Какие вещества не состоят из нуклеотидов. Структура молекулы ДНК


Нуклеотиды.

Нуклеиновые кислоты

Нуклеотиды

Нуклеотиды – это природные соединения, состоящие из 1) остатков азотистого нуклеинового основания, 2) углеводного остатка и 3) фосфатной группы.

Азотистые нуклеиновые основания

Азотистые основания – это производные двух гетероциклов - пиримидина и пурина .

Пиримидиновые основания

Пуриновые основания

ТАУТОМЕРИЯ АЗОТИСТЫХ ОСНОВАНИЙ

а) лактам-лактимная

Аналогичная таутомерия возможна у тимина, цитозина и гуанина.

б) амино-иминная

Аналогичная таутомерия возможна у гуанина и цитозина.

Лактамы более устойчивы, чем лактимы, а амины более устойчивы, чем имины. Все основания in vitro и in vivo существуют и участвуют в обмене веществ в лактамных и аминоформах.

Производные и аналоги нуклеиновых оснований применяются в медицине как лекарственные вещества противоопухолевого действия:

Нуклеозиды

Нуклеозиды – это соединения, состоящие из остатков нуклеинового основания и углевода, связанных β- N -гликозидной связью.

Реакция образования нуклеозидов in vivo идет под действием ферментов.

В кислой среде (но не в нейтральной и не в щелочной) нуклеозиды гидролизуются, распадаясь на исходные основание и углевод. Пиримидиновые нуклеозиды гидролизуются труднее, пуриновые – легче.

Номенклатура нуклеозидов

Основание

Название

2"-Дезоксиуридин

2"-Дезокситимидин

2"-Дезоксицитиидин

Аденозин

2"-Дезоксиаденозин

Гуанозин

2"-Дезоксигуанозин


Нуклеотиды

Нуклеотиды – это нуклеозиды, содержащие фосфатную группу в 5"-положении (5"-фосфоридированные нуклеозиды).

Нуклеотиды образуются in vivo в результате ферментативного фосфорилирования нуклеозидов:

Нуклеотиды гидролизуются в кислой и в щелочной средах: при кислотном гидролизе образуются основание, углевод и фосфорная кислота, а щелочной гидролиз дает нуклеозид и фосфат натрия:

Номенклатура нуклеотидов

Основание

Название

Уридин-5"-монофосфат (УМФ),

уридиловая кислота

2"-Дезоксиуридин-5"-монофосфат

Тимидин-5"-монофосфат (ТМФ),

тимидиловая кислота

2"-Дезокситимидин-5"-монофосфат

Цитидин-5"-монофосфат (ЦМФ),

цитидиловая кислота

2"-Дезоксицитиидин-5"-монофосфат

Аденозин-5"-монофосфат (АМФ),

адениловая кислота

2"-Дезоксиаденозин-5"-монофосфат

Гаунозин-5"-монофосфат (ГМФ),

гуаниловая кислота

2"-Дезоксигуанозин-5"-монофосфат


Динуклеотиды

НАД и ФАД – коферменты, участвующие в ОВ реакциях переноса водорода в организме:

Аденозинтрифосфат (АТФ)

АТФ является аккумулятором и переносчиком энергии в биохимических реакциях.

Биологические реакции АТФ

1. Фосфорилирование – перенос фосфатных групп от АТФ на другие субстраты:

2. Гидролиз с выделением энергии, используемой в синтетазных реакциях:

Нуклеиновые кислоты

Нуклеиновые кислоты – это полинуклеотиды – полимеры, состоящие из нуклеотидных остатков, связанных сахарофосфатными сложноэфирными связями.

