Математические методы моделирования и прогнозирования базовый курс. Методика математического моделирования программы развития сельскохозяйственного предприятия

Математик Константин Воронцов о применении задач машинного обучения в бизнесе, композициях адаптивных моделей и усовершенствовании качества данных

Десять лет назад одна крупная розничная сеть объявила тендер на решение задачи прогнозирования объемов продаж в своей сети. Задачи прогнозирования решают почти все крупные ретейлы, потому что это им необходимо для планирования закупок. Конкурсные условия ставились следующим образом: нам давались данные за два года - это ежедневные продажи примерно 12 000 товаров в одном из магазинов сети, тендер был закрытым, кроме нас на него позвали еще шесть компаний. Среди них были очень крупные вендоры аналитических решений для ретейла. Мы, конечно, оценивали наши шансы выиграть в этом тендере как небольшие.

Условием ставилось составить прогноз продаж на две недели, которые следовали непосредственно за теми двумя годами, по которым были данные. Организаторы конкурса предложили свой функционал качества, по которому мерилось качество прогнозов. Этот функционал был немного нестандартным. Организаторы решили учесть, что в этом функционале складывается большое количество товаров и нехорошо, когда вы складываете штуки с килограммами, поэтому это была сумма по всем товарам, а в знаменатель им пришлось поставить саму прогнозируемую величину. Это был не очень понятный ход, так обычно не делают. Мы предупредили организаторов конкурса, что функционал немного странный, другие участники конкурса их тоже об этом предупреждали, но тем не менее в этом решении тоже была своя логика, и конкурс состоялся при таких условиях.

Обычно прогноз потребительского спроса - точнее, объемов продаж - делается методами прогнозирования, которые очень давно известны в статистике. В целом они основаны на методе наименьших квадратов, где в функционале есть суммы по товарам, суммы по моментам времени и квадрат разности прогноза алгоритма и реального объема продаж для этого товара в этот день. Так обычно устроен функционал, и во всех стандартных решениях минимизация такого функционала позволяет настраивать алгоритм прогнозирования.

Есть много простых, быстро работающих, тоже давно известных, еще с 1960-х годов, методов, которыми мы начали пользоваться, для того чтобы решить задачу прогнозирования. Это методы экспоненциально скользящего среднего, модели Брауна, Тейла - Вейджа, Хольта - Винтерса и так далее. Некоторые из них учитывают сезонность. Сезонность не надо понимать как зима - лето, а скорее как будни - выходные, то есть недельная сезонность. Многие товары действительно продаются по будням и выходным по-разному. Мы сразу поняли, что наши крупные конкуренты в этом тендере будут использовать стандартные подходы: они будут использовать метод наименьших квадратов, потому что у них есть готовые решения, и довольно трудоемкие вычислительные методы вроде нейронных сетей или же авторегрессии. И мы решили пойти другим путем и использовать простые методы с пониманием того, что у каждого товара много своих особенностей. Есть много моделей, но неизвестно, какая модель для каждого товара будет наилучшей. Более того, мы даже предположили, что товар время от времени переключает свою модель и его сначала, может быть, лучше прогнозировать одной моделью, а потом в какой-то момент другая модель начнет работать лучше. Поэтому мы сделали адаптивную композицию простых адаптивных моделей. В каждый момент времени мы выбираем ту модель, которая в последнее время работала лучше, давала более точные прогнозы, переключаемся на нее, и именно она дает прогнозы. Первое решение, которое было сделано, - пользоваться композицией простых моделей, вместо того чтобы строить что-то более сложное.

Второе решение заключалось в том, что мы осознали, что функционал нестандартен, и, как учили на первом курсе физтеха, мы взяли этот функционал, продифференцировали по параметрам модели, приравняли нулю производные и получили некую систему уравнений, из которой вывели новый метод. В принципе это работа для математика на один вечер, но мы догадывались, что наши конкуренты так поступать не будут, потому что у них есть готовые решения, они в них сильно верят. Как оказалось, мы действительно не прогадали.

Еще одна особенность этой задачи - то, что были большие интервалы неслучайного отсутствия спроса. Представьте себе: товар продается стабильно ежедневно, и вдруг вы видите, что две недели этого товара нет вообще. Это, конечно, связано не с тем, что спрос отсутствует, а с тем, что товар просто не привезли, его не было на полках, не было на складе. Такие интервалы отсутствия спроса мы просто вырезали из обучающих данных, чтобы они не повлияли на результат.

Настал день, когда мы показывали наше решение организаторам конкурса. Мы знали, что перед нами выступал один из наших крупных конкурентов, и, когда организаторы спросили: «А сколько часов вычисляет ваша модель?», мы удивились и сказали: «Вы разве не поняли, что мы только что на моем ноутбуке за одну минуту и восемь секунд не только подсчитали все прогнозы, но и обучили нашу модель на двухлетнем интервале?» Это было, конечно, шоком. В итоге наша модель оказалась не только самой точной, но еще и самой быстрой. Мы показали, что все прогнозы по всей сети можно считать буквально за два часа, ночью, на старом сервере и что даже никакого нового оборудования закупать не надо.

Это не только история успеха, но еще и очень поучительная история: во-первых, не надо бояться применять нестандартные методы, и если задача поставлена нестандартно, то только математик может быстро найти решение - хорошо, когда удается быстро, иногда это не удается, конечно; во-вторых, этот случай придал нам сил выйти на рынок с собственными решениями - не надо бояться того, что на рынке есть сильные конкуренты. Был еще один момент поучительности. Когда я сам занимался отбором моделей для этой задачи, то сначала мы ввели целых тридцать разных моделей, и из них так адаптивно, как я рассказал, каждый день для каждого товара выбиралась оптимальная модель.

В принципе это чревато таким явлением, как переобучение, то есть мы могли хорошо, точно подогнаться под обучающие данные и плохо прогнозировать на новых тестовых данных. Я знал об этом явлении, что явление связано с тем, что модель может быть избыточно сложной, тогда и возникает эффект переобучения. Мне казалось, что выбор из тридцати моделей - это не настолько сложно, здесь не должно быть переобучения. Мое удивление было очень сильным, когда я провел эксперимент, сравнил обучение с контрольным и понял, что переобучение просто огромно и мы теряем десятки процентов точности на этом эффекте. Я только собирался еще и еще вводить новые модели, но этот эксперимент показал, что решение надо, наоборот, упрощать и тридцать моделей - это много. Следующим шоком для меня было, когда оказалось, что оптимальное число моделей - шесть, то есть нельзя было строить более сложное решение, чем из шести моделей.

Тогда чисто теоретически эта задача поставила меня в тупик, а решение удалось найти только тогда, когда я работал над докторской диссертацией и уже серьезно исследовал явление переобучения в рамках комбинаторной теории переобучения. Оказалось, что если вы выбираете из моделей и у вас есть одна модель хорошая, а все остальные - плохие, то вы эту хорошую модель, как правило, и будете выбирать. Вы не будете переобучаться, вы будете иметь это одно хорошее решение. Если у вас есть много моделей, но они похожи друг на друга, вы тоже не будете переобучаться, потому что эффективная сложность совокупности таких похожих друг на друга моделей невелика, переобучение тоже низкое. А если получится так, что ваши модели существенно различны и примерно все при этом одинаково плохие, то переобучение может быть очень велико, и эффект переобучения чудовищно растет по мере роста числа моделей. Это была ровно та ситуация, с которой мы столкнулись в этом тендере. А вот объяснить ее теоретически удалось лишь несколько лет спустя.

Была еще одна поучительная история. Тогда же, на этом тендере, презентуя свое решение организаторам конкурса, мы объяснили: «Мы считаем, что ваш функционал неправильно устроен, так делать нельзя. То, что прогнозируемая величина в знаменателе, - это, конечно, нехорошо. То, что ваш функционал выражает квадрат разности ошибок…» Что такое квадрат рублей, например? Это не имеет экономического смысла. Мы предложили оптимизировать функционалы, выражающие потери компании от неточности прогнозов, и показали, как такой функционал должен быть устроен, и показали, что мы готовы оптимизировать такие нестандартные функционалы, тем самым повышать прибыль компании - ровно то, что было нужно для бизнеса. Когда мы начали уже реально работать над проектом, то оказалось, что у компании те самые данные, которые нужны для построения такого функционала, очень грязные. Для части товаров такие данные вообще отсутствовали, для части товаров эти данные были неточны, потому что менеджеры до сих пор не были заинтересованы в том, чтобы такие данные проверялись, контролировались. Это же не бухгалтерия, это какая-то вспомогательная информация. Может быть, она кому-то когда-то понадобится, может быть, нет.

В результате оказалось, что данные грязные, и нужно было усовершенствовать бизнес-процессы и работать над улучшением качества данных. Это то, что бизнес не понимал в тот момент. Когда мы пришли со своим решением и осознали, что борьба за качество и чистоту данных - важная часть бизнеса, мы еще помогли нашим партнерам это осознать и кое-что улучшить внутри бизнес-процессов. Такая поучительная история о связи бизнеса и науки, о том, что наука может дать бизнесу нестандартные решения. Иногда это совсем несложно, но и, наоборот, в процессе поиска этих решений на основе реальных кейсов мы можем получить обратную связь для науки, мы можем столкнуться с какими-то неразрешенными теоретическими вопросами и двинуть теорию вперед.

доктор физико-математических наук, профессор факультета компьютерных наук НИУ ВШЭ

Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов x t , где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени.

Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда,ихсравнение на основе статистических критериев и отбор наилучшихизних для прогнозирования.

При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.

Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или - в более широком смысле слова - это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса - Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др.

Для оценки качества исследуемой модели прогноза используют несколько статистических критериев.

Наиболее распространенными критериями являются следующие.

Относительная ошибка аппроксимации:

где e t = х t - - ошибка прогноза;

х t - фактическое значение показателя;

- прогнозируемое значение.

Данный показатель используется в случае сравнения точности прогнозов по нескольким моделям. При этом считают, что точность модели является высокой, когда < 10%, хорошей - при = 10-20% и удовлетворительной - при = 20-50%.

Средняя квадратическая ошибка:

(54.2)

где k - число оцениваемых коэффициентов уравнения.

Наряду с точечным в практике прогнозирования широко используют интервальный прогноз. При этом доверительный интервал чаще всего задается неравенствами

(54.3)

где t α - табличное значение, определяемое по t -распределению Стьюдента при уровне значимости α и числе степеней свободы п - k.

В литературе представлено большое число математико-статистических моделей для адекватного описания разнообразных тенденций временных рядов.

Наиболее распространенными видами трендовых моделей, характеризующих монотонное возрастание или убывание исследуемого явления, являются:

(54.4)

Правильно выбранная модель должна соответствовать характеру изменений тенденции исследуемого явления; При этом величина е t должна носить случайный характер с нулевой средней.

Кроме того, ошибки аппроксимации e t должны быть независимыми между собой и подчиняться нормальному закону распределения e t Î N (0, σ ). Независимость ошибок e t , т.е. отсутствие автокорреляции остатков, обычно проверяется по критерию Дарбина-Уотсона, основанного на статистике:

(54.5)

где e t = x t - .

Если отклонения не коррелированы, то величина DW приблизительно равна двум. При наличии положительной автокорреляции 0 ≤ DW 2, а отрицательной - 2 ≤ D W ≤ 4.

О коррелированности остатков можно также судить по коррелограмме для отклонений от тренда, которая представляет собой график функции относительно τ коэффициента автокорреляции, который вычисляется по формуле

(54.6)

где τ = 0, 1, 2 ... .

После выбора наиболее подходящей аналитической функции для тренда его используют для прогнозирования на основе экстраполяции на заданное число временных интервалов.

