Уравнение ньютона лейбница. Определённый интеграл и методы его вычисления

Формула Ньютона - Лейбница

Основная теорема анализа или формула Ньютона - Лейбница даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной

Формулировка

Рассмотрим интеграл от функции y = f (x ) в пределах от постоянного числа a до числа x , которое будем считать переменным. Запишем интеграл в следующем виде:

Данный вид интеграла называется интегралом с переменным верхним пределом. Используя теорему о среднем в определённом интеграле , легко показать что данная функция непрерывная и дифференцируемая. А также производная от данной функции в точке x равна самой интегрируемой функции. От сюда следует, что любая непрерывная функция имеет первообразную в виде квадратуры: . А так как класс первообразных функций функции f отличается на константу, легко показать, что: определенный интеграл от функции f на равен разности значений первообразных в точках b и а


Wikimedia Foundation . 2010 .

  • Формула Полной Вероятности
  • Формула Релея - Джинса

Смотреть что такое "Формула Ньютона - Лейбница" в других словарях:

    Формула Ньютона-Лейбница - Основная теорема анализа или формула Ньютона Лейбница даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной Формулировка Рассмотрим интеграл от функции y = f(x) в пределах от постоянного числа a до… … Википедия

    Формула конечных приращений - У этого термина существуют и другие значения, см. Теорема Лагранжа. Формула конечных приращений или теорема Лагранжа о среднем значении утверждает, что если функция непрерывна на отрезке и … Википедия

    Формула Стокса - Теорема Стокса одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса. Содержание 1 Общая формулировка 2… … Википедия

    НЬЮТОНА - ЛЕЙБНИЦА ФОРМУЛА - формула, выражающая значение определенного интеграла от заданной функции f по отрезку в виде разности значений на концах отрезка любой первообразной Fэтой функции Названа именами И. Ньютона (I. Newton) и Г. Лейбница (G. Leibniz), т. к. правило,… … Математическая энциклопедия

    НЬЮТОНА-ЛЕЙБНИЦА ФОРМУЛА - основная формула интегрального исчисления. Выражает связь между определенным интегралом от функции f(x) и какой либо ее первообразной F(x) … Большой Энциклопедический словарь

    Формула Лейбница - У этого термина существуют и другие значения, см. Список объектов, названных в честь Лейбница. У этого термина существуют и другие значения, см. Формула Лейбница (значения). Формулой Лейбница в интегральном исчислении называется правило… … Википедия

    Ньютона-Лейбница формула - Ньютона Лейбница формула, основная формула интегрального исчисления. Выражает связь между определённым интегралом от функции f(х) и какой либо её первообразной F(х). . * * * НЬЮТОНА ЛЕЙБНИЦА ФОРМУЛА НЬЮТОНА ЛЕЙБНИЦА ФОРМУЛА, основная формула… … Энциклопедический словарь

    Формула прямоугольников

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Теорема Ньютона - Формула Ньютона Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной. Если непрерывна на отрезке и ее любая первообразная на этом отрезке, то имеет … Википедия

Пусть на некотором отрезке оси Ох задана некоторая непрерывная функция f. Положим, что эта функция не меняет своего знака на всем отрезке.

Если f есть непрерывная и неотрицательная на некотором отрезке функция, а F есть её некоторая первообразная на этом отрезке, тогда площадь криволинейной трапеции S равна приращению первообразной на данном отрезке .

Эту теорему можно записать следующей формулой:

S = F(b) - F(a)

Интеграл функции f(x) от а до b будет равен S. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись (a;b)∫f(x). Ниже представлен пример как это будет выглядеть.

Формула Ньютона-Лейбница

Значит, мы можем приравнять между собой эти два результата. Получим: (a;b)∫f(x)dx = F(b) - F(a), при условии, что F есть первообразная для функции f на . Эта формула имеет название формулы Ньютона - Лейбница . Она будет верна для любой непрерывной на отрезке функции f.

Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров:

Пример 1 : вычислить интеграл. Находим первообразную для подынтегральной функции x 2 . Одной из первообразных будет являться функция (x 3)/3.