Схема строения полинуклеотидной цепи:

Виды НК : ДНК – содержат остатки 2 -дезоксирибозы, не содержат урацила;

Д Н К

Первичная структура ДНК

Первичная структура ДНК – это определенный порядок последовательности нуклеотидов в цепи:

В первичной структуре ядерной ДНК заложен генетический код. В процессе транскрипции он "переписывается" на информационную РНК, а затем происходит трансляция: в рибосоме на матрице информационной РНК синтезируется полипептидная цепь белка. Ключ генетического кода заключается в том, что один аминокислотный остаток в синтезируемой полипептидной цепи кодируется тремя нуклеотидными остатками (триплетом) в НК, и таким образом, с помощью 4 видов нуклеотидов кодируются 20 аминокислот.

Химические свойства нуклеиновых кислот

Сложноэфирные связи, соединяющие полинуклеотидные цепи, неустойчивы в кислой и щелочной средах, и НК в этих условиях подвергаются гидролизу:

КОМПЛЕМЕНТАРНОСТЬ АЗОТИСТЫХ ОСНОВАНИЙ

Комплементарность – это соответствие формы двух сложных линий, которые подходят друг к другу "как ключ к замку".

Комплементарные пары оснований:

В паре А-Т тимин может быть (при переходе ДНК→РНК) заменен урацилом, и пара становится А-У ("взаимозаменяемость" тимина и урацила).

Биологическое значение комплементарных взаимодействий заключается в том, что они обеспечивают точность передачи информации от одной НК к другой.

Вторичная структура ДНК

Представляет собой спираль, состоящую из двух комплементарных друг другу и антипараллельных полинуклеотидных цепей ("двойная спираль"):

Биологическая роль "двойной спирали":

1) Она обеспечивает сохранность генетической информации (ядерный нуклеопротеидный комплекс "ДНК-Гистоны");

2) Обеспечивает восстановление информации при повреждении ДНК (репарация после мутаций).

Р Н К

Виды РНК : рибосомальная, информационная, транспортная.

Рибосомальная РНК (р-РНК) – структурный материал рибосом (рибосомальный нуклеопротеидный клмплекс).

Информационная (матричная) РНК (и-РНК) – промежуточный этап в процессе трансформации информации "ДНК – белок". Она синтезируется на матрице ДНК и сама служит матрицей при синтезе белка в рибосоме. и-РНК сравнительно низкомолекулярна и не имеет развитой вторичной структуры.

Транспортная РНК (т-РНК) – низкомолекулярная РНК, выполняющая следующие функции: 1) определение "своей" аминокислоты (для каждой АК существует своя т-РНК); 2) связывание с АК и транспорт её к рибосоме; 3) определение места АК в растущей полипептидной цепи.

Транспортные РНК имеют вторичную структуру "клеверного листа":

Выступающий конец ССА-3 ОН – место связывания с карбоксильной группой АК.

Триплет нуклеотидов в крайней нижней точке – кодон, комплементарный соответствующему антикодону на и-РНК.

ЛИТЕРАТУРА:

Основная

1. Тюкавкина Н.А., Зурабян С.Э., Белобородов В.Л. и др. – Органическая химия (специальный курс), кн.2 – Дрофа, М., 2008 г., с. 157-178.

2. Н.А.Тюкавкина, Ю.И.Бауков – Биоорганическая химия – ДРОФА, М., 2007 г., с. 420-444.

- это сложные мономеры, из которых собраны гетерополимерные молекулы. ДНК и РНК. Свободные нуклеотиды участвуют в сигнальных и энергетических процессах жизнедеятельности. ДНК-нуклеотиды и РНК-нуклеотиды имеют общий план строения, но различаются по строению сахара-пентозы. В ДНК-нуклеотидах используется сахар дезоксирибоза, а в РНК-нуклеотидах - рибоза.

Структура нуклеотида

В каждом нуклеотиде можно выделить 3 части:

1. Углевод - это пятичленный сахар-пентоза (рибоза или дезоксирибоза).

2. Фосфорный остаток (фосфат) - это остаток фосфорной кислоты.