Рассмотрим задачу сглаживания сезонных колебаний, исходя из ряда V t = х t - , где x t - значение исходного временного ряда в момент t, а - оценка соответствующего значения тренда (t = 1, 2, ..., п ).

Так как сезонные колебания представляют собой циклический, повторяющийся во времени процесс, то в качестве сглаживающих функций используется гармонический ряд (ряд Фурье) следующего вида:

Оценки параметров α i и β i модели определяют из выражений

(54.7)

где k = п / 2 - максимально допустимое число гармоник;

ω i = 2πi / п - угловая частота i -й гармоники (i = 1, 2, ..., т).

Пусть т - число гармоник, используемых для сглаживания сезонных колебаний (т < k). Тогда оценка гармонического ряда имеетвид

(54.8)

а расчетные значения временного ряда исходного показателя определяются по формуле

54.2. Адаптивные методы прогнозирования

При использовании трендовых моделей в прогнозировании обычно предполагается, что основные факторы и тенденции прошлого периода сохранятся на период прогноза или что можно обосновать и учесть направление их изменений в перспективе. Однако в настоящее время, когда происходит структурная перестройка экономики, социально-экономические процессы даже на макроуровне становятся очень динамичными. В этой связи исследователь часто имеет дело с новыми явлениями и с короткими временными рядами. При этом устаревшие данные при моделировании часто оказываются бесполезными и даже вредными. Таким образом, возникает необходимость строить модели, опираясь в основном на малое количество самых свежих данных, наделяя модели адаптивными свойствами.

Важную роль в деле совершенствования прогнозирования должны сыграть адаптивные методы, цель которых заключается в построении самонастраивающихся моделей, которые способны учитывать информационную ценность различных членов временного ряда и давать достаточно точные оценки будущих членов данного ряда. Адаптивные модели достаточно гибки, однако на их универсальность, пригодность для любого временного ряда рассчитывать не приходится.

При построении конкретных моделей необходимо учитывать наиболее вероятные закономерности развития реального процесса. Исследователь должен закладывать в модель те адаптивные свойства, которых достаточно для слежения за реальным процессом с заданной точностью.

У истоков адаптивного направления лежит простейшая модель экспоненциального сглаживания, обобщение которой привело в появлению целого семейства адаптивных моделей. Простейшая адаптивная модель основывается на вычислении экспоненциально взвешенной скользящей средней.

Экспоненциальное сглаживание исходного временного ряда x t осуществляется по рекуррентной формуле

(54.9)

где S t - значение экспоненциальной средней в момент t, a. S t-1 - в момент t -1;

α - параметр сглаживания, адаптации, α = const, 0 < α < 1;

Выражение (54.9) можно представить в виде

В (54.10) экспоненциальная средняя в момент t выражена как экспоненциальная средняя предшествующего момента S t-1 плюс доля α отклонения текущего наблюдения х t от экспоненциальной средней S t-1 момента t - 1.

Последовательно используя рекуррентное соотношение (54.9), можно выразить экспоненциальную среднюю S t через значения временного ряда:

где S 0 - величина, характеризующая начальные условия для первого применения формулы (54.9), при t = 1.

Так как β = (1 - α) < 1, то при t 0 β t 0, и, согласно (54.11),

(54.12)

т.е. величина S t оказывается взвешенной суммой всех членов ряда. При этом веса падают экспоненциально в зависимости от давности наблюдения, откуда и название S t - экспоненциальная средняя.

Из (54.12) следует, что увеличение веса более свежих наблюдений может быть достигнуто повышением α. В то же время для сглаживания случайных колебаний временного ряда x t величину α нужно уменьшить. Два названных требования находятся в противоречии, и на практике при выборе α исходят из компромиссного решения.

Экспоненциальное сглаживание является простейшим видом самообучающейся модели с параметром адаптации α. Разработано несколько вариантов адаптивных моделей, которые используют процедуру экспоненциального сглаживания и позволяют учесть наличие у временного ряда x t тенденции и сезонных колебаний. Рассмотрим некоторыеизтаких моделей.

Адаптивная полиномиальная модель первого порядка

Рассмотрим алгоритм экспоненциального сглаживания, предполагающий наличие у временного ряда x t линейного тренда. В основе модели лежит гипотеза о том, что прогноз может быть получен по уравнению

где - прогнозируемое значение временного ряда на момент (t + τ);

, - оценки адаптивных коэффициентов полинома первого порядка в момент t;

τ - величина упреждения.

Экспоненциальные средние 1-го и 2-го порядков для модели имеют вид

(54.13)

где β = 1 - α, а оценка модельного значения ряда с периодом упреждения τ равна

(54.14)

Для определения начальных условий первоначально по данным временного ряда x t находим методом наименьших квадратов оценки линейного тренда:

и принимаем и . Тогда начальные условия определяются как:

(54.15)

Контрольные вопросы

1. Какие модели прогнозирования вы знаете и каковы их особенности?

2. В чем состоит статистический подход к прогнозированию, моделированию тенденций и сезонных явлений в стратегических исследованиях?

3. Какие трендовые модели вам известны и как оценивается их качество?

4. В чем особенность адаптивных методов прогнозирования?

5. Какимобразом осуществляется экспоненциальное сглаживание временного ряда?

Опубликованы более подробные и корректные материалы по .

В марте 2011 года была опубликована заметка «Пять способов повысить точность прогнозирования» . Автор Алексей Скрипчан весьма дельно, просто и достаточно подробно рассмотрел в ней прогнозирование, которое необходимо выполнять в рамках маркетинга и планирования. Интересно звучит его эпитет в подразделе «Выгоды более точного прогнозирования» :

Прогнозирование становится рулем, помогающим компании держать курс, менять направление движения или уверенно плыть в незнакомых водах…

Мне бы хотелось добавить несколько слов к уже сказанному. Главным образом, необходимо отметить, что в упомянутой статье речь идет об экспертном прогнозировании. Нужно различать два вида прогнозирования: экспертное и формализованное .

Экспертное прогнозирование

Экспертное прогнозирование подразумевает формирование будущих значений экспертом, т.е. человеком, обладающим глубокими знаниями в определенной области. Эксперт при этом часто использует математический аппарат , однако в данном виде прогнозирования математический аппарат является лишь вспомогательным вычислительным инструментом. Основой же являются знания и интуиция эксперта, а потому иногда эти методы называют интуитивными .

Экспертное прогнозирование применяется тогда, когда объект прогнозирования либо слишком прост, либо, напротив, настолько сложен, что аналитически учесть влияние внешних факторов невозможно . Экспертные методы прогнозирования не предполагают разработку моделей прогнозирования и отражают индивидуальные суждения специалистов (экспертов) относительно перспектив развития процесса. К таким методам относятся следующие методы.

  • Метод экспертных оценок
  • Метод исторических аналогий
  • Метод предвидения по образцу
  • Нечеткая логика
  • Сценарное моделирование «что – если»

Формализованное прогнозирование - это прогнозирование на основании математической модели, которая, улавливая закономерности процесса , на своем выходе имеет будущие значения исследуемого процесса. довольно много, например, согласно ряду обзоров в настоящее время насчитывается свыше 100 классов моделей прогнозирования. Число общих классов моделей, которые в тех или иных вариациях повторяются в других, конечно, гораздо меньше и сводится легко к дюжине.

  • Регрессионные модели (regression model)
  • Авторегрессионные модели ( , AR)
  • Нейросетевые модели (artificial neural network , ANN)
  • Модели экспоненциального сглаживания ( , ES)
  • Модели на базе цепей Маркова (Markov chain)
  • Классификационно-регрессионные деревья (classification and regression trees , CART)
  • Метод опорных векторов (support vector machine , SVM)
  • Генетический алгоритм (genetic algorithm , GA)
  • Модель на основе передаточных функций (transfer function , TF)
  • Формализованная нечеткая логика (fuzzy logic , FL)
  • Фундаментальные модели

Автор статьи о прогнозировании в маркетинге совершенно верно отметил, что «как и любой инструмент, математика может быть опасной в руках дилетанта. Чтобы проверить собственные выкладки, можно привлечь кого-то с сильными статистическими навыками для анализа вашей информации ». Математические модели прогнозирования требуют развитых компетенций не только в математике, но и программировании, владении сложными статистическими пакетами для создания не только точной и быстрой модели.

Повышение точности прогнозирования

Безусловно, оба рассмотренных вида прогнозирования часто работают в совокупности, например, на основании сложного алгоритма вычисляются будущие значения временного ряда, а далее, эксперт проверяет эти цифры на адекватность. На этом этапе эксперт может внести ручные корректировки, которые при его высокой квалификации, способны положительно повлиять на качество прогноза.

Итого, если вам нужно повысить точность экспертного прогнозирования в задачах маркетинга, то вам нужно прямиком следовать данным в статье рекомендациям. Если же перед вами стоит задача повышения точности прогнозирования за счет сложных, быстрых, программно реализованных математических моделей, то стоит взглянуть в сторону , то есть прогноза, составленного на основании набора независимых прогнозов. В ближайшее время я буду говорить о консенсус-прогнозе в этом блоге подробнее.

Введение


Современные условия рыночного хозяйствования предъявляют к методам прогнозирования очень высокие требования, ввиду всё возрастающей важности правильного прогноза для судьбы предприятия, да и экономики страны в целом.

Именно прогнозирования функционирования экономики регионов или даже страны нужно уделять пристальное внимание на данный момент, потому что за пеленой сиюминутных собственных проблем все почему-то забыли о том, что экономика страны тоже должна управляться, а следовательно и прогнозирование показателей ее развития должно быть поставлено на твердую научную основу.

Под экономико-математическими методами подразумевается большая группа научных дисциплин, предметом изучения которых является количественные характеристики экономических процессов, рассматриваемые в неразрывной связи с их качественными характеристиками. Также экономико-математические исследования объединяют в комплексе математических методов планирования и управления общественным производствам для достижения наилучших результатов.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделирование понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Правильное определение сбалансированного развития отраслей в каждом сельскохозяйственном предприятии является важной научной и практической проблемой экономики сельского хозяйства. Соотношение отраслей в каждом сельскохозяйственном предприятии должно соответствовать, с одной стороны требованиям государства по продаже определенного объема и ассортимента сельхозпродукции, а с другой - создавать возможность наиболее полного и эффективного использования ресурсов хозяйства.

В сложившихся экономических условиях, когда цены на сельскохозяйственную продукцию значительно ниже цен на продукцию промышленности, когда заработная плата работников сельского хозяйства в несколько раз ниже, чем в других отраслях народного хозяйства, когда износ основных средств в сельскохозяйственных предприятиях достиг 60-70% проблема сбалансированного сочетания отраслей сельхозпредприятия встала на первый план, так как от правильной специализации производства и сочетания отраслей зависят такие важнейшие экономические показатели хозяйства, как уровень рентабельности, выход продукции на единицу земельной площади, производительность труда.

Нужно отметить, что моделирование сельскохозяйственных предприятий имеет ряд особенностей. Так, оптимальное решение, полученное при использовании методов математического программирования, может не всегда соответствовать оптимуму с экономических позиций. Это несоответствие тем больше, чем меньше учтено в модели количественных связей между отдельными факторами, влияющими друг на друга и на конечные результаты. Иначе говоря, в модели должны найти отражение все условия, определяющие данную экономическую проблему. В перечне этих условий наряду с экономическими должны быть агротехнические, зоотехнические, биологические, технические и другие. Для этого необходимы прочные знания в области технологии, техники, экономики, планирования и организации сельскохозяйственного производства. Большое, можно сказать, решающее значение для грамотного построения экономико-математической модели и получения приемлемых оптимальных решений имеет достоверная информация о конкретном моделируемом объекте. Полнота и правильность информации позволяют достаточно точно описать на языке математики все зависимости, связи между изучаемыми экономическими явлениями.

