Длина волны инфракрасного излучения. Об инфракрасном излучении

Уильям Гершель впервые заметил, что за красным краем полученного с помощью призмы спектра Солнца есть невидимое излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.

Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.

В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.

Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.

ИК-диапазон - один из самых интересных для астрономов. В нем светит космическая пыль, важная для образования звезд и эволюции галактик. ИК-излучение лучше видимого проходит через облака космической пыли и позволяет видеть объекты, недоступные наблюдению в других участках спектра.

Источники

Фрагмент одного из так называемых Глубоких полей «Хаббла» . В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.

Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов - это галактики на разных стадиях эволюции.

Гигантская спиральная галактика, обозначаемая также как M104, расположена в скоплении галактик в созвездии Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд - в 2-3 раза больше, чем Млечный Путь.

В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.

Приемники

Главное зеркало диаметром 85 см изготовлено из бериллия и охлаждается до температуры 5,5 К для снижения собственного инфракрасного излучения зеркала.

Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA , включающей:

  • гамма-обсерваторию «Комптон» (1991–2000, 20 кэВ -30 ГэВ ), см. Небо в гамма-лучах с энергией 100 МэВ ,
  • рентгеновскую обсерваторию «Чандра» (1999, 100 эВ -10 кэВ ),
  • космический телескоп «Хаббл» (1990, 100–2100 нм ),
  • инфракрасный телескоп «Спитцер» (2003, 3–180 мкм ).

Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».

Обзоры неба

Небо в ближнем инфракрасном диапазоне 1–4 мкм и в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)

В ближнем инфракрасном диапазоне Галактика просматривается еще более отчетливо, чем в видимом.

А вот в среднем ИК-диапазоне Галактика едва видна. Наблюдениям сильно мешает пыль, находящаяся в Солнечной системе. Она расположена вдоль плоскости эклиптики, которая наклонена к плоскости Галактики под углом около 50 градусов.

Оба обзора получены инструментом DIRBE (Diffuse Infrared Background Experiment) на борту спутника COBE (Cosmic Background Explorer). В ходе этого эксперимента, начатого в 1989 году, были получены полные карты инфракрасной яркости неба в диапазоне от 1,25 до 240 мкм .

Земное применение

В основе прибора лежит электронно-оптический преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч раз) усиливать слабый видимый или инфракрасный свет.

Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ , выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.

Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм ).

Существуют также приборы, которые улавливают собственное тепловое излучение предметов в среднем ИК-диапазоне (8–14 мкм ). Такие приборы называются тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.

Вся энергия, потребляемая электрическим обогревателем, в конечном счете, переходит в тепло. Значительная часть тепла уносится воздухом, который соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.

Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.

Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.

Что представляет собой инфракрасное излучение? Определение гласит, что инфракрасными лучами является электромагнитное излучение, которое подчиняется оптическим законам и имеет природу видимого света. Инфракрасные лучи имеют спектральную зону, находящуюся между красным видимым светом и коротковолновым радиоизлучением. Для инфракрасной области спектра имеется разделение на коротковолновые, средневолновые и длинноволновые. Обогревающий эффект от таких лучей высокий. Принята аббревиатура для инфракрасных излучения — ИК.

ИК-излучение

Производители сообщают разную информацию об обогревающих приборах, сконструированных по принципу рассматриваемого излучения. На одних может быть указано, что прибор инфракрасный, на другом — что он длинноволновый или темный. Все это на практике относится к инфракрасному излучению, длинноволновые обогреватели обладают наименьшей температурой излучающей поверхности, и выделяются волны в большей массе в длинноволновой зоне спектра. Они же получили наименование темных, так как при температуре они не отдают света и не сияют, как в других случаях. У средневолновых обогревателей температура поверхностей более высокая, и они получили название серых. К светлым относится коротковолновый прибор.

Оптические характеристики вещества в инфракрасных областях спектра имеют отличия от оптического свойства в обычной повседневности. Обогревательные приборы, которые используются человеком каждый день, отдают инфракрасные лучи, но вы их не видите. Вся разница в длине волны, она варьируется. Обычный радиатор отдает лучи, именно таким образом происходит нагрев в комнате. Волны инфракрасного излучения присутствуют в жизни человека естественным путем, солнце отдает именно их.