3. Азотистое основание - это соединение, в котором много атомов азота. В нуклеиновых кислотах используется всего 5 видов азотистых оснований: Аденин, Тимин, Гуанин, Цитозин, Урацил. В ДНК - 4 вида: Аденин, Тимин, Гуанин, Цитозин. В РНК - тоже 4 вида: Аденин, Урацил, Гуанин, Цитозин, Легко заметить, что в РНК происходит замещение Тимина на Урацил по сравнению с ДНК.

Общая структурная формула пентозы (рибозы или дезоксирибозы), молекулы которой образуют "скелет" нуклеиновых кислот:

Если Х заменить на Н (Х = Н) - то получаются дезоксирибонуклеозиды; если Х заменить на ОН (Х = ОН) - то получаются рибонуклеозиды. Если вместо R подставить азотистое основание (пуриновое или пиримидиновое) - то получится конкретный нуклеотид.

Важно обратить внимание на те положения атомов углерода в пентозе, которые обозначены как 3" и 5". Нумерация атомов углерода начинается от атома кислорода вверху и идёт по часовой стрелке. Последним получается атом углерода (5"), который располагается за пределами пентозного кольца и образует, можно сказать, "хвостик" у пентозы. Так вот, при наращивании цепочки из нуклеотидов фермент может присоединить новый нуклеотид только к углероду 3" и ни к какому другому. Поэтому 5"-конец нуклеотидной цепочки никогда не сможет иметь продолжения, удлинняться может только 3"-конец.


Сравните нуклеотид для РНК с нуклеотидом для ДНК.

Попробуйте узнать, какой это нуклеотид, в таком представлении:

АТФ - свободный нуклеотид

цАМФ - "закольцованная" молекула АТФ

Схема строения нуклеотида


Обратите внимание на то, что активированный нуклеотид, способный наращивать цепочку ДНК или РНК, имеет "трифосфатный хвостик". Именно этим "энергонасыщенным" хвостиком он может присоединиться к уже имеющейся цепочке растущей нуклеиновой кислоты. Фосфатный хвостик сидит на 5-м атоме углерода, так что это положение углерода уже занято фосфатами и предназнено для прикрепления. К чему же его прикрепить? Только к углероду в положении 3". После прикрепления данный нуклеотид сам станет мишенью дла прикрепления следующего нуклеотида. "Принимающая сторона" предоставляет углерод в положении 3", а "прибывающая сторона" цепляется к нему фосфатным хвостиком, находящимся в положении 5". В целом цепочка растёт со стороны 3".

Наращивание нуклеотидной цепочки ДНК

Наращивание цепочки за счёт "продольных" связей между нуклеотидами может идти только в одном направлении: от 5" ⇒ к 3", т.к. новый нуклеотид можно присоединить только к 3"-концу цепочки, но не к 5"-концу.

Пары нуклеотидов, связанные "поперечными" комплементарными связями своих азотистых оснований

Участок двойной спирали ДНК

Найдите признаки антипараллельности двух цепей ДНК.

Найдите пары нуклеотидов с двойными и тройными комплементарными связями.

Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями – нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.

Роль нуклеиновых кислот переоценить невозможно. Нормальная жизнедеятельность организма определяется стабильностью их структуры. Если в строении происходят любые отклонения, меняется количество либо последовательность – это обязательно приводит к изменениям в клеточной организации. Изменяется активность физиологических процессов и жизнедеятельность клеток .

Понятие нуклеотида

Как и белки, нуклеиновые кислоты необходимы для жизни . Это генетический материал всех живых организмов, включая вирусы.

Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные – нуклеиновые кислоты. Без них невозможно хранение , воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы – полинуклеотиды.Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.

Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид – это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.

Состав и основные свойства нуклеотидов

В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:

  1. Пентоза или пятиугольный сахар:
  • дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
  • рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.

2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом

3. Фосфатная группа, состоящая из остатков фосфорной кислоты (в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида.

Свойствами нуклеотидов являются:

  • участие в метаболизме и других физиологических процессах, которые протекают в клетке;
  • осуществление контроля над репродукцией и ростом;
  • хранение информации о наследуемых признаках и о структуре белка.