Целью данного курсового проекта является изучить методику математического моделирования программы развития сельскохозяйственного предприятия; составление экономико-математической модели на примере СПК "Курманово" Мстиславского района Могилёвской области; расчет сбалансированной программы развития этого хозяйства и анализ полученного решения.

При написании курсового проекта использовались разработки многих отечественных ученых, методический материал кафедры, а для расчета исходной информации были использованы данные годового отчета СПК "Курманово" Мстиславского района Могилёвской области за 2008г.

Для достижения поставленной цели необходимо решить следующий круг задач:

Дать определение понятия экономико-математических методов и охарактеризовать их классификацию;

Раскрыть содержание этапов построения экономико-математических методов;

Рассмотреть подробнее некоторые экономико-математические методы;

Обосновать программу развития СПК «Курманово» Мстиславского района Могилевской области;

Провести анализ результатов решения развернутой экономико-математической задачи;

Сделать необходимые выводы по результатам решения экономико-математической задачи.


Глава 1. Особенности и методики моделирования программы развития сельскохозяйственного предприятия

1.1 Сущность и классификация экономико-математических моделей

Процесс производства товаров и услуг связан с взаимодействием средств производства, предметов труда и рабочей силы. Состав перечисленных элементов производства, характер их взаимодействия определяют различные результаты предприятий, коллективов и отдельных работников. Ориентация производителя на лучшие результаты хозяйствования требует глубокого анализа процесса производства в целом и его отдельных составляющих, в частности, с целью выработки эффективных решений. Важно выявить элементы, воздействуя на которые обеспечиваются лучшие результаты, более эффективное функционирование объекта или явления. Решение этой проблемы требует рассмотрения любого объекта как сложной производственной или социально-экономической системы, элементы которой взаимосвязаны, динамичны, влияют друг на друга во времени и пространстве. Социальный характер многих сложных объектов определяется тем, что функционирование многих из них предопределено потребностями общества, коллективов и отдельных людей.

Степень сложности объектов или систем зависит от содержания составляющих элементов. Чем проще составляющие, чем меньше их, тем легче предвидеть поведение объекта.

Предвидение возможных изменений в состоянии изучаемых объектов или явлений требует знания последствий от взаимодействия части или всех элементов. Поскольку последствия и характер взаимодействия зависят от количественного и качественного состояния составляющих объектов, возникает необходимость проследить за изменениями изучаемых объектов.

Возможность проследить за изменениями изучаемых объектов зависит от характеристик объектов или явлений. Так, в случае, если изучаемый объект является физическим, т.е. имеет три измерения, особенности взаимодействия его составляющих можем проследить на самом объекте. Однако и в этом случае, если объект отличается большими размерами, возможности отработки лучших вариантов взаимосвязи его составляющих могут быть крайне затруднены. В этом случае, если объект не является физическим, т.е. не имеет привычных нам измерений – длины, высоты и ширины, отработка механизма взаимодействия составляющих его элементов должна быть иной. В этом случае способами поиска лучших решений могут быть или эксперимент, или аналогий.

При изучении объектов или явлений исследователю важно выявить их наиболее существенные черты, а это означает, что отсутствует необходимость в том, чтобы модель отражала все свойства изучаемого объекта. Важно, чтобы модель или аналог изучаемого объекта сохранял подобие на оригинал лишь в самом важном или существенном. Такие модели или аналоги называются гомофонными.

Процесс описания посредством экономико-математической модели существенных черт оригинала, называется имитацией. При создании модели важно иметь ввиду, что понимание существенных и несущественных сторон объекта есть категория относительная и зависит она в значительной степени от уровня познания. По этой причине создаваемые нами аналоги объектов могут иногда отражать несущественные стороны и, наоборот, существенные особенности объектов в моделях могут отсутствовать.

В экономике при изучении производственных систем, состоящие из множества взаимосвязанных элементов производства, чаще всего используются абстрактные модели, которые описывают функционирование объекта числовыми выражениями, графиками и др.. Числовые или математические выражения, описывающие наиболее существенные стороны функционирование объекта, называются экономико-математическими моделями. Под экономико-математической моделью понимается концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме.

Экономико-математическая модель, учитывая важнейшие особенности функционирования объектов, описывает их возможные варианты и состояние. По этой причине реализация экономико-математической модели позволяет выяснить поведение объекта в зависимости от изменения условий его функционирования. Естественно, что выводы по результатам экономико-математической модели о состоянии объекта в значительной мере зависят от совершенства модели, степени учета важнейших сторон его развития. [Линьков]

В последние годы в научных исследованиях аграрной экономики используют комплекс разнообразных моделей. Рассмотрим их классификацию.

1. В зависимости от времени или периода моделирования различают:

· Долгосрочные (5 – 15 лет)

· Среднесрочные (3 – 5 лет)

· Краткосрочные (1 – 2 года)

· Оперативные (месяц, квартал, т.е на текущий период)

2. В зависимости от уровня управления системами агропромышленного комплекса:

· Межотраслевые – позволяют обосновать наилучшие варианты развития взаимосвязанных отраслей и предприятий трех сфер АПК;

· Отраслевые – описывают развитие предприятий определенной сферы: сельского хозяйства, потребительской кооперации и т.д.;

· Региональные – обосновывают программу развития объектов, расположенных на определенной территории, т.е. области, района;

· Внутрихозяйственные – позволяют найти лучшие варианты развития отраслей и производств внутри определенного предприятия АПК.

3. В зависимости от степени определенности информации, используемой в моделях:

· Детерминированные – входные параметры задаются однозначно, выходные показатели определяются соответственно;

· Стохастические – параметры модели, условия функционирования и характеристики объекта выражены случайными величинами.

4. По возможности учета временных изменений модели бывают:

· Статические – все зависимости отнесены к одному моменту времени и они разрабатываются лишь для отдельно взятых периодов;

· Динамические – показатели данной модели меняются во времени.

5. По используемому математическому аппарату различают следующие классы методов и моделей:

· Аналитические – они представляют собой определенную функцию, выражающую взаимосвязь между несколькими показателями, имеют вид формул и отражают функциональные зависимости;

· Оптимизационные – основаны на методах математического программирования, позволяют находить max и min значения целевой функции при заданной системе математических неравенств и уравнений

· Имитационные.[Колеснев]


При постановке различных экономических задач в АПК широко применяются методы математического программирования, суть которого состоит в использовании алгоритма последовательных приближений: вначале идет поиск произвольного допустимого плана, а затем его улучшение до наилучшего (оптимального) варианта. Поэтапно выполняются приведенные ниже операции. [колеснев]

1. постановка экономико-математической модели;

2. качественный анализ взаимосвязи элементов моделируемого объекта;

3.количественный анализ элементов моделируемого объекта;

4. построение структурной экономико-математической модели;

5. методика обоснования исходной информации;

6. составление задачи, решение, анализ результатов.

Постановка экономико-математической модели предполагает решение следующих вопросов.

1) Определение объекта исследования.

2) Выбор года, по данным которого производим расчеты.

3) Выбор критерия оптимальности и на его основе определение целевой функции.

Качественный анализ взаимосвязи элементов. Базой качественного анализа являются данные конкретных экономических, технических и технологических дисциплин, знания, опыт об особенностях функционирования объекта. На основе этой информации выделяем главные факторы, определяющие функционирование объекта, т.е. словесно выделяем основные возможные ограничения базовой задачи.

Например, ставим цель: решить задачу по сочетанию отраслей предприятия на следующий год. Наши знания подсказывают, что решение зависит от использования ресурсов: земельных, трудовых, производства кормов и т.д.

Выводы данного этапа определяют общие для всех предприятий повторяющиеся ограничения и содержание базовой экономико-математической модели. Поэтому нужно провести количественный анализ элементов и выявить как общие, так и специфические особенности функционирования объекта.

Существенное дополнение к базовой модели составят выводы, выясняющие специфические особенности производства. Эти особенности связаны с технологией производства, формой хозяйствования, особенностями реализации продукции, каналами реализации, ценами и др.

В целом данные количественного анализа позволяют дополнить базовую модель часто весьма важными ограничениями.

После этого с учетом выводов, получаемых по третьему этапу, записываем структурную модель применительно к рассматриваемому объекту.

Структурная модель в этом случае будет включать ограничения или соотношения базовой модели и дополнения, вытекающие из данных анализа особенностей функционирования объекта.

При обосновании исходной информации исходной информации, прежде всего, необходимо выбрать единицы измерения переменных.

В экономико-математической модели ее переменные можно разделить на три группы: основные, дополнительные и вспомогательные.

Основные переменные описывают основное содержание задачи, определяют ее конструкцию, дополнительные детализируют или поясняют содержание основных, а вспомогательные дают дополнительную информацию о функционировании объекта.

При подготовке информации следует учитывать, что и ограничения делятся на основные, дополнительные и вспомогательные.

Основные ограничения описывают главные особенности функционирования объекта.

Дополнительные ограничения устанавливают интервалы избиения переменных (от минимума до максимума). Чем меньше эти границы, тем меньше свобода выбора, тем жестче требования задачи. Поэтому дополнительные ограничения на размеры переменных надо вводить только в случае необходимости, когда они вытекают из технологии производства, экономической целесообразности.

Вспомогательные ограничения важные по своей роли – устанавливают соотношение между отдельными параметрами (переменными) объекта.

Обоснование информации – трудоемкий процесс.

Трудность получения приемлемых для практики решений в значительной степени зависит от недостаточной изученности особенностей формирования параметров моделируемых систем.

Сложность обоснования информации связана с многообразием факторов формирования показателей. Исходная информация экономико-математической модели отражает в себе влияние социально-экономических, биологических, производственных, управляемых и неуправляемых факторов, через их значение отражается специфика, особенности состояния и развития производства.

Изложенные соображения определяют, что методика обоснования исходной информации экономико-математических моделей должны базироваться на анализе причинных связей элементов явлений, диалектической взаимосвязи качественной и количественной сущности явлений. При этом количественные характеристики явления преимущественно определяются его качественным содержанием. Выявив причинные связи элементов явления, характер и особенности их проявления, получаем возможность для количественного анализа.

При обосновании информации используются различные методы, основные из которых следующие:

a) Данные технологических карт;

b) Метод экстраполяции;

c) Экспертные оценки;

d) Корреляционные и оптимизационные модели и др.

Данные технологических карт позволяют получить информацию о значении нормативов урожайности, затрат труда, затрат на создание техники и ее эксплуатацию при определенных усредненных условиях. Недостатком метода является то, что он оторван от реальной ситуации. Технологические карты предполагают показатели часто идеальные, часто прогнозные и могут существенно отрываться от реальных в условиях определенных предприятий.

Метод экстраполяции предполагает перенесение сложившихся тенденций на перспективу.

Существенное место в обосновании информации занимают экспертные оценки. Ценность этих методов особенно возрастает в период преобразований, перехода от одной формы хозяйствования к другим. Поэтому в нынешних условиях при обосновании программ развития было бы правильно начинать обоснование программы с экспертных оценок. Они должны дать ответ на вопрос: в каком направлении осуществить развитие, т.е. экспертные оценки позволяют обосновать стратегию развития.

Решение экономико-математической задачи связано с поиском варианта, отвечающего многим требованиям. С одной стороны, эти требования выражаются ограничениями задачи, описывающими особенности функционирования объекта. С другой стороны, наряду с особенностями функционирования объекта необходимо записать общие требования к решению, которые выражаются через критерий оптимальности.

