Эксперимент мысленный, от чего свет у нас летает медленно, а лифты ездят быстро. Тут пока все еще ничего особо крутого, это все тоже должно быть понятно любому школьнику. Подобный эксперимент можно провести у себя дома. Только нужно найти "очень медленные лучи" и годные, быстрые лифты.

Но Эйнштейн был реально гений. Сегодня многие его ругают, типа он вообще никто и ничто, сидел в своем патентном бюро, плел свои еврейские заговоры и тырил идеи у настоящих физиков . Большинство из заявляющих такое вообще не понимают кто такой Эйнштейн и что он сделал для науки и человечества.

Эйнштейн же сказал - раз "гравитация и ускорение эквивалентны" (еще раз повторю, он не совсем так сказал, я сознательно утрирую и упрощаю), значит в присутствии поля гравитации (например около планеты Земля) свет тоже полетит не по прямой, а по кривой. Гравитация искривит луч света.

Что само по себе было абсолютной ересью для того времени. Любой крестьянин должен знать, что фотоны - безмассовые частицы. Значит свет ничего "не весит". А потому на гравитацию свету должно быть пофиг, он не должен "притягиваться" Землей, как притягиваются камни, мячики и горы. Если кто помнит формулу Ньютона, гравитация обратно пропорциональна квадрату расстояния между телами и прямо пропорциональна их массам. Если у луча света нет массы (а ее у света действительно нет), значит никакого притяжения быть не должно! Тут современники начали коситься на Эйнштейна с подозрением.

А он, зараза, еще дальше попер. Говорит - не будем ломать крестьянам голову. Поверим древним грекам (привет, древние греки!), пусть свет распространяется как и раньше строго по прямой. Давайте лучше предположим, что само пространство вокруг Земли (и любого тела обладающего массой) гнется. Причем не просто трехмерное пространство, а сразу четырехмерное пространство–время.

Т.е. свет как летел по прямой, так и летит. Только эта прямая теперь нарисована не на плоскости, а лежит на как–бы скомканном полотенце. Да еще и в 3D. А комкает это полотенце как раз близкое присутствие массы. Ну, точнее присутствие энергии–импульса, если быть абсолютно точным.

Все ему - "Альбертик, ты гонишь, завязывай–ка поскорее с опиумом! Потому что ЛСД все еще не изобрели, а на трезвую голову такое точно не выдумаешь! Какое гнутое пространство, что ты мелешь?"

А Эйнштейн такой - "Я вам еще покажу!"

Заперся в своей белой башне (в смысле в патентном бюро) и давай математику под идейки подгонять. 10 лет подгонял, пока не родил вот это:

Точнее это квинтэссенция того, что он родил. В более развернутом варианте там 10 независимых формул, а в полном - две страницы математических символов мелким шрифтом.

Если вы решили взять настоящий курс Общей Теории Относительности, здесь вводная часть заканчивается и далее должны последовать два семестра изучения сурового матана. А чтобы подготовиться к изучению этого матана, нужны еще как минимум три года высшей математики, учитывая, что вы закончили среднюю школу и уже знакомы с дифференциальным и интегральным исчислением.

Положа руку на сердце, матан там не столько сложный, сколько нудный. Тензорное исчисление в псевдоримановом пространстве не сильно замороченная тема для восприятия. Это вам не квантовая хромодинамика, или, упаси Бог, не теория струн. Тут все четко, все логично. Вот вам пространство Римана, вот вам многообразие без разрывов и складок, вот метрический тензор, вот невырожденная матрица, сиди себе формулы выписывай, да индексы балансируй, следя чтобы ковариантные и контравариантные представления векторов с обеих сторон уравнения соответствовали друг другу. Это не сложно. Это долго и нудно.

Но не будем забираться в такие дали и вернемся к нашим пальцам™ . По–нашему, по–простецки формула Эйнштейна означает примерно следующее. Слева от знака "равно" в формуле стоят тензор Эйнштейна плюс ковариантный метрический тензор и космологическая постоянная (Λ). Эта лямбда есть по сути своей темная энергия , которую мы сегодня до сих пор нифига не знаем , но любим и уважаем. А Эйнштейн об этом еще даже и не догадывается. Тут своя интересная история, достойная целого отдельного поста.