Нуклеиновые кислоты

Сахар в нуклеиновых кислотах представлен пентозой. В РНК пятиуглеродный сахар называется рибозой, в ДНК - дезоксирибозой. В каждой молекуле пентозы пять атомов углерода, из которых четыре образуют кольцо с атомом кислорода, а пятый атом входит в группу НО-СН2.

В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.

С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.

К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.

Состав азотистых оснований

Виды нуклеотидов по азотистому основанию ДНК:

Первые два класса – пурины:

  • аденин (А);
  • гуанин (Г).

Два последние относятся к классу пиримидинов:

  • тимин (Т);
  • цитозин (Ц).

Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому соединению представлены:

  • гуанином;
  • аденином;
  • урацитолом;
  • цитозином.

Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).

Пиримидины, а именно тимин, цитозин, урацил представлены шестичленным кольцом, состоящим из двух атомов азота и четырех атомов углерода, последовательно пронумерованных, от 1 до 6.

Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.

Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.

Образование фосфодиэфирных связей

Следует разобраться в вопросе о том, как нуклеотиды соединяются в полипептидную цепь, сколько их участвует в процессе,образуя молекулу нуклеиновой кислоты за счет фосфодиэфирных связей.

При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.

Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.

Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей. При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот. Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Функции и свойства ДНК

Основные функции ДНК:

  • сохраняет наследственную информацию;
  • передача (удвоение/репликация);
  • транскрипция, реализация;
  • ауторепродукция ДНК. Функционирование репликона.

Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.

Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.

Молекула РНК – структура

РНК является одной полинуклеотидной цепочкой, которая образуется через ковалентные связи между фосфатным остатком и пентозой. Она короче ДНК, имеет другую последовательность и различается по видовому составу азотистых соединений. Пиримидиновое основание тимина в РНК заменяется урацилом.

РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:

  • информационная (иРНК) – очень разнообразная по нуклеотидному составу. Она является своего рода матрицей для синтеза белковой молекулы, переносит генетическую информацию к рибосомам от ДНК;
  • транспортная (тРНК) в среднем состоит из 75-95 нуклеотидов. Она переносит необходимую аминокислоту в рибосоме к месту синтеза полипептида. У каждого вида тРНК и есть своя, присущая только ему последовательность нуклеотидов или мономеров;
  • рибосомальная (рРНК) обычно одержит от 3000 до 5000 нуклеотидов. Рибосом является необходимым структурным ом компонент участвующим в важнейшем процессе, происходящем в клетке – биосинтезе белка.

Роль нуклеотида в организме

В клетке нуклеотиды выполняют важные функции:

  • являются биорегуляторами;
  • используются как структурные блоки для нуклеиновых кислот;
  • входят в состав главного источника энергии в клетке – АТФ;
  • участвуют во многочисленных обменных процессах в клетках;
  • являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
  • могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).

Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.

Были открыты во второй половине 19 века Фридрихом Мишером, который выделил из ядер гноя сперматозоидов лосося вещество, которое назвал нуклеин. Позже это вещество было отчищено от белков и было выяснено, что это фосфоорганическая кислота. С точки зрения строения нуклеиновые кислоты представлены биополимерами, мономерами, которых являются нуклеотиды. Т.е. нуклеиновые кислоты это полинуклеотиды. Нуклеотиды - это сложные органические соединения, состоящие из трех компонентов: азотистое основание, пентоза, фосфатный остаток в количестве от 1 до 3 . с точки зрения строения нуклеотиды являются фосфорилированными нуклиозидами. Нуклеозиды - это соединения пентозы со сложным гетероциклическим соединением- азотистым основанием.

АЗОТИСТЫЕ ОСНОВАНИЯ.

Вода составе нуклеозидов встречаются два вида азотистых оснований, которые являются производными двух типов гетероциклов: пуринов и пиримидинов. Наиболее просто устроены пиримидиновые основания.