Критерий оптимальности есть качественная категория, выражающая требования общества в целом и коллектива, применительно к условиям которого решается задача, к уровню эффективности использования ресурсов. Отсюда следует, что чем крупнее задача, чем в большей мере ее решение должно отвечать требованиям всего общества.

Нахождение наилучшего варианта требует решения задачи, возникает необходимость количественного выражения критерия оптимальности. Количественное выражение критерия оптимальности есть целевая функция. Целевая функция выражается через показатель эффективности или посредством их объединения. Поскольку сельское хозяйство и аграрно-промышленный комплекс многокритериальны, т.е. имеют несколько целей развития, возникает необходимость в выборе одного показателя эффективности из нескольких, в наибольшей мере выражающего эти цели.

При выборе критерия оптимальности следует учитывать социально-экономический смысл этой категории. Глобальный критерий оптимальности прямо вытекает из особенностей функционирования экономики. В условиях рыночной системы хозяйствования главная особенность в развитии экономики предприятий любой формы собственности является полная ответственность за результаты деятельности. А это означает, что работа предприятия должна осуществляться в условиях самоокупаемости и самофинансирования. Подобное возможно при рентабельной работе предприятий, а это предполагает, что содержание наиболее предпочтительно критерия оптимальности ориентировано на максимизацию прибыли.


1.3 Методики моделирования программы развития сельскохозяйственного предприятия в работах ученых экономистов


В экономических исследованиях издавна применялись простейшие математические методы. В хозяйственной жизни широко используются геометрические формулы. Так, площадь участка поля определяется путем перемножения длины на ширину или объем силосной траншеи - перемножением длины на среднюю ширину и глубину. Существует целый ряд формул и таблиц, облегчающих хозяйственным работникам определение тех или иных величин.[Кравченко 6].

В 60-е годы нашего столетия развернулась дискуссия о математических методах в экономике. Например, академик Немчинов выделял пять базовых методов исследования при планировании:

1) балансовый метод;

2) метод математического моделирования;

3) векторно-матричный метод;

4) метод экономико-математических множителей (оптимальных общественных оценок);

5) метод последовательного приближения.[немчинов].

В то же время академик Канторович выделял математические методы в четыре группы:

Макроэкономические модели, куда относил балансовый метод и модели спроса;

Модели взаимодействия экономических подразделений (на основе теории игр);

Линейное моделирование, включая ряд задач, немного отличающихся от классического линейного программирования;

Модели оптимизации, выходящие за пределы линейного моделирования (динамическое, нелинейное, целочисленное, и стохастическое программирование). [Контрович].

По широте применения различных методов в реальных процессах планирования несомненным лидером является метод линейной оптимизации , который был разработан академиком Канторовичем в 30-е годы ХХ-го века. Чаще всего задача линейного программирования применяется при моделировании организации производства. Вот как по Канторовичу выглядит математическая модель организации производства:

В производстве участвуют M различных производственных факторов (ингредиентов) - рабочая сила, сырье, материалы, оборудование, конечные и промежуточные продукты и др. Производство использует S технологических способов производства, причем для каждого из них заданы объемы производимых ингредиентов, рассчитанные на реализацию этого способа с единичной эффективностью, т.е. задан вектор a k = (a 1k , a 2k ,..., a mk), k = 1,2...,S, в котором каждая из компонент a ik указывает объем производства соответствующего (i-го) ингредиента, если она положительна; и объем его расходования, если она отрицательна (в способе k).

Выбор плана означает указание интенсивностей использования различных технологических способов, т.е. план определяется вектором x = (x 1 , x 2 ,..., x S ) c неотрицательными компонентами [Контрович].

Обычно на количества выпускаемых и затрачиваемых ингредиентов накладываются ограничения: произвести нужно не менее, чем требуется, а затрачивать не больше, чем имеется. Такие ограничения записываются в виде

S a ik x k > b i ; i=1,2,...,m.


Если i > 0, то неравенство означает, что имеется потребность в ингредиенте в размере i, если i < 0,то неравенство означает, что имеется ресурс данного ингредиентов размере - i =¦ i¦. Далее предполагается, что использование каждого способа, связанного с расходом одного из перечисленных ингредиентов или особо выделенного ингредиента в количестве Ck при единичной интенсивности способа k. В качестве целевой функции принимается суммарный расход этого ингредиента в плане.

f(x) = S c k x k .


Теперь общая задача линейного программирования может быть представлена в математической форме. Для заданных чисел a ik , c k , и b i найти


при условиях

k > 0, k = 1,2,...,s

S a ik x k > b i , i = 1,2,...,m


План, удовлетворяющий условиям и , является допустимым, а если в нем, кроме того, достигается минимум целевой функции, то этот план оптимальный.

Задача линейного программирования двойственна, то есть, если прямая задача имеет решение, (вектор x =(x 1 , x 2 ,..., x k)), то существует и имеет решение обратная задача основанная на транспонировании матрицы прямой задачи. Решением обратной задачи является вектор y = (y 1 , y 2 ... ,y m) компоненты которого можно рассматривать как объективно обусловленные оценки ресурсов, т.е. оценки, показывающие ценность ресурса и насколько полно он используется. [Контрович]

На основе объективно обусловленных оценок американским математиком Дж. Данцигом - был разработан симплекс-метод решения задач оптимального программирования. Этот метод весьма широко применяется. Алгоритм его весьма детально проработан, и даже составлены прикладные пакеты программ, которые применяются во многих отраслях планирования.

Его идея состоит в следующем: вначале достигается опорное решение поставленной задачи, т.е. допустимый вариант, удовлетворяющий всем ограничениям. Затем, проделывая ряд последовательных шагов, сводящихся к выполнению элементарных алгебраических преобразований, получают новое решение. Оно лучше или, по крайней мере, не хуже предшествующего. После конечного числа шагов (итераций) либо устанавливают неразрешимость задачи, либо опорный план является оптимальным.

Необходимо отметить, что симплекс метод работает только для системы линейных уравнений в каноническом виде, в которой должна быть предварительно записана исходная задача.

Решение задачи включает поиск опорного и нахождение оптимального решения. Признаки опорного решения – это наличие положительных свободных членов. В случае его отсутствия поступаем следующим образом:

1 – выбираем любой отрицательный свободный член;

2 – находим любой отрицательный коэффициент в строке отрицательного свободного члена;

3 – проводя деление коэффициентов столбца свободных членов на соответствующие коэффициенты столбца с выбранным отрицательным элементом, находим наименьшее положительное значение, которое укажет на разрешающий коэффициент.

После выбора разрешающего элемента симплексное преобразование выполняется по следующим правилам:

1. Новый коэффициент вместо разрешающегося равен 1, деленной на разрешающийся коэффициент. При этом новыми будут называться коэффициенты следующей симплексной таблицы по отношению к предыдущей;

2. Новые коэффициенты строки разрешающегося элемента равны предыдущим, деленным на разрешающий;

3. Новые коэффициенты столбца разрешающегося элемента равны предыдущим, деленным на разрешающий элемент, взятый с противоположным знаком;

4. Новые коэффициенты, не стоящие в строке или столбце разрешающегося элемента, равны частному от деления разности произведения коэффициентов главной и побочной диагоналей на разрешающий элемент.

Все результаты расчетов элементов заносятся в симплекс-таблицу. [Колеснев]

Несмотря на широту применения метода линейного программирования, он учитывает лишь три особенности экономических задач - большое количество переменных, ограниченность ресурсов и необходимость целевой функции. Конечно, многие задачи с другими особенностями можно свести к линейной оптимизации, но это не дает нам права упустить из виду другой хорошо разработанный метод математического моделирования - динамическое программирование . По сути, задача динамического программирования является описанием многошаговых процессов принятие решений. Задача динамического программирования можно сформулировать следующим образом:

имеется некоторое количество ресурса х, которое можно использовать N различными способами. Если обозначить через х i количество ресурса, используемое i-m способом, то каждому способу сопоставляется функция полезности (х i), выражающая доход от этого способа. Предполагается, что все доходы измеряются в одинаковых единицах и общий доход равен сумме доходов, полученных от использования каждого способа.

Теперь можно поставить задачу в математической форме. Найти


max y 1 (x 1)+ y 2 (x 2)+ ... + y n (x n)


(общий доход от использования ресурсов всеми способами) при условиях:

Выделяемые количества ресурсов неотрицательны;


X 1 > 0,..., x N > 0


Общее количество ресурсов равно x .


X 1 + x 2 + ... + x N = x


Для этого общей задачи могут быть построены рекуррентные соотношения


¦ 1 (x) = max {j 1 (x 1)},

0 <=X1<= X

¦ k (x) = max {j k (x k)+ ¦ k-1 (x - x k)}.

к = 2,3,..., N,


с помощью которых находится ее решение.

При выводе этих рекуррентных соотношений, по сути, использовался следующий принцип, оптимальная стратегия обладает тем свойством, что по отношению к любому первоначальному состоянию после некоторого этапа решения совокупность последующих решений должна составлять оптимальную стратегию. Этот принцип оптимальности лежит в основе всей концепции динамического программирования. Именно благодаря ему удается при последующих переходах испытывать не все возможные варианты, а лишь оптимальные выходы. Рекуррентные соотношения позволяют заменить чрезвычайно-трудоемкие вычисления максимума по N переменным в исходной задаче решением N задач, в каждой из которых максимум находится лишь по одной переменной.

Таким образом, метод динамического программирования позволяет учесть такую важную особенность экономических задач, как детерминированность более поздних решений от более ранних. [беллман]

Кроме этих двух, достаточно детально разработанных методов, в экономических исследованиях в последнее время стали применяться множество других методов.

Одним из подходов к решению экономических задач является подход, основанный на применении новой математической дисциплины - теории игр .

Суть этой теории заключается в том, что игрок (участник экономических взаимоотношений) должен выбрать оптимальную стратегию в зависимости от того, какими он представляет действия противников (конкурентов, факторов внешней среды и т.д.). В зависимости от того, насколько игрок осведомлен о возможных действиях противников, игры (а под игрой здесь понимается совокупность правил, тогда сам процесс игры это партия) бывают открытые и закрытые. При открытой игре оптимальной стратегией будет выбор максимального минимума выигрыша ("максимина") из всей совокупности решений, представленных в матричной форме. Соответственно противник будет стремится проиграть лишь минимальный максимум ("минимаск") который в случае игр с нулевой суммой будет равен "максимину". В экономике же чаще встречаются игры с ненулевой суммой, когда выигрывают оба игрока.

Кроме этого в реальной жизни число игроков редко бывает равно всего двум. При большем же числе игроков появляются возможности для кооперативной игры, когда игроки до начала игры могут образовывать коалиции и соответственно влиять на ход игры. [нейман]

Создатель теории игр Дж. Нейман еще в 1947 г. установил, что любую конечную игру двух лиц с нулевой суммой можно представить в виде задачи линейного программирования и наоборот. Для изучения данного подхода обозначим через Р 1 , Р 2 …Р m вероятность применения игроком А в ходе игры своих чистых стратегий А 1 , А 2 …А m. Тогда пусть Q 1 , Q 2 …Q n – вероятности применения игроком В своих чистых стратегий В 1 , В 2 …В n .