В двух словах, все, что стоит слева от знака "равно" показывает, как изменяется геометрия пространства, т.е. как оно гнется и скручивается под действием силы гравитации.

А справа, кроме обычных постоянных вроде π , скорости света c и гравитационной постоянной G находится буковка Т - тензор энергии–импульса. В ламмерских терминах можно считать, что это конфигурация того, как распределена в пространстве масса (точнее энергия, ибо что масса, что энергия, все равно эмце квадрат ) для того, чтобы создавать гравитацию и гнуть ею пространство, дабы соответствовать левой части уравнения.

Вот, в принципе, и вся Общая Теория Относительности на пальцах™ .

Долгое время ни один ученый в мире не мог сравниться с Исааком Ньютоном по тому влиянию, которое тот оказал на представления человечества о природе. Такой человек появился на свет в 1879 г. в немецком городе Ульм, и звали его Альберт Эйнштейн.

Эйнштейн родился в семье торговца электротехническими товарами, учился в обычной гимназии в Мюнхене, не отличался особым прилежанием, затем не смог сдать вступительные экзамены в цюрихский Политехникум и заканчивал кантональную школу в городе Аарау. Только со второй попытки он поступил в Политехникум. Молодому человеку с трудом давались языки и история, зато он рано проявил большие способности к математике, физике и музыке, став неплохим скрипачом.

Летом 1900 г. Эйнштейн получил диплом преподавателя физики. Только через два года по рекомендации друзей он устроился на постоянную работу экспертом федерального патентного бюро в Берне. Эйнштейн проработал там с 1902 по 1909 г. Служебные обязанности оставляли ему достаточно времени для размышлений над научными проблемами. Наиболее удачным оказался для Эйнштейна 1905 г. – 26‑летний физик опубликовал пять статей, которые впоследствии были признаны шедеврами научной мысли. Работа «Об одной эвристической точке зрения на возникновение и превращение света» содержала гипотезу о световых квантах – элементарных частицах электромагнитного излучения. Гипотеза Эйнштейна позволила объяснить фотоэлектрический эффект: появление тока при освещении вещества коротковолновым излучением. Эффект был открыт в 1886 г. Герцем и не укладывался в рамки волновой теории света. За эту работу позднее Эйнштейн был удостоен Нобелевской премии. Открытие Эйнштейна создало идейную основу для модели атома Резерфорда – Бора, согласно которой свет излучается и поглощается порциями (квантами), и концепции «волн материи» Луи де Бройля. Незадолго до того Макс Планк установил, что тепло также излучается квантами. Был осуществлен синтез двух, казалось, несовместимых точек зрения на природу света, высказанных в свое время Гюйгенсом и Ньютоном.

Опубликованную в том же 1905 г. статью Эйнштейна «К электродинамике движущихся тел» можно рассматривать как введение в специальную теорию относительности, которая произвела переворот в представлениях о пространстве и времени.

Естественнонаучные представления о пространстве и времени прошли длинный путь развития. Долгое время основными были обыденные представления о пространстве и времени, как о каких‑то внешних условиях бытия, в которые помещена материя и которые сохранились бы, если бы даже материя исчезла. Такой взгляд позволил сформулировать концепцию абсолютного пространства и времени, получившую свою наиболее отчетливую формулировку в работе Ньютона «Математические начала натуральной философии».

Специальная теория относительности, созданная в 1905 г. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея – Ньютона и электродинамики Максвелла – Лоренца. Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая оказывается ее частным случаем. Исходным пунктом этой теории стал принцип относительности, из которого следует, что между покоем и движением – если оно равномерно и прямолинейно – нет никакой принципиальной разницы. Понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета. В соответствии со специальной теорией относительности, которая объединяет пространство и время в единый четырехмерный пространственно‑временной континуум, пространственно‑временные свойства тел зависят от скорости их движения. Пространственные размеры сокращаются в направлении движения при приближении скорости тел к скорости света в вакууме (300 тысяч км/с), временные процессы замедляются в быстродвижущихся системах, масса тела увеличивается.