    урацил (У, U) в урациле добавляется две функциональных карбонильных групп в 4 и 2 положении.

т. к. в урациле присутствуют электроотрицательный кислород, то это приводит к смешению электронной плотности О д- , Н д+ . Может реагировать с водой, образуя водородные связи.

    тимин (Т).

    цитозин (С, Ц).

Все пиримидиновые основания могут образовывать водородные связи с водой, т.к. они имеют электроотрицательные атомы, которые способно сдвигать электронную плотность на себя.

пиримидиновые азотистые основания образуются за счет присоединения к пиримидину О 2 , СН 3 и NH 2 групп.

Пуриновые основания являются производными пурина, которое состоит из 2 гетероциклов.

    аденин (А)

    гуанин (Г, G).

Поскольку в азотистых основаниях присутствуют электроотрицательные атомы, то происходит смещение электронной плотности, в результате чего они могут реагировать с водой и образовывать водородные связи, а также реагировать друг с другом. Устойчивые соединения образуют пиримидиновые основания с пуриновыми. Специфичным взаимодействием между определенными пуринами и пиримидинами получило название правило комплементарности, по этому правилу аденин соединяется с тимином или урацилом двумя водородными связями, а гуанин с цитозином - тремя связями. Правило комплиментарности является ведущим правилом в матричных процессах. Азотистые основания выполняет в клетке метаболическую функцию, т.е. входят в состав нуклеозидов.

НУКЛЕОЗИДЫ.

Нуклеозиды - это производные азотистых оснований, образуются за счет образования N-гликозидной связи между первым атомом углерода в пентозе и первым атомом азота в пиримидину или девятым атомом азота в пурине.

С точки зрения строения нуклеозиды делятся на:

    пиримидиновые и имеют окончание - дин. В свою очередь, которые делятся на:

А) рибонуклеозиды, например: уридин, цитидин, тимидин.

В) дезоксирибонуклеозиды, например: дезокситимидин, дезоксицитидин, дезоксиурацидин.

    пуриновые и имеют окончание -зин. Так же делятся на:

А) рибонуклеозиды, например: аденазин, гуанозин.

В) дезоксирибонуклеозиды, например: дезоксиаденазин, дезоксигуанозин.

Аденин, гуанин и цитозин встречаются как в дезокси- так и в рибонуклеозидах, а тимин образует устойчивые связи с дезоксирибонуклеозидами и урацил - с рибонуклеозидами.

Нуклеозиды выполняют только метаболическую функцию, входят в состав нуклеотидов.

НУКЛЕОТИДЫ.

Нуклеотиды образуются из нуклеозидов за счет образования фосфоэфирной связи между фосфатным остатком и 5 ’ гидроксильной группы. К нуклеозиду может присоединится от 1 до 3 фосфатных остатков. Фосфатные связи в нуклеотидах богаты энергией, при расщеплении одной фосфатной группы выделяется 36,36 кДж энергии. Легче всего отщепляется третий фосфатный остаток, а труднее первый. В качестве энергии можно использовать только две связи.

ФУНКЦИИ НУКЛЕОТИДОВ.

1. метаболическая - нуклеотиды входят в состав нуклеиновых кислот.

2. энергетическая - в качестве источника энергии используются НТФ и в частности АТФ и ГТФ, т.к. они содержат макроэргические связи.

3. регуляторная :

а) нуклеозид трифосфат является донором фосфатной группы и с помощью специальных ферментов, например фосфокиназы можно переносить фосфатную группу на молекулу и тем самым изменять ее конформацию и активировать их. Это особенно важно в синтезе биополимеров. Фосфорилирования необходимо, для того чтобы проходили реакции полимеризации.

б) некоторые ферменты обладают АТФ-азной активностью и способны расщеплять молекулы АТФ и ГТФ и вследствие чего изменять свою конформации, а значит активность.