Теперь используем формулу Ньютона - Лейбница:

(-1;2)∫x 2 dx = (2 3)/3 - ((-1) 3)/3 = 3

Ответ: (-1;2)∫x 2 dx = 3.

Пример 2 : вычислить интеграл (0;pi)∫sin(x)dx.

Находим первообразную для подынтегральной функции sin(x). Одной из первообразных будет являться функция -cos(x). Воспользуемся формулой Ньютона-Лейбница:

(0;pi)∫cos(x)dx = -cos(pi) + cos(0) = 2.

Ответ: (0;pi)∫sin(x)dx=2

Иногда для простоты и удобства записи приращение функции F на отрезке (F(b)-F(a)) записывают следующим образом:

Используя такое обозначение для приращения, формулу Ньютона-Лейбница можно переписать в следующем виде:

Как уже отмечалось выше, это лишь сокращение для простоты записи, больше ни на что эта запись не влияет. Эта запись и формула (a;b)∫f(x)dx = F(b) - F(a) будут эквивалентны.

Ньютон Лейбниц – это немецкий философ, который родился 1 июля 1646года. Помимо философии, его увлекли точные науки. Он отметился в логике, математике, механике, физике, истории, дипломатии, механике. Так же Ньютона принято считать и изобретателем, а так же языковедом. Он был основателем и первый смог возглавить Академию наук в Берлине. Лейбниц занял почетное место во Французской Академии наук, как иностранный член.
Самыми основными научными достижениями Лейбница считают:
Создание математического анализа. Исчисление дифференциальное и интегральное, которое он основал на бесконечных малых.
С его помощью была заложена основа математической логики.
Наука комбинаторика.
Двоичная система счисления с цифрами 0 и 1. Теперь на них основана вся современная техника.
Для психологии был очень важный вклад, как понятие бессознательных малых перцепций. Помимо этого, появилось учение о бессознательной психической жизни.
Выявил закон сохранения энергии и ввел понятие живой силы.

Ньютона считают завершителем философии 17века. Он стал родоначальником новой системы и дал ей название – монадология. Помимо достижений в философии, ему удалось выявить учения об синтезе и анализе. Лейбниц дал ему формулировку в виде закона достаточного основания. Как он отмечал, все это не отталкивалось только от мышления и логики, а еще и от бытия и онтологии. Философу можно присвоить авторство современной формулировки закона тождества. Именно он вывел в мир понимание термина «модель».
В своих работах, Лейбниц писал о разнообразии возможностей машинного моделирования в человеческом мозгу. Как оказалось, у него есть большое количество функций. Именно данный ученый впервые выставил миру идею о том, что одни виды энергии могут переходить в другие. Эти исследования внесли большой вклад в физику. Конечно, самым важным и известным трудом его жизни была формула. Ее так и назвали формула Ньютона Лейбница.
Формула Ньютона Лейбница

Пусть на некотором отрезке оси Ох задана некоторая непрерывная функция f. Положим, что эта функция не меняет своего знака на всем отрезке.
Если f есть непрерывная и неотрицательная на некотором отрезке функция, а F есть её некоторая первообразная на этом отрезке, тогда площадь криволинейной трапеции S равна приращению первообразной на данном отрезке .
Эту теорему можно записать следующей формулой:
S = F(b) – F(a)
Интеграл функции f(x) от а до b будет равен S. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись (a;b)∫f(x). Ниже представлен пример как это будет выглядеть.