Для вероятностей P i и Q j выполняются условия:

P i ≥ 0, i=1, m(i=1, 2 … m). P i = 1,

Q j ≥ 0, j = 1 n(j=1,2,…n) Q j =1


если обозначим смешанные стратегии первого (А) и второго (В) игроков через Q и P, то Q=(Q 1 , Q 2 …Q n), P=(Р 1 , Р 2 …Р m). Например смешанной стратегией игрока А является полный набор вероятностей применения его чистых стратегий. [Колеснев]

Методы управления запасами. В научных исследованиях аграрной экономики особое внимание уделяется такому аспекту повышения эффективности работы предприятий, как грамотное управление имеющимися запасами. Во всех сферах АПК важно поддерживать рациональный уровень запасов (сырья, полуфабрикатов, готовых изделий). Затраты на хранение слишком больших запасов уменьшают прибыльность организации; подержание запасов на слишком низком уровне связано с риском возникновения дефицита и остановкой производства. Для компромиссного решения данной проблемы применяют модели управления запасами.

Запас – это все то, на что имеется спрос и что выключено временно из потребления. В народном хозяйстве различают: а) запасы средств производства; б) запасы предметов потребления. Если рассматривать совокупные запасы на пути технологической цепи «поставщик – потребитель», то их можно разделить на две основные части: товарные и производственные.

Товарные – это часть совокупных запасов, которые находятся в сфере обращения. Они формируются в различных звеньях оптовой и розничной торговли, на складах предприятий-изготовителей, на снабженческих и сбытовых базах.

К производственным относится часть совокупных запасов, находящаяся в руках производителей и вступившая (или готовая вступить) в процесс непосредственного производства. Под ними подразумевается продукция производственно-технического назначения.

В процессе применения методов управления запасами важно понимать и учитывать приведенные ниже особенности.

1. Величина запаса. Она определяется в натуральном или стоимостном выражении. В натуральных величинах (т, кг, шт) измеряется запас отдельного товара, сырья, инструмента или их родственной группы. Совокупный запас измеряется в стоимостном выражении.

2. Спрос- потребность в материальных ресурсах или товарах. Он бывает детерминированным (достоверно известный, характеризуемый заранее определенной величиной) или недетерминированный (случайный, стохастический, описанный вероятностным распределением), что приводит к постановке детерминированных и стохастических моделей.

В свою очередь, детерминированный спрос может быть:

Статический (стационарный, постоянный во времени)

Динамический (нестационарный, когда объем спроса является функцией времени).

3. Порядок пополнения запасов (или срок выполнения заказа). Речь идет об интервале времени между моментом размещения заказа и его поставкой.

4. Издержки. Цель модели управления запасами – сведение к минимуму отрицательных последствий накопления запасов, что выражается в определённых издержках. Эти издержки бывают трех основных видов: на размещение заказов, на хранение, а также потери, связанные с недостаточным уровнем запасов. В этом случае продажа готовой продукции или предоставление обслуживания становятся невозможными, а также возникают потери от простоя производственных линий, в частности, в связи с необходимостью оплаты труда работников, хотя они не работают в данный момент.

Поддержание высокого уровня запасов избавляет от потерь, обуславливаемых их нехваткой. Закупка в больших количествах материалов, необходимых для создания запасов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку предприятие может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками типа расходов на хранение, перегрузку, выплату процентов, затрат на страхование, потерь от порчи, воровства и т.д

Имитационное моделирование. Имитационное моделирование обозначает процесс создания модели и ее экспериментальное применение для определения изменений реальной ситуации. Главная идея имитационного моделирования состоит в использовании некоего устройства для имитации реальной системы для того, чтобы исследовать и понять ее свойства, поведения и характеристики. Специалисты по производству и финансам могут разрабатывать модели, позволяющие имитировать ожидаемый прирост производительности и прибыли в результате применения новой технологии или изменения состава рабочей силы.

Имитация используется в ситуациях, слишком сложных для математических методов типа линейного программирования. Это может быть связано с чрезмерно большим числом переменных, трудностью математического анализа определенных зависимостей между переменными или высоким уровнем неопределенности.

Имитационные методы применяются в различных сферах АПК.

1. Можно смоделировать различные параметры, связанные с производственной, коммерческой и внешнеторговой деятельностью организаций. (количество выпускаемой продукции, объем продаж, ценовые характеристики, урожайность сельскохозяйственных культур, текучесть кадров и др.)

2. Можно решить экономические задачи производственно-технологического характера, возникающие при управлении запасами и в процессе создания систем массового обслуживания.

Использование методов имитационного моделирования приносит исследователю ряд преимуществ, так как:

1. обеспечивает учет неопределенности различных переменных (например, цены конкурентов, сроки поставки и д.);

2. позволяет проводить сравнение альтернативных вариантов (например, можно проанализировать воздействие различной политики ценообразования на спрос или системы налогообложения на рост производства);

3. дает возможность оценивать многообразные исходы;

4. устраняет риски, так как позволяет не проверять различные стратегии в реальных ситуациях;

5. ведет к экономии финансовых средств и времени.

В некоторых задачах имитационное моделирование может проводиться путем формального описания реальной последовательности взаимосвязей между показателями, не используя специального математического аппарата. В этом суть сингулярной имитационной модели, которая предназначена для машинной имитации исследуемого экономического процесса путем изменения входных данных.

Имитационне модели, в которых присутствует фактор времени, различают двух типов:

1. Непрерывные модели используются для систем, поведение которых изменяется непрерывно во времени. Типичным примером непрерывной имитационной модели является изучение динамики населения

2. Дискретные модели используются для систем, поведение которых изменяется лишь в заданные моменты времени.

Методы имитационного моделирования также используются для решения задач, связанных с массовым обслуживанием. Такие ситуации возникают там, где есть покупатели, а также товары или заказы, поступающие в определенное время. При этом обслуживание осуществляется в определенной последовательности.

Итак, имитационное моделирование – это часто весьма практичный способ подстановки модели на место реальной системы или натурального прототипа. Эксперименты на реальных или прототипных системах стоят дорого и продолжаются долго, а релевантные переменные не всегда поддаются регулированию. Экспериментируя на модели системы, можно установить, как она будет реагировать на определенные изменения или события, в то время когда отсутствует возможность наблюдать эту систему в реальности. Если результаты экспериментирования с использованием имитационной модели свидетельствует о том, что модификация ведет к улучшению, руководитель может с большей уверенностью принимать решение об осуществлении изменения в реальной системе.


Глава 2. Обоснование программы развития

2.1 Постановка экономико-математической задачи


Сельскохозяйственное предприятие представляет собой социально-экономическую систему с определенными соотношениями и пропорциями ее подразделений и взаимосвязями с другими предприятиями АПК. Рассматриваемая модель развития предприятия - комплексная. Она учитывает все составляющие предприятий. Необходимость решения данной модели диктуется условиями:

Переход к рыночной системе хозяйствования предполагает самоокупаемость и самофинансирование, т.е. полную ответственность за результаты хозяйствования. Наряду с этим важную роль приобретает инициатива, умение найти рынки сбыта и в целом продуманная система реализации продукции. В нашей задаче кроме реализации продукции государству предусмотрен рыночный фонд.

Хозяйство должно развиваться с учетом имеющихся земельных, трудовых и прочих ресурсов.

Важнейшей пропорцией в экономике предприятий являются взаимосвязи растениеводства и животноводства. В результате оптимизации эти взаимосвязи должны обеспечить оптимизацию структуры кормопроизводства на основе оптимальных рационов кормления и эффективного соотношения между поголовьем и ресурсами кормов.

Животноводство может использовать побочную продукцию основных отраслей растениеводства (солому).

СПК «Курманово» собирается возделывать озимые и яровые зерновые, зернобобовые, однолетние и многолетние травы, рапс, кукурузу.

Предполагается покупка недостающих видов кормов - концентратов, обрата и картофеля, которые в хозяйстве не выращиваются.

Предприятие планирует реализовывать зерно, говядину и молоко, в счет договорных поставок. Также предполагается сбыт зерна и говядины по рыночным каналам.

Сельскохозяйственное предприятие - часть экономической системы государства, участник общественного разделения труда, что предопределяет необходимость предусмотреть для соблюдения пропорциональности в народном хозяйстве производство отдельных видов продукции в размере, не ниже установленного минимума, учесть, что часть продукции - т.е. рыночный фонд - будет реализована по другим негосударственным каналам.

Критерием оптимальности в решении данной задачи выступит максимум прибыли.

Расчеты будут проводиться на ближайший год в силу изменчивости аспектов экономики, цен и т.д.


2.2 Структурная экономико-математическая модель


Структурная экономико – математическая модель используется при описании прошлого, настоящего и прогнозировании будущего.

Чтобы эти возможности моделей были реализованы, необходимо составлять и решать развернутые экономико – математические модели. Развернутая (расширенная) модель (задача) есть детализация структурной модели применительно к конкретному объекту.

Отличие развернутой экономико – математической модели не только в информации, но и в том, что новое знание о моделируемом объекте можем сразу отразить в задаче, т.е. развернутая модель учитывает нюансы изучаемого явления (часто важные).

Взаимосвязь структурной и развернутой моделей – один из наиболее важных и существенных моментов всей теории моделирования.

Чтобы понять эти взаимосвязи построим на основе развернутой модели структурную модель.

Для построения структурной модели необходимо ввести условные обозначения, которые включают 3 группы:

2) неизвестные величины;

3) известные величины: технико-экономические коэффициенты и коэффициенты F-строки.

При введении условных обозначений необходимо руководствоваться следующими основными принципами:

¾ последовательность – обозначает, что в структурной модели каждый индекс должен обозначать одно понятие и не больше. Если индекс обозначает номер строки, то он ни при каких обстоятельствах не обозначает номер столбца;

¾ экономичность – обозначает, что каждое понятие по возможности должно иметь постоянное обозначение. Например, если i – номер строки в одной модели, то в другой – тоже;

¾ запоминаемость – предполагает, сто при введении обозначений вводим индексы, встречающиеся в других дисциплинах (h – номер корма в теории кормления и т.д.)

Индексация:

Номер сельскохозяйственных культур и отраслей;

Множество сельскохозяйственных культур и отраслей;

Множество отраслей растениеводства, ;

Множество отраслей животноводства, ;

Номер ресурсов, питательных веществ, видов товарной продукции;

Множество видов земельных угодий;

Множество видов труда;

Множество видов питательных веществ;

Множество видов товарной продукции;

Множество видов привлеченного труда;

Номер вида корма;

Множество видов кормов;

Множество покупных кормов, ;

Множество кормов животного происхождения и побочных кормов, ;

Множество побочных кормов, ;

Множество собственных основных кормов, ;

Множество обмениваемых кормов, ;

Неизвестные:

Размер отрасли;

Количество покупных кормов;

Количество побочных кормов и кормов животного происхождения;

Количество побочных кормов;

Скользящая переменная по корму для вида или половозрастной группы скота;

Количество кормов в обмен h;

Количество привлеченного труда;

Рыночный фонд продукции;

Стоимость товарной продукции;

Известные:

Ресурсы земельного угодья;

Ресурсы труда;

План продажи продукции;

Расход корма на внутрихозяйственные нужды;

Ограничения на привлеченный труд;

Соответственно минимальный и максимальный размер отрасли;

Расход труда на единицу отрасли;

Выход корма от единицы отрасли;

Соответственно минимальный и максимальный расход корма на единицу отрасли животноводства;

Расход питательного вещества на единицу отрасли животноводства;

Выход товарной продукции от единицы отрасли;

Стоимость товарной продукции на единицу отрасли;

Необходимо найти

По особенностям записи, содержанию коэффициентов переменных в нашей задаче восемь однородных групп ограничений, следовательно, в структурной модели будет восемь соотношений. Соотношения (условия) модели:

1) По использованию сельскохозяйственных угодий

Сумма площадей сельскохозяйственных культур, возделываемая на данном виде сельскохозяйственных угодий, не должна превышать площади этих угодий.