Инфракрасное излучение относится к разряду электромагнитных, то есть глазами его не увидеть. Длина волны находится в диапазоне от 1 миллиметра до 0,7 микрометра. Самым большим источником ик-лучей является солнце.

ИК-лучи для отопления

Наличие отопления, основанное на этой технологии, позволяет избавиться от недостатков конвекционной системы, которая связана с циркуляцией потока воздуха в помещениях. Конвекция поднимает и переносит пыль, мусор, создает сквозняк. Если поставить электрический инфракрасный обогреватель, то он будет работать по принципу солнечных лучей, эффект будет как от солнечного тепла в прохладную погоду.

Инфракрасная волна является формой энергии, это естественный механизм, позаимствованный в природе. Эти лучи способны нагревать не только предметы, но и само воздушное пространство. Волны пронизывают воздушные слои и обогревают предметы и живые ткани. Локализация источника рассматриваемого излучения не так важна, если прибор стоит на потолке, до пола греющие лучи будут прекрасно доходить. Важно, что инфракрасное излучение позволяет оставлять воздух влажным, оно не высушивает его, как это делают другие виды отопительных приборов. Производительность приборов на основе инфракрасного излучения крайне высокая.

Инфракрасное излучение не требует больших энергетических затрат, поэтому возникает экономия для бытового использования данной разработки. Ик-лучи подходят для работы на больших пространствах, главное, верно выбрать длину лучей и настроить правильно приборы.

Вред и польза инфракрасного излучения

Длинные инфракрасные лучи, попадающие на кожу, вызывают реакцию нервных рецепторов. Это обеспечивает наличие тепла. Поэтому во многих источниках инфракрасное излучение получает название теплового. Большая часть излучаемого оказывается поглощена влажностью, которая содержится в верхнем слое кожного покрова человека. Поэтому повышается температура кожи, и за счет этого происходит обогрев всего тела.

Бытует мнение, что ик-излучение приносит вред. Это не так.

Исследования показывают, что длинноволновые излучения безопасны для организма, более того, от них есть польза.

Они усиливают иммунитет, стимулируют регенерацию и улучшение состояния внутренних органов. Эти лучи с длиной 9,6 мкм используются в медицинской практике с лечебными целями.

Коротковолновое ик-излучение работает иначе. Оно проникает глубоко в ткани и греет внутренние органы, минуя кожный покров. Если облучать кожу такими лучами, то капиллярная сетка расширяется, кожа краснеет, и могут появиться признаки ожога. Для глаз такие лучи опасны, они приводят к образованию катаракты, нарушают водно-солевой баланс, провоцируют судороги.

Тепловой удар человек получает из-за коротковолнового излучения. Если повысить температуру головного мозга хотя бы на градус, то уже появляются признаки удара или отравления:

  • тошнота;
  • частый пульс;
  • затемнение в глазах.

Если перегрев происходит на два и более градуса, то развивается менингит, который опасен для жизни.

Интенсивность инфракрасного излучения зависит от некоторых факторов. Важно расстояние до нахождения источников тепла и показатель температурного режима. Длинноволновое инфракрасное излучение важно в жизнедеятельности, и без него обойтись нельзя. Вред может быть только тогда, когда длина волны неправильная, и время, которое она воздействует на человека, большое.

Как обезопасить человека от вреда инфракрасного излучения?

Не все инфракрасные волны вредны. Следует опасаться коротковолновой инфракрасной энергии. Где она встречается в повседневной жизни? Нужно избегать тел с температурой выше 100 градусов. К этой категории относятся сталеплавильное оборудование, электродуговая печь. На производствах сотрудники носят специально разработанное обмундирование, оно обладает защитным экраном.

Самым полезным инфракрасным обогревающим средством являлась русская печь, тепло от нее было лечебным и полезным. Однако сейчас никто такими приспособлениями не пользуется. Инфракрасные обогреватели прочно вошли в обиход, а инфракрасные волны используются широко в промышленности.

Если спираль, отдающая тепло, в инфракрасном приборе защищена теплоизолятором, то излучение будет мягким и длинноволновым, а это безопасно. Если у прибора открытый нагревательный элемент, то инфракрасное излучение будет жестким, коротковолновым, и это опасно для здоровья.

Для того чтобы разобраться в конструкции прибора, нужно изучить технический паспорт. Там будет информация об инфракрасных лучах, используемых в конкретном случае. Обращайте внимание, какова длина волны.