в) АТФ и ГТФ могут связываться с ферментами без гидролиза и белки меняют свою конформацию и свою активность. Такие белки называются АТФ-связывающими иГТФ-связывающими белками. АТФ-связывающим белком является актин, ГТФ-связывающим белком является тубулин.

г) регуляторную функцию могут выполнять циклические НМФ, которые образуются за счет действия определенных ферментов. Ц АМФ образуется за счет действия аденилатциклазы, Ц ГМФ образуется за счет действия гуанилатциклазы, которые отрывают два фосфатных остатка и в результате чего через фосфатную группу образуется цикл.

цНМФ

Эти молекулы являются сигнальными молекулами в системе вторичных посредников.

д) некоторые пурины могут служить сигнальными молекулами и выполнять функции нейромедиаторов в нервных синапсах.

НУКЛЕИНОВЫЕ КИСЛОТЫ.

Это биополимеры мономерами, которых являются нуклеотиды, образуются за счет реакции поликонденсации и синтез нуклеиновых кислот идет от 5 " к 3 ’ концу. В реакцию вступают НТФ за счет энергии 2 макроэргических связей фосфатный остаток, находящийся на 5 ’ конце одного нуклеотиды реагирует с ОН группой находящийся на 3 ’ другого нуклеотида.

В молекуле нуклеиновых кислот можно выделить константную часть и вариабельную. Константной частью является сахарофосфатный остов, а вариабельной - азотистые основания. С точки зрения строения нуклеиновые кислоты можно разделить на следующие группы:

  1. Динуклиотиды;
  2. Олигонуклеотиды;
  3. Полинуклеотиды.

Из динуклеотидов биологическое значение имеют НАД и ФАД (никотинамидадениндинуклеотид, флавинадениндинуклеотид) эти нуклеотиды вступают роли коферментов оксидоредуктаз. Полинуклеиновые кислоты ДНК и РНК. Модель строения ДНК была предложена в 1953 Уотсоном и Криком. Они предположили, что молекула имеет форма двуцепочечной спирали, причем спирали в этой молекуле связаны водородными связями через азотистые основания по правилу комплиментарности. Т.о. азотистые основания занимают центральную часть, а сахарофосфатный остов лежит на периферии молекулы. В спирали цепочки антипараллельны, т.е. разнонаправлены.

Модель была предложена на основе работ Чаргофа, который впервые выяснил, что количество пуринов в молекуле ДНК равно количеству пиримидинов. Уотсон и Крик предположили, что взаимодействуют только пурин с пиримидином, в таком случае расстояние между цепочками равно трем гетероциклам. Принципиальным отличием ДНК и РНК является, то, что, как правило, в ДНК содержится дезоксирибоза, а в РНК рибоза, в ДНК содержится азотистые основания: тимин, аденин, гуанин, цитозин, а в РНК: аденин, цитозин, урацил, гуанин. ДНК, как правило, представлено двуцепочечной молекулой, а РНК, как правило, одноцепочечной, исключения составляют вирусы.

ДНК - обеспечивает хранение, воспроизведение и начальные этапы реализации генетической информации, исключение вирусы.

РНК - участвует только в реализации генетической информации.

Хранение генетической информации основано на том, что в молекуле ДНК есть определенная нуклеотидная последовательность, которая называется геном. Гены отвечают за определенную структуру или функции в клетке, они несут информацию о структуре РНК, а так же информацию о связывание с определенными белковыми факторами.

Воспроизведение генетической информации основано на самоудвоении ДНК или репликации. В результате репликации образуется две дочернии молекулы ДНК идентичные друг другу и материнской по генетической информации. Процесс проходит перед делением клетки.

Процесс реализации генетической информации, которая проходит на молекуле ДНК заключается в считывание определенной молекулы РНК. Этот процесс получил название биосинтез РНК или транскрибция. РНК участвует в процессе реализации генетической информации, т.к. входит в состав белоксинтезирующего аппарата клетки.