2) По использованию труда

а) годового

б) привлечённого

Затраты труда на развитие отраслей растениеводства и животноводства не должна превышать наличие труда на предприятии с учетом его привлечения.

3) По балансу отдельных видов кормов и формированию рационов:

а) по балансу основных видов кормов

б) по балансу покупных кормов, кормов животного происхождения и побочных кормов

в) по производству побочных кормов

Нормы рас хода отельного вида корма, умноженные на поголовье соответствующих групп животных по всем видам и половозрастным группам с учетом скользящих переменных, не должны превышать объема соответственного производства корма, с учетом возможной покупки и рас хода его для нужд населения.

4) По балансу питательных веществ

В левой части находится расход питательных веществ для всего поголовья каждого вида скота, а в правой – наличие питательных веществ в кормах предприятия.

В левой части – разность между потребностью в питательном веществе на 1 голову животного и содержанием этого вещества в рационе по минимальной норме, умноженная на поголовье животного, а в правой – содержание питательного вещества в добавках кормов для данного вида животного.

6) По величине скользящей переменной

т.е. добавка корма для животных не должна превышать разности между максимальной и минимальными нормами кормления на голову, умноженной на поголовье.

7) По размерам отдельных отраслей

8) По реализации продукции

где производство товарной продукции распределяется по различным каналам реализации.


2.3 Обоснование исходной информации задачи


В качестве объекта исследования у нас выступает СПК «Курманово» Мстиславского района Могилевской области.

Обоснование сбалансированной программы развития предприятия будем проводить по данным 2008 года. Период прогноза 1 год.

Определяем объемы ресурсов предприятия, возможные тенденции их изменения на плановый период:

а) Земельные ресурсы (пашня, сенокосы, пастбища) планируем на фактическом уровне.

б) Запас годового труда определяем как количество среднегодового отработанного времени с учетом выбытия трудовых ресурсов 1% в год.

в) Ресурс труда в напряженный период 55% от годового.


Таблица 2.3.1. Производственные ресурсы


Обоснование информации по растениеводству

Ø Определяем урожайность зерновых культур в физической массе после доработки на перспективу по следующей корреляционной модели:

= + a 1 x

29,9 + 29,9 + * 1,3 = 31,2


где, – расчетная (планируемая) урожайность зерновых культур хозяйства на перспективу, ц\га;

Фактическая урожайность зерновых культур на начало планового периода по хозяйству, ц\га;

0 - фактическая урожайность зерновых культур по хозяйствам района в среднем, ц\га;

Величина планового периода, лет (1 год)

1 – коэффициент регрессии, характеризующий возможное среднегодовое приращение урожайности в хозяйстве.

Коэффициент приращения в зависимости от средней фактической урожайности на начало планового периода составил 1,3.


Таблица 2.3.2. Расчет перспективной урожайности отдельных видов зерновых культур


Ø При обосновании урожайности с\х культур определяем по КМ соотношения урожайности зерновых и этих культур. После расчета параметры этих КМ будут иметь следующий вид:


у х = у 0 + а 0


где у х – расчетная урожайность сельскохозяйственной культуры, ц\га;

у 0 – фактическая урожайность сельскохозяйственной культуры, ц\га;

а 0 , а 1 – коэффициенты регрессии;

∆u – приращение урожайности зерновых культур (-), ц\га;


Таблица 2.3.3. Коэффициенты регрессии


у Кукуруза на силос = 244 + 14,1 * = 244+14,1*2,18 0,6 = 66,6

у многолетние травы на сено = 2,8 + 1,13 + = 28+1,13*2,18 0,034 = 29,1

у Однолетние травы на зеленую массу = 74 + 1,17 * = 74+1,17*2,18 1,3 = 77,3


Урожайность многолетних трав на зеленую массу = урожайность многолетних трав на сено*4,5 = 29,1*4,5=131,0

Урожайность многолетних трав на семена = урожайность многолетних трав на сено ÷ 10 = 29,1 ÷ 10 = 2,9

Урожайность многолетних трав на сенаж = урожайность многолетних трав на зеленую массу * 0,45 = 131*0,45=59,0

Урожайность многолетних трав на травяную муку = урожайность многолетних трав на сено*0,8 = 29,1*0,8 = 23,3

Урожайность силосных культур = урожайность многолетних трав на зеленую массу*0,75 = 59,0*0,75 = 44,3

Затраты труда по культурам (колонка 8) (чел.-час./га) рассчитываются по КМ в зависимости от фактических затрат по хозяйству (х 1) и расчетной урожайности по культурам (х 2), ц\га

Яровые зерновые: у х = 7,3+0,712 х 1 – 0,416 х 2 = 7,3+0,712*38,5 – 0,416*31,2=21,7

Озимые зерновые: у х = 13,6+0,712 х 1 - 0,416 х 2 =13,6+0,712*35–0,416*28,1=28,6

Кукуруза на зеленый корм: у х =14,6+0,55 х 1 -0,031 х 2 =14,6+0,55*20-0,031*266,6=17,3

Однолетние травы на зеленый корм: у х =20,3+0,45 х 1 -0,12 х 2 =20,3+0,45*15-0,12*77,3=17,8

Затраты труда на 1га многолетних трав на сено рассчитываем по формуле: у х =6,3+0,75 х 1 -0,23 х 2 = 6,3+0,75*28,4-0,23*29,1=20,9

Затраты труда на 1га многолетних трав на семена = затраты труда по многолетним травам на сено * 1,36 = 20,9*1,36=28,4

Затраты труда на 1га многолетних трав на зеленый корм = затраты труда по многолетним травам на сено*0,3=20,9*0,3=6,3

Затраты труда на 1га многолетних трав на сенаж = затраты труда по многолетним травам на сено*0,9 = 20,9*0,9 = 18,8

Затраты труда на 1га многолетних трав на травяную муку = затраты труда по многолетним травам на сено*1,3 = 20,9*1,3 = 27,2

Затраты труда на 1га кукурузы на силос = затраты труда кукурузы на зеленый корм*1,08 = 17,3*1,08 = 18,7

Затраты труда на 1га сенокосов, пастбищ, озимой ржи на зеленый корм, пожнивных планируем по нормативу.

Затраты труда на 1 га овощей, рапса, сахарной свеклы планируем на уровне фактических.

Затраты труда по зернобобовым рассчитываются по формуле:


ЗТг = ЗТн+0,5*∆


где ЗТ – перспективные годовые затраты труда, чел.-час/га

ЗТн – нормативные затраты труда, чел.-час/га

∆ - разница расчетной и фактической урожайностью, ц\га

Ун – нормативная урожайность, ц\га


ЗТ по зернобобовым = 13,0+0,5*0,6 = 13,2

Затраты труда по культурам в напряженный период рассчитываем в процентах к затратам труда за год по следующей формуле:


ЗТнп = ЗТг*,


где ЗТнп – перспективные затраты труда в напряженный период, чел.-час/га;

ЗТг – перспективные годовые затраты труда, чел.-час/га (8 колонка);

ЗТнпн–нормативные затраты труда в напряженный период, чел.-час/га

(7 колонка);

ЗТнгод – нормативные затраты труда за год, чел.-час/га (6 колонка).

Обоснование информации по животноводству

Определяем продуктивность среднегодовой коровы (центнер ), привес молодняка КРС и свиней (грамм) в зависимости от фактической на начало планового периода, приращения урожайности зерновых культур как мерила кормовой базы:


где - соответственно перспективная продуктивность животных и ее значение на начало планового периода;

t – продолжительность планового периода;

Приращение урожайности зерновых, ц;

а 1 – коэффициент регрессии (для коров – 2,6; молодняка КРС – 0,0054; свиней – 0,024)


Расчет продуктивности (заносим результаты расчетов в табл.2.3.5. к.1)


Определяем прирост ж.м. не перспективу (заносим результаты расчетов в табл.2.3.5. к.1)


Расход питательных веществ (ц. к.ед.) на производство 1ц продукции животноводства определяем по КМ(заносим результаты расчетов в табл.2.3.5. к.2):

На 1ц молока: У х = = 1,19

где х 2 – надой молока за год, ц

На 1ц привеса КРС: У х = = У х = = 16,2

где х 2 – среднесуточный привес, кг

Определяем расход питательных веществ (ц. к.ед.) на среднегодовую голову животного (заносим результаты расчетов в табл.2.3.5. к.3) =

Расход питательных веществ (ц. к.ед.) * среднегодовую

на производство 1ц продукции продуктивность

Коровы : 35,6*1,19 = 42,4

Молодняк КРС : 1,65*16,2 = 26,7

Для коров будем рассчитывать рацион кормления со скользящими переменными , поэтому определяем расход перевариваемого протеина (п.п.) исходя из потребности: на 1ц к.ед. должно содержаться в рационе не менее 0,105 ц п.п. (заносим результаты расчетов в табл.2.3.5. к.4)

Методика расчета потребности ц п.п. на 1 корову: потребность ц к.ед.*0,105 ц п.п. на 1ц к.ед.

Коровы : 42,4*0,105=4,6

Молодняк КРС : 26,7*0,105=2,8

Затраты труда на среднегодовую голову рассчитываются по КМ в зависимости от фактических затрат труда (х 1) и перспективной продуктивности животного (х 2): (заносим результаты расчетов в табл.2.3.5. к.7)

Коровы : У х = 60,2+0,85 х 1 -1,62 х 2 = 60,2+0,85*207,5-1,62*36,7 = 177,1

Молодняк КРС : У х = 26,6+0,6 х 1 -0,7 х 2 = 26,6+0,6*65,8-0,7*1,65 = 64,9

Затраты труда в напряженный период рассчитываем по ранее приведенной формуле. (заносим результаты расчетов в табл.2.3.5. к.8)

Коровы : * 177,1 = 42,3

Молодняк КРС : * 64,9 = 21,6


Таблица 2.3.5. Исходная информация по животноводству

Вид животных

тивность, ц

Расход ц к.ед./ц продукции

Расход ц к.ед./гол

Расход ц п.п./гол

Затраты труда, чел.час./гол

нормативные

прогнозные

в напряж. период

в напряж. период


Коровы, ц

Молодняк КРС, кг





Таблица 2.3.6. Рационы кормления на 1гол. животных

Наименование кормов

Содержится в 1ц корма

КРС на выращивании и откорме





За итого берем расход ц к.ед./гол молодняка КРС и рассчитываем согласно %

ц корма (7к.)* ц п.п. (3к.)

ц к.ед.(5к.)/ ц п.п.(2к.)





Концентраты

Корнеплоды

Картофель

Зеленый корм





Определяем расход кормов на внутрихозяйственные нужды.

Для этого 1) определяем количество семей:



где d – число семей в хозяйстве

N – годовой запас труда на перспективу, тыс.чел.час.

1,8 – выработка на среднегодового работника, чел.час.

1,4 – число среднегодовых работников на одну семью.


d = 548,46*2,52 = 1382,12


2) число коров в личном пользовании: У х = d*0,6, где 0,6 – плотность коров в расчете на 1 семью.


У х = 1382,1*0,6 = 829


3) определяем корма на внутрихозяйственные нужды, исходя из того, что на каждую семью выделяется 8ц концентратов, на 1 корову 20ц сена, 65ц зеленой массы.


Таблица 2.3.8. Расчет расхода кормов на внутрихозяйственные нужды

Вид корма

Содержится в 1ц корма

Концентраты

Зеленый корм


Определяем перспективный объем реализации продукции

Предполагается, что рост объемов реализации без закупок у населения по продукции растениеводства составляет 3% в год, по продукции животноводства – 2% в год. Договорные поставки по видам продукции для которой вводится рыночный фонд (зерно, картофель, овощи) составляют 80% от перспективных объемов реализации, по остальным видам продукции – 100%. Перспективный объем реализации находим как разницу между фактическим объемом реализации и купленной у населения продукцией, увеличенной на % роста.