Не всегда однозначно вредно инфракрасное излучение, испускают опасность только открытые источники, короткие лучи и длительное нахождение под ними.

Следует беречь глаза от источника волн, при появлении дискомфорта уходить из-под влияния ИК-лучей. Если на коже появляется непривычная сухость, значит, лучи сушат липидный слой, а это очень хорошо.

Инфракрасное излучение в полезных диапазонах используется в качестве лечения, методы физиотерапии основываются на работе с лучами и электродами. Однако все воздействие проводится под наблюдением специалистов, самостоятельно лечиться инфракрасными приборами не стоит. Время действия должно быть строго определено медицинскими показаниями, нужно исходить из целей и задач лечения.

Считается, что инфракрасное излучение неблагоприятно для систематического воздействия на маленьких детей, поэтому желательно тщательно выбирать обогревательные приборы для спальни и детских комнат. Потребуется помощь специалистов, чтобы настроить безопасную и эффективную инфракрасную сетку в квартире или доме.

Не стоит отказываться от современных технологий из-за предрассудков по незнанию.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.


Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.


ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.


Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.


Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.


Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Открытие инфракрасного излучения
Виды теплообмена
Физические свойства
Диапазон ИК волн благоприятных для человека

Английский исследователь Гершель У. в 1800 году в процессе изучения солнечного света установил, что в Солнечных лучах при разложении их на отдельные спектры при помощи призмы за границей красного видимого спектра, происходит повышение показаний термометра. Термометр, размещенный в этой области, показал большую температуру, чем поверочный термометр. Позже установили, что свойства этих лучей поддаются законам оптики, выходит, имеют одинаковую природу, с световым излучением. Таким образом, было открыто инфракрасное излучение.


Уточним, каким образом горячие предметы отдают тепло окружающим их объектам:
теплопередачей (теплообмен между телами при контакте или через разделитель),
конвекцией (передача тепла теплоносителем, жидкостью или газом от источника тепла, к более холодным предметам)
тепловым излучением (поток электромагнитного излучения в конкретном диапазоне длины волны, излучаемое веществом на основе его внутренней избыточной энергии).


Все объекты окружающего нас материального мира это источники и одновременно поглотители теплового излучения.
Тепловое излучение, основой которого являются инфракрасные лучи - это поток электромагнитных лучей, которые удовлетворяют законам оптики, имеют одинаковую природу со световым излучением. ИК-луч расположен между красным воспринимаемым человеком светом (0.7 мкм) и коротковолновым радиоизлучением (1 - 2 мм). К тому же, ИК-область спектра делят на коротковолновую (0.7 - 2 мкм), средневолновую (от 2 до 5.1 мкм), длинноволновую (5.1 - 200 мкм). Инфракрасные лучи испускают все вещества жидкие и твердые, при этом от температуры вещества зависит длина излучаемой волны . При более высокой температуре, длина волны излучаемая веществом короче, но больше интенсивность излучения.

В диапазоне длинноволнового излучения (от 9 до 11 мкм) находится наиболее благоприятное тепловое излучение для человека . Длинноволновые излучатели, обладают более низкой температурой поверхности излучения, их характеризуют темными - при низкой температуре поверхности они не светятся (до 300°С). Средневолновые излучатели с более высокой температурой поверхности, характеризуют серыми, с максимальной температурой тела излучают короткие волны, их называют белыми или светлыми.

Подтверждение советскими ученными

Физические свойства инфракрасного излучения

Для инфракрасных лучей существует ряд отличий от оптических свойств видимого света. (прозрачность, коэффициент отражения, коэффициент преломления) К примеру ИК-излучения имеющего длину волны более 1 мкм, поглощаются водой в слое 1-2 см, по этому вода в некоторых случаях используется как теплозащитный барьер. Лист кремния непрозрачен в видимой области, но прозрачен в инфракрасной. Ряд металлов имеет рефлекторные качества которые для инфракрасного излучения выше, чем для воспринимаемого человеком света, вдобавок существенно улучшаются их свойства с увеличением показателя длины волны излучения. А именно, показатель отражения Al, Au, Ag при волне длиной около 10 мкм приближается к 98% . Учитывая эти свойства материалов, их используют при производстве инфракрасного оборудования . Прозрачные для инфракрасных лучей материалы - в качестве излучателей инфракрасного излучения (кварц, керамика), материалы имеющие высокую способностью к отражению лучей - в качестве рефлекторов, позволяющих сфокусировать ИК-излучение в нужном направлении (преимущественно алюминий).

Также важно знать о свойствах поглощения и рассеяния инфракрасного излучения. Сквозь воздух инфракрасные лучи распространяются практически беспрепятственно. А именно, молекулы азота и кислорода сами по себе инфракрасные лучи не поглощают, а только незначительно рассеивают, уменьшая интенсивность. Водяной пар, озон, углекислый газ, а также другие примеси, находящиеся в воздухе, абсорбируют инфракрасное излучение: водяной пар - практически во всей инфракрасной области спектра, углекислый газ - в средней части инфракрасной области. Присутствие в воздухе мелких частиц - пыли, дыма, мелких капель жидкостей приводит к ослаблению силы инфракрасного излучения в результате рассеяния его на этих частицах.

Перевод Дмитрия Викторова

Аббревиатура: ИК излучение
Определение: невидимое излучение с длинами волн примерно от 750 нм до 1мм.

Инфракрасное излучение - это излучение с длиной волны больше чем 700 - 800 нм, верхняя граница видимого диапазона длин волн. Эта граница не определяет, как снижается чувствительность глаза к видимому излучению в данной спектральной области.

Несмотря на то, что чувствительность глаза к видимому излучению, например, при 700 нм уже очень слабая, излучение от некоторых лазерных диодов с длиной волны выше 750 нм все равно можно увидеть, если это излучение достаточно интенсивно. Такое излучение может быть вредно для глаз, даже если оно не воспринимается как очень яркое. Верхний предел инфракрасной области спектра с точки зрения длины волны также четко не определен, под ним обычно понимается примерно 1 мкм.

Для того, чтобы "видеть" в инфракрасном свете, используются приборы ночного видения .

Для областей инфракрасного спектра используется следующая классификация:

  • - ближняя инфракрасная область спектра (также называется ИК-A) составляет ~ от 700 до 1400 нм. Лазеры, излучающие в этом диапазоне длин волн, особенно опасны для глаз, так как ближнее инфракрасное излучение передается и фокусируется на чувствительной сетчатки так же, как видимый свет, в то же время не вызывает защитного рефлекса моргания. Необходима соответствующая защита для глаз.
  • - коротковолновый инфракрасный (ИК-B) распространяется от 1,4 до 3 мкм . Этот диапазон является относительно безопасным для глаз, так как такое излучение будет поглощено веществом глаза прежде, чем оно сможет достичь сетчатки. Легированные эрбием волоконные усилители для оптоволоконной связи работают в этом диапазоне.
  • - средневолновый инфракрасный диапазон (ИК-C) от 3 до 8 мкм . Атмосфера испытывает сильное поглощение в этом диапазоне. Существует много линий поглощений, например, для двуокиси углерода (CO2) и водяного пара (H2O). Многие газы обладают сильными и характерными линиями поглощения среднего ИК излучения, что делает эту область спектра интересной для высокочувствительной газовой спектроскопии.
  • - длинноволновый ИК варьируется от 8 до 15 мкм , следуя за дальним инфракрасным, который распространяется до 1 мм, в литературе иногда он начинается уже с 8 мкм. Длинноволновую ИК область спектра используют для тепловидения.

Однако следует отметить, что определения этих терминов существенно различаются в литературе. Большая часть стекол прозрачна для ближнего инфракрасного излучения, но сильно поглощает излучение больших длин волн, при этом фотоны этого излучения могут быть напрямую превращены в фононы. Для кварцевого стекла, используемого в кварцевых волокнах, сильное поглощение происходит после 2 мкм.

Инфракрасное излучение также называется тепловым излучением, так как тепловое излучение от нагретых тел находится в большей степени в инфракрасной области. Даже при комнатной температуре и ниже, тела выделяют значительное количество среднего и дальнего инфракрасного излучения, который может быть использован для тепловидения.
Например, инфракрасные изображения нагретого зимой дома могут выявить утечки тепла (например, на окнах, крыше, или в плохо изолированных стенах за радиаторами) и тем самым помогают принять эффективные меры по улучшению.

По материалам интернет-портала