Выделяют три типа РНК:

Информационные РНК или матричные РНК - эта молекула несет информацию о первичной структуре полипептидной цепи. Кроме того, в молекуле есть участки, которые позволяют ей связываться с рибосомами.

Рибосомальные РНК связываются с белками, образуя рибонуклеопротеиновый комплекс или РНП. Образует субьединицу рибосом.

Транспортные РНК её функция заключается в том, что она переводит «язык» нуклеотидной последовательности на «язык» аминокислот. Кроме того, т РНК могут взаимодействовать с активным центром рибосом и связываться с аминокислотами. Кроме этих видов РНК существует малая ядерная РНК . Она локализована только в ядре клетки и связана с белками и выполняют функцию рибозимов.

Для РНК-содержащих вирусов характерно то, что хранение, воспроизведение и реализацию генетической информации выполняют молекулы РНК. С эволюционной точки зрения считается. Что первыми возникли молекулы РНК, а затем часть функций они передали молекулам ДНК. Молекулы ДНК стабильнее, потому что они представлены двуцепочечными молекулами, и их водородные связи спрятаны и, кроме того, дезоксирибонуклеотиды стабильнее рибонуклеотидов.

Все живое на планете состоит из множества клеток, поддерживающих упорядоченность своей организации за счет содержащейся в ядре генетической информации. Она сохраняется, реализуется и передается сложными высокомолекулярными соединениями - нуклеиновыми кислотами, состоящими из мономерных звеньев - нуклеотидов. Роль нуклеиновых кислот невозможно переоценить. Стабильностью их структуры определяется нормальная жизнедеятельность организма, а любые отклонения в строении неминуемо приводят к изменению клеточной организации, активности физиологических процессов и жизнеспособности клеток в целом.

Понятие нуклеотида и его свойства

Каждая или РНК собрана из более мелких мономерных соединений - нуклеотидов. Другими словами, нуклеотид - это строительный материал для нуклеиновых кислот, коферментов и многих других биологических соединений, которые крайне необходимы клетке в процессе ее жизнедеятельности.

К основным свойствам этих незаменимых веществ можно отнести:

Хранение информации о и наследуемых признаках;
. осуществление контроля над ростом и репродукцией;
. участие в метаболизме и многих других физиологических процессах, протекающих в клетке.

Говоря о нуклеотидах, нельзя не остановиться на таком важном вопросе, как их структура и состав.

Каждый нуклеотид состоит из:

Сахарного остатка;
. азотистого основания;
. фосфатной группы или остатка фосфорной кислоты.

Можно сказать, что нуклеотид - это сложное органическое соединение. В зависимости от видового состава азотистых оснований и типа пентозы в структуре нуклеотида нуклеиновые кислоты подразделяются на:

Дезоксирибонуклеиновую кислоту, или ДНК;
. рибонуклеиновую кислоту, или РНК.

Состав нуклеиновых кислот

В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК - рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.

Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.

По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.

К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.

Видовой состав азотистых оснований

Нуклеотиды ДНК по азотистому основанию представлены четырьмя видами:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. тимином (Т).

Первые два относятся к классу пуринов, два последних - пиримидинов. По молекулярной массе пуриновые всегда тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому основанию представлены:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. урацилом (У).

Урацил так же, как и тимин, является пиримидиновым основанием.

В научной литературе нередко можно встретить и другое обозначение азотистых оснований - латинскими буквами (A, T, C, G, U).

Подробнее остановимся на химической структуре пуринов и пиримидинов.

Пиримидины, а именно цитозин, тимин и урацил, в своем составе представлены двумя атомами азота и четырьмя атомами углерода, образующих шестичленное кольцо. Каждый атом имеет свой номер от 1 до 6.

Пурины (аденин и гуанин) состоят из пиримидина и имидазола или двух гетероциклов. Молекула пуриновых оснований представлена четырьмя атомами азота и пятью атомами углерода. Каждый атом пронумерован от 1 до 9.