Таблица 2.3.9. Перспективный объем реализации продукции


Вид продукции

Фактический объем реализации, ц

у населения, ц

Объем реализации на перспективу, ц

Объем договорных поставок, ц

Мясо: говядина


Технологические ограничения

1. Площадь посева зерновых от 30 до 60% от площади пашни. Удельный вес отдельных видов зерновых в структуре зернового клина определяем на основании следующих расчетов: min – 30% от пашни прогнозной, max – 60% от пашни прогнозной.


Таблица 2.3.10. Структура зернового клина

Наименование зерновых культур

Посевная площадь

фактическая

Перспективная

Минимальная

(80% от факт.)

Максимальная

(120% от факт.)

Зернобобовые


2. Площадь посева картофеля до 10% от площади пашни (если больше оставляем на фактическом уровне);

3. Площадь посева льна до 15% от площади пашни;

4. Общая площадь многолетних трав не менее 50% от фактической площади многолетних трав;

5. Площадь посева однолетних трав на зеленый корм не менее 50% от фактической площади однолетних трав;

6. Площадь посева рапса, овощей сахарной свеклы не более 200% от фактической площади;

7. Площадь посева озимой ржи на зеленый корм не более 5% от площади пашни;

8. Планируемое поголовье животных составит от 100 до 130% от фактического поголовья;


Таблица 2.3.11. Предельное поголовье животных


9. Планируемое поголовье лошадей соответствует фактическому;

10. Площадь посева трудоемких культур (картофель, корнеплоды, лен, овощи) не более 20% от площади пашни;

Предполагается реализация части продукции на рынке. Цены реализации данной продукции на рынке на 50% выше реализационных цен.


Таблица 2.3.12. Закупочные цены сельскохозяйственной продукции


Зерно обмениваем на комбикорм с коэффициентом 1,3.


2.4 Анализ результатов решения развернутой экономико-математической задачи


Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Получив решение задачи (Приложение 2), произведем его анализ путем сравнения фактических и расчетных показателей.


Таблица 2.4.1. Использование производственных ресурсов

Показатели

Используется

Уровень использования, %

Пашня, га

Сенокосы, га

Пастбища, га

Труд, че.час.:

в напряженный период





Из таблицы 2.4.1. видим, что площадь пашни, сенокосов и пастбищ используются на 100%, а вот труд как годовой, так и в напряженный период не полностью.

Для получения максимальной прибыли в хозяйстве необходимо произвести некоторые изменения в структуре посевных площадей. Эти изменения отражены в таблице 2.4.2.


Таблица 2.4.2. Размер и структура посевных площадей

Культуры


Фактическое значение

Расчетное значение

Расчетное значение в % к фактическому

Зерновые,- всего

в т.ч.: озимые

зернобобовые

Многолетние травы

Однолетние травы

Кукуруза

Всего посевов


Таблица 2.4.3. Предполагаемый объем покупки кормов, ц


В хозяйстве покупаются не производимые корма – обрат, картофель, концентратами оно обеспечивает себя самостоятельно. По результатам решения можем сделать вывод, что для получения максимальной прибыли мы должны снизить покупку кормов на 54,8%.


Таблица 2.4.4. Поголовье животных


В данной задаче по оптимальному решению наблюдается увеличение поголовья как коров, так и молодняка КРС. Поголовье лошадей планируем на фактическом уровне.


Таблица 2.4.5. Расход и структура кормов для коров

Виды кормов

Нормативное значение

Расчетное значение

Расчетное значение

в % к фактическому

Концентраты

Корнеплоды

Картофель





Методика расчета: расчетное значение нормы вскармливания какого-либо корма = вскармливания этого корма на 1гол.

При анализе таблицы 2.4.5. следует отметить, что одни корма планируются с превышением над их потребностью, а другие наоборот – со снижением как в кормовых единицах, так и в перевариваемом протеине.


Таблица 2.4.6. Объем реализации товарной продукции, ц


Расчётный объём реализации увеличился по всем видам товарной продукции. Резкий рост реализации зерна и рапса связан с таким же резким ростом площадей данных культур, а также плановой урожайности. Продажа по всем видам животноводческой продукции продажа тоже увеличилась. Это обусловлено тем, что увеличилось поголовье и продуктивность животных.


Таблица 2.4.7. Объем и структура товарной продукции

Виды кормов

Нормативное значение

Расчетное значение

Расчетная сумма в % к фактической

сумма, млн.руб


сумма, млн.руб


Итого по растениеводству






Говядина

Итого по животноводству










Структура товарной продукции по расчетным данным отличается от фактической.

Так, удельный вес продукции растениеводства по расчёту возрос на 167,5%, но специализация хозяйства не изменилась. В растениеводстве возрос удельный вес зерна, рапса.

В животноводстве удельный вес снизился по молоку, но незначительно. В целом расчётное значение товарной продукции превышает факт на 105,9%.


Таблица 2.4.8. Основные показатели уровня производства


Методика расчета основных показателей уровня производства:

ü Произведено на 100га с/х угодий, ц:


· Молока:

молоко (факт.значение) = = 285,1

молоко (расч.значение) = = 381,9

· Говядина:

говядина (факт.значение) = =27,1

говядина (расч.значение) = =30,9

· Товарная продукция:

товарная продукция (факт.значение) = = 38,8

товарная продукция (расч.значение) = = 79,9

ü Произведено на 100га пашни, ц:

зерно (факт.значение) = = 1441,8

зерно (расч.значение) = = 1827,9

ü Произведено товарной продукции на 1 чел.час., тыс.руб.

товарная продукция (факт.значение) = = 6285,9

товарная продукция (расч.значение) = * 1000000 = 17885,6


При анализе производства на 100 га сельскохозяйственных угодий можно сделать выводы:

производства молока возросло на 33,9% вследствие увеличения поголовья коров на 29,9% и их продуктивности;

производство говядины выросло на 10,7% вследствие роста поголовья молодняка КРС на 10,6% и плановой продуктивности;

При анализе производства на 100 га пашни выводы следующие:

производство зерна увеличилось на 26,8%, т.к рост площадей по этим культурам составил 21,5%, а так же выше плановая урожайность;

Производство товарной продукции на 1 чел. - ч. возрастёт на 184,5%, а на 100 га с/х угодий на 105,9%, что свидетельствует о повышении производительности труда и более эффективном использовании ресурсов.


Выводы и предложения


В данной курсовой работе мы изучили особенности и методику моделирования программы развития сельскохозяйственного предприятия.

В теоретической части курсового проекта мы рассмотрели сущность и классификацию экономико математических методов и содержание этапов их построения. Проанализировали методики моделирования программы развития сельскохозяйственных предприятий в работах ученых экономистов. Рассмотрели подробнее основные экономико-математические модели. Возникшие при планировании трудности, связанные с определением основных и вспомогательных отраслей, устраняются путём применения экономико-математических методов в сочетании с вычислительной техникой. При этом все вопросы увязываются в процессе решения задачи. Экономико-математические методы обеспечивают формирование сбалансированного плана специализации и сочетания отраслей, который определяется как наилучший при заданных условиях производства.

В практической части курсовой работы построена соответствующая экономико-математическая модель задачи и решена хорошо разработанными и широко освещенными в литературе методами, проведены соответствующие расчеты и получены количественные результаты.

Исходя из анализа решения можно сделать следующие выводы:

сельскохозяйственные угодья будут использоваться в полном объёме;

годового труда достаточно, поэтому привлекать рабочую силу не имеет смысла;

площади зерновых в общем увеличились максимально. Размеры яровых зерновых - на 36,0%, зернобобовых - на 3,0%, а вот площадь яровых уменьшилась на 4,2%;

площади однолетних и многолетних трав сократились;

поголовье коров возросло максимально (на 29,9%), по молодняку КРС - на 10,6%;

рацион кормления коров по к. ед. и по п. п. выше фактического;

расчётный объём реализации увеличился по всем видам товарной продукции. Резкий рост реализации зерна и рапса связан с таким же ростом площадей данных культур, а также плановой урожайности. По всем видам животноводческой продукции продажа увеличилась.

удельный вес продукции растениеводства по расчёту возрос на 13,5%, что не привело к изменению специализации хозяйства. В животноводстве удельный вес снизился по всем видам на 13,5%;

производство выросло по всем видам.

Разработанная программа развития СПК “Курманово” Мстиславского района Могилёвской области при данных условиях позволяет получить прибыль при наличии 3868,6 млн.руб. При этом затраты труда уменьшить на 1%, объем реализации продукции возрастает в среднем на 220,3% , а прибыль на 105,9%.

Приложение 1. МЕТОДЫ СТАТИСТИЧЕСКОГО АНАЛИЗА И ПРОГНОЗИРОВАНИЯ В БИЗНЕСЕ

4. Математический инструментарий прогнозирования

Математические методы и модели, используемые в задачах стохастического анализа и прогнозирования в бизнесе, могут относиться к самым различным разделам математики: к регрессионному анализу, анализу временных рядов, формированию и оцениванию экспертных мнений, имитационному моделированию, системам одновременных уравнений, дискриминантному анализу, логит- и пробит-моделям, аппарату логических решающих функций, дисперсионному или ковариационному анализу, анализу ранговых корреляций и таблиц сопряженности и т. д. Однако все они объединены тем, что представляют собой различные подходы к решению центральной проблемы многомерного статистического анализа и эконометрики – проблемы статистического исследования зависимостей , которая, как раз, и является базовой проблемой статистического анализа и прогнозирования в бизнесе (ее общая формулировка была приведена в п. 2).

В п. 1 уже было замечено, что среди p + k + l + m компонент анализируемого многомерного признака могут быть как количественные, так и ординальные и номинальные переменные. Упомянутые выше подходы к решению центральной проблемы многомерного статистического анализа формировались именно с учетом природы исследуемых переменных. Соответствующая специализация этих подходов отражена в табл. 4. В ней же даны ссылки на литературные источники, в которых можно найти достаточно полное описание этих подходов.

Таблица 4.

Природа результирующих показателей

Природа объясняющих переменных

Название обслуживающих разделов многомерного статистического анализа

Литературные источники

Количественная

Количественная

Регрессионный анализ и системы одновременных уравнений

Количественная

Единственная количественная переменная, интерпретируемая как «время»

Анализ временных рядов

Количественная

Неколичественная (ординальные или номинальные переменные)

Дисперсионный анализ

Количественная

Ковариационный анализ, модели типологической регрессии

Неколичественная (ординальные переменные)

Неколичественная (ординальные и номинальные переменные)

Анализ ранговых корреляций и таблиц сопряженности

Неколичественная (номинальные переменные)

Количественная

Дискриминантный анализ, логит- и пробит-модели, кластер-анализ, таксономия, расщепление смесей распределений

Смешанная (количественные и неколичественные переменные)

Смешанная (количественные и неколичественные переменные)

Аппарат логических решающих функций, Data Mining

Тем не менее, практика статистического анализа и прогнозирования в бизнесе свидетельствует о том, что во всем спектре их математического инструментария бесспорное лидерство (по распространенности и актуальности) принадлежит трем разделам:
- регрессионному анализу;
-
анализу временных рядов;
-
механизму формирования и статистического анализа экспертных оценок.

Кратко остановимся на каждом из этих разделов.

Регрессионный анализ

Как и прежде, будем описывать функционирование исследуемого реального объекта (фирмы, компании, процесса производства или дистрибуции продукции и т. п.) набором переменных и (их содержательный смысл описан в п. 2). Введем ряд определений и понятий, используемых в регрессионном анализе.