Находясь в сопутствующей системе отсчета, т. е. двигаясь параллельно и на одинаковом расстоянии от измеряемой системы, нельзя заметить эти эффекты, которые называются релятивистскими, так как все используемые при измерениях пространственные масштабы и части будут меняться точно таким же образом. Согласно принципу относительности, все процессы в инерциальных системах отсчета протекают одинаково. Но если система является неинерциальной, то релятивистские эффекты можно заметить и изменить. Так, если воображаемый релятивистский корабль отправится к далеким звездам, то после возвращения его на Землю времени в системе корабля пройдет меньше, чем на Земле, и это различие будет тем больше, чем дальше совершается полет, а скорость корабля будет ближе к скорости света. Теория Эйнштейна использовала в качестве базового положение, что во Вселенной ничто не может двигаться быстрее света в вакууме и скорость света остается постоянной для всех наблюдателей, независимо от скорости их собственного перемещения в пространстве.

Статья «Зависит ли инерция тела от содержания в нем энергии?» завершала создание релятивистской (от лат. relativus – «относительный») теории. Здесь впервые была доказана связь между массой и энергией, в современных обозначениях – E = mc2. Эйнштейн писал: «…если тело отдает энергию E в виде излучения, то его масса уменьшается на E/c2… Масса тела есть мера содержащейся в нем энергии». Это открытие вышло за пределы физики, техники и философии и до сегодняшнего дня косвенно определяет судьбу человечества. Так, атомная энергия – это, собственно говоря, превратившаяся в энергию масса.

Появление столь эпохальных работ не принесло Эйнштейну немедленного признания, он все еще вынужден был продолжать работать в патентном бюро. Только весной 1909 г. Эйнштейна избрали профессором теоретической физики в цюрихском Политехникуме и он смог уйти из бюро. В 1913 г. ученый был избран членом Прусской академии наук. В Берлине Эйнштейн получил благоприятные условия для продолжения своей научной работы. В 1916 г. он опубликовал «Основы общей теории относительности». Идеи Эйнштейна имели в глазах ученых‑теоретиков, а еще больше в его собственных глазах, не столько узкопрактический, сколько философский смысл. Он создал гармоничную картину Вселенной.

В 1921 г. Эйнштейн получил Нобелевскую премию за «заслуги в области теоретической физики и в особенности за открытие закона фотоэлектрического эффекта». Присуждение этой премии еврею привело к резкому росту антисемитских настроений в Германии. Нападки на Эйнштейна усилились, однако он продолжал активную научную работу, читал много публичных лекций.

В 1932 г. физик отправился в очередную поездку в США и домой уже не вернулся – там к власти пришел Гитлер, и ничего хорошего всемирно признанный гений от него не ожидал. С этих пор Эйнштейн работал в Америке. В 1939 г. он направил письмо президенту Рузвельту с призывом как можно быстрее создать атомную бомбу, чтобы исключить монополию со стороны Германии. Последняя так и не получила это страшное оружие, зато проект, поддержанный правительством США, как известно, завершился «успешно», и в этом есть немалая заслуга и Эйнштейна. Впрочем, он решительно осудил бомбардировку Хиросимы и Нагасаки. Скончался ученый в Принстоне в 1955 г. Он запомнился современникам не только теорией относительности, которую, по правде говоря, хотя бы приблизительно понимает ничтожный процент населения Земли, но и чудаковатостью и неподражаемым юмором.

Теория относительности предложена гениальным учёным Альбертом Эйнштейном в 1905 году.

Ученый рассказал тогда о частном случае своей разработки.

Сегодня это принято называть Специальной теорией относительности или СТО. В СТО изучаются физические принципы равномерного и прямолинейного движения.

В частности, так перемещается свет, если на его пути нет препятствий, ему и посвящено многое в этой теории.

В основе СТО Эйнштейн заложил два основополагающих принципа:

  1. Принцип относительности. Любые физические законы одинаковы для неподвижных объектов и для тел, движущихся равномерно и прямолинейно.
  2. Скорость света в вакууме одинакова для всех наблюдателей и равна 300 000 км./с.

Теория относительности проверяема на практике, Эйнштейн предъявил доказательства в виде результатов экспериментов.

Рассмотрим принципы на примерах.

  • Представим, что два объекта движутся с неизменными скоростями строго по прямой. Вместо того, чтобы рассматривать их перемещения относительно неподвижной точки Эйнштейн предложил изучать их друг относительно друга. Например, два поезда едут по соседним путям с разными скоростям. В одном сидите Вы, в другом, напротив, — Ваш друг. Вы его видите, и его скорость относительно Вашего взгляда будет зависеть только от разницы скоростей поездов, но не от того как быстро они едут. По крайней мере до тех пор, пока поезда не начнут ускоряться или поворачивать.
  • Теорию относительности любят объяснять на космических примерах. Это происходит потому, то с увеличением скорости и расстояния эффекты усиливаются, особенно учитывая, что свет своей скорости не меняет. Кроме того, в вакууме ничто не препятствует распространению света. Итак, второй принцип провозглашает постоянство скорости света. Если укрепить и включить источник излучения на космическом корабле, то что бы не случилось с самим кораблем: он может перемещаться с большой скоростью, висеть неподвижно или исчезнуть вовсе вместе с излучателем, наблюдатель со станции увидит свет через одинаковых при всех казусах промежуток времени.

Общая теория относительности.

С 1907 по 1916 Эйнштейн занимался созданием Общей теории относительности. В этом разделе физики изучается движение материальных тел вообще, объекты могут ускоряться и менять траектории. Общая теория относительности объединяет в себе учение о пространстве и времени с теорией тяготения, устанавливает между ними зависимости. Также известно другое название: геометрическая теория тяготения. Общая теория относительности опирается на выводы специальной. Математические выкладки в данном случае чрезвычайно сложны.

Попробуем объяснить без формул.

Постулаты Общей теории относительности:

  • среда, в которой рассматриваются объекты и их движение, является четырехмерной;
  • все тела падают с постоянной скоростью.

Перейдем к подробностям.

Итак, в ОТО Эйнштейн использует четыре измерения: обычное трехмерное пространство он дополнил временем. Полученную структуру ученые называют пространственно-временной континуум или пространство — время. Утверждается, что четырехмерные объекты неизменны при движении, мы же способны воспринимать только их трехмерные проекции. То есть, как не гни линейку, увидишь лишь проекции неизвестного 4-мерного тела. Пространственно-временной континуум Эйнштейн считал неделимым.

По поводу тяготения Эйнштейн выдвинул следующий постулат: гравитация является искривлением пространства-времени.

То есть, по Эйнштейну, падение яблока на голову изобретателя является не следствием притяжения, а следствием присутствия массы-энергии в пострадавшей точке пространства-времени. На плоском примере: возьмем полотно, растянем его на четырех опорах, поместим на него тело, видим вмятину на полотне; более легкие тела, оказавшиеся вблизи первого объекта будут скатываться (не притягиваться) в результате искривления полотна.

Так доказано, что лучи света искривляются в присутствии гравитирующих тел. Также экспериментально подтверждено замедление времени с увеличением высоты. Эйнштейн сделал вывод, что пространство-время искривляется в присутствии массивного тела и гравитационное ускорение — лишь проекция в 3D равномерного движения в 4-х мерном пространстве. А траектория мелких тел, скатывающихся на полотне в сторону более крупного объекта остается прямолинейной для них самих.

В настоящее время ОТО является лидером среди других теорий гравитации и используется на практике инженерами, астрономами и разработчиками спутниковой навигации. Альберт Эйнштейн фактически является великим преобразователем науки и концепции естествознания. Помимо теории относительности он создал теорию броуновского движения, исследовал квантовую теорию света, участвовал в разработке основ квантовой статистики.

Использование материалов сайта разрешено только при условии размещения активной ссылки на источник.