Значит, мы можем приравнять между собой эти два результата. Получим: (a;b)∫f(x)dx = F(b) - F(a), при условии, что F есть первообразная для функции f на . Эта формула имеет название формулы Ньютона – Лейбница. Она будет верна для любой непрерывной на отрезке функции f.
Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров:
Пример 1: вычислить интеграл. Находим первообразную для подынтегральной функции x2. Одной из первообразных будет являться функция (x3)/3.
Теперь используем формулу Ньютона – Лейбница:
(-1;2)∫x2dx = (23)/3 – ((-1)3)/3 = 3
Ответ: (-1;2)∫x2dx = 3.
Пример 2: вычислить интеграл (0;pi)∫sin(x)dx.
Находим первообразную для подынтегральной функции sin(x). Одной из первообразных будет являться функция –cos(x). Воспользуемся формулой Ньютона-Лейбница:
(0;pi)∫cos(x)dx = -cos(pi) + cos(0) = 2.
Ответ: (0;pi)∫sin(x)dx=2
Иногда для простоты и удобства записи приращение функции F на отрезке (F(b)-F(a)) записывают следующим образом:

Используя такое обозначение для приращения, формулу Ньютона-Лейбница можно переписать в следующем виде:

Как уже отмечалось выше, это лишь сокращение для простоты записи, больше ни на что эта запись не влияет. Эта запись и формула (a;b)∫f(x)dx = F(b) - F(a) будут эквивалентны.

Данной формулой до сих пор пользуется большое количество ученых и вычислителей. С ее помощью Лейбниц внес развитие во многие науки.

Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.

Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.

Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.

Yandex.RTB R-A-339285-1

Формула Ньютона-Лейбница

Определение 1

Когда функция y = y (x) является непрерывной из отрезка [ a ; b ] ,а F (x) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫ a b f (x) d x = F (b) - F (a) .

Данную формулу считают основной формулой интегрального исчисления.

Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.

Когда функция y = f (x) непрерывна из отрезка [ a ; b ] , тогда значение аргумента x ∈ a ; b , а интеграл имеет вид ∫ a x f (t) d t и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫ a x f (t) d t = Φ (x) , она является непрерывной, причем для нее справедливо неравенство вида ∫ a x f (t) d t " = Φ " (x) = f (x) .

Зафиксируем, что приращении функции Φ (x) соответствует приращению аргумента ∆ x , необходимо воспользоваться пятым основным свойством определенного интеграла и получим

Φ (x + ∆ x) - Φ x = ∫ a x + ∆ x f (t) d t - ∫ a x f (t) d t = = ∫ a x + ∆ x f (t) d t = f (c) · x + ∆ x - x = f (c) · ∆ x

где значение c ∈ x ; x + ∆ x .

Зафиксируем равенство в виде Φ (x + ∆ x) - Φ (x) ∆ x = f (c) . По определению производной функции необходимо переходить к пределу при ∆ x → 0 , тогда получаем формулу вида Φ " (x) = f (x) . Получаем, что Φ (x) является одной из первообразных для функции вида y = f (x) , расположенной на [ a ; b ] . Иначе выражение можно записать

F (x) = Φ (x) + C = ∫ a x f (t) d t + C , где значение C является постоянной.

Произведем вычисление F (a) с использованием первого свойства определенного интеграла. Тогда получаем, что

F (a) = Φ (a) + C = ∫ a a f (t) d t + C = 0 + C = C , отсюда получаем, что C = F (a) . Результат применим при вычислении F (b) и получим:

F (b) = Φ (b) + C = ∫ a b f (t) d t + C = ∫ a b f (t) d t + F (a) , иначе говоря, F (b) = ∫ a b f (t) d t + F (a) . Равенство доказывает формулу Ньютона-Лейбница ∫ a b f (x) d x + F (b) - F (a) .

Приращение функции принимаем как F x a b = F (b) - F (a) . С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫ a b f (x) d x = F x a b = F (b) - F (a) .

Чтобы применить формулу, обязательно необходимо знать одну из первообразных y = F (x) подынтегральной функции y = f (x) из отрезка [ a ; b ] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.

Пример 1

Произвести вычисление определенного интеграла ∫ 1 3 x 2 d x по формуле Ньютона-Лейбница.

Решение

Рассмотрим, что подынтегральная функция вида y = x 2 является непрерывной из отрезка [ 1 ; 3 ] , тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что функция y = x 2 имеет множество первообразных для всех действительных значений x , значит, x ∈ 1 ; 3 запишется как F (x) = ∫ x 2 d x = x 3 3 + C . Необходимо взять первообразную с С = 0 , тогда получаем, что F (x) = x 3 3 .

Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫ 1 3 x 2 d x = x 3 3 1 3 = 3 3 3 - 1 3 3 = 26 3 .

Ответ: ∫ 1 3 x 2 d x = 26 3

Пример 2

Произвести вычисление определенного интеграла ∫ - 1 2 x · e x 2 + 1 d x по формуле Ньютона-Лейбница.

Решение

Заданная функция непрерывна из отрезка [ - 1 ; 2 ] , значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫ x · e x 2 + 1 d x при помощи метода подведения под знак дифференциала, тогда получаем ∫ x · e x 2 + 1 d x = 1 2 ∫ e x 2 + 1 d (x 2 + 1) = 1 2 e x 2 + 1 + C .

Отсюда имеем множество первообразных функции y = x · e x 2 + 1 , которые действительны для всех x , x ∈ - 1 ; 2 .

Необходимо взять первообразную при С = 0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида

∫ - 1 2 x · e x 2 + 1 d x = 1 2 e x 2 + 1 - 1 2 = = 1 2 e 2 2 + 1 - 1 2 e (- 1) 2 + 1 = 1 2 e (- 1) 2 + 1 = 1 2 e 2 (e 3 - 1)

Ответ: ∫ - 1 2 x · e x 2 + 1 d x = 1 2 e 2 (e 3 - 1)

Пример 3

Произвести вычисление интегралов ∫ - 4 - 1 2 4 x 3 + 2 x 2 d x и ∫ - 1 1 4 x 3 + 2 x 2 d x .

Решение

Отрезок - 4 ; - 1 2 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y = 4 x 3 + 2 x 2 . Получаем, что

∫ 4 x 3 + 2 x 2 d x = 4 ∫ x d x + 2 ∫ x - 2 d x = 2 x 2 - 2 x + C

Необходимо взять первообразную F (x) = 2 x 2 - 2 x , тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:

∫ - 4 - 1 2 4 x 3 + 2 x 2 d x = 2 x 2 - 2 x - 4 - 1 2 = 2 - 1 2 2 - 2 - 1 2 - 2 - 4 2 - 2 - 4 = 1 2 + 4 - 32 - 1 2 = - 28

Производим переход к вычислению второго интеграла.

Из отрезка [ - 1 ; 1 ] имеем, что подынтегральная функция считается неограниченной, потому как lim x → 0 4 x 3 + 2 x 2 = + ∞ , тогда отсюда следует, что необходимым условием интегрируемости из отрезка. Тогда F (x) = 2 x 2 - 2 x не является первообразной для y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] , так как точка O принадлежит отрезку, но не входит в область определения. Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] .

Ответ: ∫ - 4 - 1 2 4 x 3 + 2 x 2 d x = - 28 , имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ - 1 ; 1 ] .

Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.

Замена переменной в определенном интеграле

Когда функция y = f (x) является определенной и непрерывной из отрезка [ a ; b ] , тогда имеющееся множество [ a ; b ] считается областью значений функции x = g (z) , определенной на отрезке α ; β с имеющейся непрерывной производной, где g (α) = a и g β = b , отсюда получаем, что ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z .

Данную формулу применяют тогда, когда нужно вычислять интеграл ∫ a b f (x) d x , где неопределенный интеграл имеет вид ∫ f (x) d x , вычисляем при помощи метода подстановки.

Пример 4

Произвести вычисление определенного интеграла вида ∫ 9 18 1 x 2 x - 9 d x .

Решение

Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2 x - 9 = z ⇒ x = g (z) = z 2 + 9 2 . Значение х = 9 , значит, что z = 2 · 9 - 9 = 9 = 3 , а при х = 18 получаем, что z = 2 · 18 - 9 = 27 = 3 3 , тогда g α = g (3) = 9 , g β = g 3 3 = 18 . При подстановке полученных значений в формулу ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z получаем, что

∫ 9 18 1 x 2 x - 9 d x = ∫ 3 3 3 1 z 2 + 9 2 · z · z 2 + 9 2 " d z = = ∫ 3 3 3 1 z 2 + 9 2 · z · z d z = ∫ 3 3 3 2 z 2 + 9 d z