Результирующие (зависимые, эндогенные) переменные. Переменная , характеризующая результат или эффективность функционирования анализируемой системы, называется результирующей (зависимой, эндогенной). Ее значения формируются в процессе и внутри функционирования этой системы под воздействием ряда других переменных и факторов, часть из которых поддается регистрации и, в определенной степени, управлению и планированию (эту часть принято называть объясняющими переменными, см. ниже). В регрессионном анализе результирующая переменная выступает в роли функции, значения которой определяются (правда, с некоторой случайной погрешностью) значениями упомянутых выше объясняющих переменных, выступающих в роли аргументов. Поэтому по природе своей результирующая переменная всегда стохастична (случайна). В общем случае обычно анализируется поведение сразу нескольких результирующих переменных .

Объясняющие (предикторные, экзогенные) переменные . Переменные (или признаки), поддающиеся регистрации, описывающие условия функционирования изучаемой реальной экономической системы и в существенной мере определяющие процесс формирования значений результирующих переменных, называются объясняющими. Как правило, часть из них поддается хотя бы частичному регулированию и управлению. Значения ряда объясняющих переменных могут задаваться как бы «извне» анализируемой системы. В этом случае их принято называть экзогенными. В регрессионном анализе они играют роль аргументов той функции, в качестве которой рассматривается анализируемый результирующий показатель . По своей природе объясняющие переменные могут быть как случайными, так и неслучайными.

Регрессионные остатки – это латентные (т. е. скрытые, не поддающиеся непосредственному измерению) случайные компоненты, отражающие влияние соответственно на не учтенных в составе факторов, а также случайные ошибки в измерении анализируемых результирующих переменных. Они, вообще говоря, тоже могут зависеть от , т. е. в общем случае .

Общая схема взаимодействия переменных в регрессионном анализе изображена на рисунке.




Рисунок . Общая схема взаимодействия переменных в регрессионном анализе.

Функция регрессии по . Функция называется функцией регрессии по (или просто – регрессией по ), если она описывает изменение условного среднего значения результирующей переменной (при условии, что значения объясняющих переменных зафиксированы на уровнях ) в зависимости от изменения значений объясняющих переменных. Соответственно математически это определение может быть записано в виде

где символ означает операцию теоретического усреднения значений (т. е. – это математическое ожидание случайной величины , а , или просто – это условное математическое ожидание случайной величины , вычисленное при условии, что значения объясняющих переменных зафиксированы на уровне ).

Если мы анализируем одновременно результирующих переменных , то следует рассмотреть соответственно функций регрессий или, что то же, одну векторнозначную функцию

. (11)

Тогда модель регрессии по может быть записана в виде

, (12)

причем, из определения следует, что всегда]

(12’)

(тождественный знак равенства в (12’) означает, что оно справедливо при любых значениях ; вектор-столбец из нулей в правой части имеет размерность ).

задача регрессионного анализа в самом общем виде может быть сформулирована следующим образом:

по результатам измерений

исследуемых переменных на объектах (системах, процессах) анализируемой совокупности построить такую (векторнозначную) функцию (11), которая позволила бы наилучшим (в определенном смысле) образом восстанавливать значения результирующих (прогнозируемых) переменных по заданным значениям объясняющих (экзогенных) переменных .

З а м е ч а н и е 1. Наиболее распространенными являются линейные модели регрессии, т. е. модели, в которых функции регрессии имеют линейный вид:

З а м е ч а н и е 2. Существует по меньшей мере два варианта интерпретации введенных в п. 2 «поведенческих», «статусных» и «внешних» переменных, соответственно, и в рамках описанной модели регрессии (12)–(12’). В первом варианте все три типа переменных и относят к объясняющим переменным и строят регрессию по . В другом варианте переменные и интерпретируют как условия проведения наблюдений и тогда отдельно для каждого фиксированного сочетания этих условий строят регрессионную модель вида (12) (в рамках линейной модели (12 ’’) это будет означать, что сами коэффициенты регрессии зависят от и , т. е. определяются как функции от и ).

Анализ временных рядов

Всякий статистический анализ и прогноз основывается на исходных статистических данных. Их основные типы были представлены в п. 1. При этом, если процесс регистрации данных происходит во времени , и само время фиксируется наряду со значениями анализируемых характеристик , то говорят о статистическом анализе так называемых панельных данных . Если зафиксировать номер переменной и номер статистически обследуемого объекта , то расположенную в хронологическом порядке последовательность значений

называют одномерным временным рядом . Если же одновременно рассматривать одномерных временных рядов вида (13), т. е. исследовать закономерности во взаимосвязанном поведении временных рядов (13) для , характеризующих динамику переменных, измеренных на каком-то одном ( -м) объекте , то тогда говорят о статистическом анализе многомерного временного ряда . По существу, все задачи, связанные с анализом экономической динамики и прогнозом, предусматривают использование в качестве своей статистической базы временных рядов тех или иных показателей.

Как правило, в задачах бизнес-прогнозирования рассматриваются лишь дискретные (по времени наблюдения ) одномерные временные ряды для равноотстоящих моментов наблюдения , т. е. где – заданный временной такт (минута, час, сутки, неделя, месяц, квартал, год и т. п.). В этих случаях исследуемый временной ряд нам будет удобнее представлять в виде

где – значение анализируемого показателя, зарегистрированное в -м такте времени .

Говоря об использовании аппарата анализа временных рядов в проблеме прогнозирования, мы имеем в виду кратко - и среднесрочный прогноз , поскольку построение долгосрочного прогноза подразумевает обязательное использование методов организации и статистического анализа специальных экспертных оценок .

Генезис наблюдений, образующих временной ряд . Речь идет о структуре и классификации основных факторов, под воздействием которых формируются значения элементов временного ряда. Целесообразно выделить следующие 4 типа таких факторов.

(А) Долговременные , формирующие общую (в длительной перспективе) тенденцию в изменении анализируемого признака . Обычно эта тенденция описывается с помощью той или иной неслучайной функции f тр (t), как правило, монотонной. Эту функцию называют функцией тренда или просто трендом .

(Б) Сезонные , формирующие периодически повторяющиеся в определенное время года колебания анализируемого признака. Условимся обозначать результат действия сезонных факторов с помощью неслучайной функции . Поскольку эта функция должна быть периодической (с периодами, кратными сезонам, т. е. кварталам), в ее аналитическом выражении участвуют гармоники (тригонометрические функции), периодичность которых, как правило, обусловлена содержательной сущностью задачи.

(В) Циклические (конъюнктурные ), формирующие изменения анализируемого признака, обусловленные действием долговременных циклов экономической, демографической или астрофизической природы (волны Кондратьева, демографические «ямы», циклы солнечной активности и т. п.). Результат действия циклических факторов будем обозначать с помощью неслучайной функции .

(Г) Случайные (нерегулярные), не поддающиеся учету и регистрации. Их воздействие на формирование значений временного ряда как раз и обусловливает стохастическую природу элементов , а следовательно, и необходимость интерпретации как наблюдений, произведенных над случайными величинами соответственно . Будем обозначать результат воздействия случайных факторов с помощью случайных величин («остатков», «ошибок») . Конечно, вовсе не обязательно, чтобы в процессе формирования значений всякого временного ряда участвовали одновременно факторы всех четырех типов. В одних случаях значения временного ряда могут формироваться под воздействием факторов (А), (Б) и (Г), в других – под воздействием факторов (А), (В) и (Г) и, наконец, – исключительно под воздействием одних только случайных факторов (Г). Однако во всех случаях предполагается непременное участие случайных (эволюционных ) факторов (Г). Кроме того, как правило, принимается (в качестве гипотезы) аддитивная структурная схема влияния факторов (А), (Б), (В) и (Г) на формирование значений , которая означает правомерность представления значений членов временного ряда в виде разложения:

Выводы о том, участвуют или нет факторы данного типа в формировании значений , могут базироваться как на анализе содержательной сущности задачи (т. е. быть априорно-экспертными по своей природе ), так и на специальном статистическом анализе исследуемого временного ряда .

В рамках введенных понятий и обозначений задача статистического анализа временного ряда в общем виде может быть сформулирована следующим образом:

по результатам измерений исследуемой переменной за тактов времени базового периода построить наилучшие (в определенном смысле) оценки для членов разложения (14).

Решение этой задачи используется для построения прогнозного значения на тактов времени вперед с помощью формулы (14) при и при подстановке в нее полученных оценок компонентов правой части разложения.

Механизмы формирования и статистический анализ экспертных оценок

Обычно выделяются следующие основные типы организации работы группы экспертов ():

· коллегиальный : «метод комиссий» (в виде открытой дискуссии по обсуждаемой проблеме); «метод суда» (в виде противостояния «защиты» и «обвинения» по каждому из вариантов обсуждаемого решения проблемы); «мозговая атака» и т.п.;

· частично коллегиальный: сценарный анализ типа «что – если», метод «Делфи» – многотуровое обсуждение проблемы с тайным голосованием экспертов или заполнением специальных анонимных анкет в конце каждого тура и работой независимой аналитической группы в промежутках между турами и т.п.;

· индивидуально-автономный: каждый из участников экспертной группы формирует и высказывает свое мнение (независимо от позиций других участников) в виде ранжирования обсуждаемых вариантов решения (или объектов), их парных сравнений или отнесения каждого из них к одной из заранее описанных градаций (см. формы представления исходных статистических данных в виде таблиц частот или таблиц сопряженности в между мнениями -го и -го экспертов измеряют величиной , где – коэффициент ранговой корреляции Спирмена (см. , гл. 11]). Определив тот или иной способ вычисления «расстояния» между мнениями пары экспертов, мы можем решать затем задачу «кластеризации» экспертов, интерпретируя каждый из найденных таким образом кластер как группу экспертов-единомышленников.

(ii) Анализ взаимной согласованности мнений группы экспертов. Располагая мнениями целой группы экспертов, аналитик-статистик стремится оценить степень согласованности всех этих экспертных оценок, в том числе и статистически проверить гипотезу о полном отсутствии какой-либо их согласованности (и тогда, очевидно, следует либо уточнить постановку предложенной экспертам задачи, либо поменять состав экспертной группы). Эта задача также решается средствами многомерного статистического анализа. Выбор конкретного метода зависит от формы исходных статистических данных. Например, если мнения экспертов представлены ранжировками, то в качестве меры их согласованности можно рассматривать коэффициент объектов), т.е. при исходных статистических данных вида определяется как решение оптимизационной задачи видаj -го эксперта отстоит от единого группового мнения, тем ниже оценивается уровень его относительной компетентности. Заметим, что если в результате исследования структуры совокупности экспертных мнений аналитик-статистик приходит к выводу о наличии нескольких подгрупп экспертов с однородностью мнений внутри каждой подгруппы и с существенным различием мнений в любой паре таких подгрупп, то задача единого группового мнения и оценка относительной компетентности эксперта решается отдельно для каждой из выявленных подгрупп.


Случайные факторы, в свою очередь, могут быть двоякой природы: внезапными («разладочными»), приводящими к скачкообразным структурным изменениям в механизме формирования значений x(t) (что выражается, например, в радикальных скачкообразных изменениях основных структурных характеристик функций f тр (t), j (t) и y (t) анализируемого временного ряда в случайный момент времени), и эволюционными остаточными , обусловливающими относительно небольшие случайные отклонения значений x(t) от тех, которые должны были бы получиться только под воздействием факторов (А), (Б) и (В). Однако в данном разделе будут рассмотрены схемы формирования временных рядов, включающие в себя действие только эволюционных остаточных случайных факторов.

Предыдущая