В результате соединения азотистого основания и остатка пентозы образуется нуклеозид. Нуклеотид - это соединение нуклеозида и фосфатной группы.

Образование фосфодиэфирных связей

Важно разобраться в вопросе о том, как соединяются нуклеотиды в полипептидную цепь и образуют молекулу нуклеиновой кислоты. Происходит это за счет так называемых фосфодиэфирных связей.

Взаимодействие двух нуклеотидов дает динуклеотид. Образование нового соединения происходит путем конденсации, когда между фосфатным остатком одного мономера и гидроксигруппой пентозы другого возникает фосфодиэфирная связь.

Синтез полинуклеотида - неоднократное повторение этой реакции (несколько миллионов раз). Полинуклеотидная цепь строится посредством образования фосфодиэфирных связей между третьим и пятым углеродами сахаров (3С´ и 5С´).

Сборка полинуклеотида - сложный процесс, протекающий при участии фермента ДНК-полимеразы, которая обеспечивает рост цепи только с одного конца (3´) со свободной гидроксигруппой.

Структура молекулы ДНК

Молекула ДНК, так же как и белка, может иметь первичную, вторичную и третичную структуру.

Последовательность нуклеотидов в цепи ДНК определяет ее первичную формируется за счет водородных связей, в основе возникновения которых положен принцип комплементарности. Другими словами, при синтезе двойной действует определенная закономерность: аденин одной цепи соответствует тимину другой, гуанин - цитозину, и наоборот. Пары аденина и тимина или гуанина и цитозина образуются за счет двух в первом и трех в последнем случае водородных связей. Такое соединение нуклеотидов обеспечивает прочную связь цепей и равное расстояние между ними.

Зная последовательность нуклеотидов одной цепи ДНК, по принципу комплементарности или дополнения можно достроить вторую.

Третичная структура ДНК образована за счет сложных трехмерных связей, что делает ее молекулу более компактной и способной размещаться в малом объеме клетки. Так, например, длина ДНК кишечной палочки составляет более 1 мм, тогда как длина клетки - меньше 5 мкм.

Число нуклеотидов в ДНК, а именно их количественное соотношение, подчиняется правилу Чергаффа (число пуриновых оснований всегда равно количеству пиримидиновых). Расстояние между нуклеотидами - величина постоянная, равная 0,34 нм, как и их молекулярная масса.

Структура молекулы РНК

РНК представлена одной полинуклеотидной цепочкой, образованной через между пентозой (в данном случае рибозой) и фосфатным остатком. По длине она значительно короче ДНК. По видовому составу азотистых оснований в нуклеотиде также имеются различия. В РНК вместо пиримидинового основания тимина используется урацил. В зависимости от функций, выполняемых в организме, РНК может быть трех типов.

Рибосомальная (рРНК) - содержит обычно от 3000 до 5000 нуклеотидов. Как необходимый структурный компонент принимает участие в формировании активного центра рибосом, места осуществления одного из важнейших процессов в клетке — биосинтеза белка.
. Транспортная (тРНК) - состоит в среднем из 75 - 95 нуклеотидов, осуществляет перенос нужной аминокислоты к месту синтеза полипептида в рибосоме. Каждый вид тРНК (не менее 40) имеет свою, присущую только ему последовательность мономеров или нуклеотидов.
. Информационная (иРНК) - по нуклеотидному составу весьма разнообразна. Переносит генетическую информацию от ДНК к рибосомам, выступает в роли матрицы для синтеза белковой молекулы.

Роль нуклеотидов в организме

Нуклеотиды в клетке выполняют ряд важнейших функций:

Используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);
. участвуют во многих обменных процессах в клетке;
. входят в состав АТФ - главного источника энергии в клетках;
. выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);
. выполняют функцию биорегуляторов;
. могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).

Нуклеотид - это мономерная единица, образующая более сложные соединения - нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.