По таблице неопределенных интегралов имеем, что одна из первообразных функции 2 z 2 + 9 принимает значение 2 3 a r c t g z 3 . Тогда при применении формулы Ньютона-Лейбница получаем, что

∫ 3 3 3 2 z 2 + 9 d z = 2 3 a r c t g z 3 3 3 3 = 2 3 a r c t g 3 3 3 - 2 3 a r c t g 3 3 = 2 3 a r c t g 3 - a r c t g 1 = 2 3 π 3 - π 4 = π 18

Нахождение можно было производить, не используя формулу ∫ a b f (x) d x = ∫ α β f (g (z)) · g " (z) d z .

Если при методе замены использовать интеграл вида ∫ 1 x 2 x - 9 d x , то можно прийти к результату ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что

∫ 9 18 2 z 2 + 9 d z = 2 3 a r c t g z 3 9 18 = = 2 3 a r c t g 2 · 18 - 9 3 - a r c t g 2 · 9 - 9 3 = = 2 3 a r c t g 3 - a r c t g 1 = 2 3 π 3 - π 4 = π 18

Результаты совпали.

Ответ: ∫ 9 18 2 x 2 x - 9 d x = π 18

Интегрирование по частям при вычислении определенного интеграла

Если на отрезке [ a ; b ] определены и непрерывны функции u (x) и v (x) , тогда их производные первого порядка v " (x) · u (x) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u " (x) · v (x) равенство ∫ a b v " (x) · u (x) d x = (u (x) · v (x)) a b - ∫ a b u " (x) · v (x) d x справедливо.

Формулу можно использовать тогда, необходимо вычислять интеграл ∫ a b f (x) d x , причем ∫ f (x) d x необходимо было искать его при помощи интегрирования по частям.

Пример 5

Произвести вычисление определенного интеграла ∫ - π 2 3 π 2 x · sin x 3 + π 6 d x .

Решение

Функция x · sin x 3 + π 6 интегрируема на отрезке - π 2 ; 3 π 2 , значит она непрерывна.

Пусть u (x) = х, тогда d (v (x)) = v " (x) d x = sin x 3 + π 6 d x , причем d (u (x)) = u " (x) d x = d x , а v (x) = - 3 cos π 3 + π 6 . Из формулы ∫ a b v " (x) · u (x) d x = (u (x) · v (x)) a b - ∫ a b u " (x) · v (x) d x получим, что

∫ - π 2 3 π 2 x · sin x 3 + π 6 d x = - 3 x · cos x 3 + π 6 - π 2 3 π 2 - ∫ - π 2 3 π 2 - 3 cos x 3 + π 6 d x = = - 3 · 3 π 2 · cos π 2 + π 6 - - 3 · - π 2 · cos - π 6 + π 6 + 9 sin x 3 + π 6 - π 2 3 π 2 = 9 π 4 - 3 π 2 + 9 sin π 2 + π 6 - sin - π 6 + π 6 = 9 π 4 - 3 π 2 + 9 3 2 = 3 π 4 + 9 3 2

Решение примера можно выполнить другим образом.

Найти множество первообразных функции x · sin x 3 + π 6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:

∫ x · sin x x 3 + π 6 d x = u = x , d v = sin x 3 + π 6 d x ⇒ d u = d x , v = - 3 cos x 3 + π 6 = = - 3 cos x 3 + π 6 + 3 ∫ cos x 3 + π 6 d x = = - 3 x cos x 3 + π 6 + 9 sin x 3 + π 6 + C ⇒ ∫ - π 2 3 π 2 x · sin x 3 + π 6 d x = - 3 cos x 3 + π 6 + 9 sincos x 3 + π 6 - - - 3 · - π 2 · cos - π 6 + π 6 + 9 sin - π 6 + π 6 = = 9 π 4 + 9 3 2 - 3 π 2 - 0 = 3 π 4 + 9 3 2

Ответ: ∫ x · sin x x 3 + π 6 d x = 3 π 4 + 9 3 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter