Свечение черенкова. Убийственная способность синего света

Изучая свечение раствора солей урана под действием -лучей радия, советский физик П. А. Черенков обратил внимание на то, что светится и сама вода, в которой солей урана нет. Оказалось, что при пропускании -лучей (см. Гамма-излучение) через чистые жидкости все они начинают светиться. С. И. Вавилов, под руководством которого работал П. А. Черенков, высказал гипотезу, что свечение связано с движением электронов, выбиваемых -квантами радия из атомов. Действительно, свечение сильно зависело от направления магнитного поля в жидкости (это наводило на мысль, что его причина - движение электронов).

Но почему движущиеся в жидкости электроны испускают свет? Правильный ответ на этот вопрос в 1937 г. дали советские физики И. Е. Тамм и И. М. Франк.

Электрон, двигаясь в веществе, взаимодействует с окружающими его атомами. Под действием его электрического поля атомные электроны и ядра смещаются в противоположные стороны - среда поляризуется. Поляризуясь и возвращаясь затем в исходное состояние, атомы среды, расположенные вдоль траектории электрона, испускают электромагнитные световые волны. Если скорость электрона v меньше скорости распространения света в среде ( - показатель преломления), то электромагнитное поле будет обгонять электрон, а вещество успеет поляризоваться в пространстве впереди электрона. Поляризация среды перед электроном и за ним противоположна по направлению, и излучения противоположно поляризованных атомов, «складываясь», «гасят» друг друга. Когда , атомы, до которых еще не долетел электрон, не успевают поляризоваться, и возникает излучение, направленное вдоль узкого конического слоя с вершиной, совпадающей с движущимся электроном, и углом при вершине с . Возникновение светового «конуса» и условие излучения можно получить из общих принципов распространения волн.

Рис. 1. Механизм образования волнового фронта

Пусть электрон движется по оси ОЕ (см. рис. 1) очень узкого пустого канала в однородном прозрачном веществе с показателем преломления (пустой канал нужен, чтобы в теоретическом рассмотрении не учитывать столкновений электрона с атомами). Любая точка на линии ОЕ, последовательно занимаемая электроном, будет центром испускания света. Волны, исходящие из последовательных точек О, D, Е, интерферируют друг с другом и усиливаются, если разность фаз между ними равна нулю (см. Интерференция). Это условие выполняется для направления, составляющего угол 0 с траекторией движения электрона. Угол 0 определяется соотношением: .

Действительно, рассмотрим две волны, испущенные в направлении под углом 0 к скорости электрона из двух точек траектории - точки О и точки D, разделенных расстоянием . В точку В, лежащую на прямой BE, перпендикулярной ОВ, первая волна при - через время В точку F, лежащую на прямой BE, волна, испущенная из точки , придет в момент времени после испускания волны из точки О. Эти две волны будут в фазе, т. е. прямая будет волновым фронтом, если эти времена равны: . Та как условие равенства времен дает . Во всех направлениях, для которых , свет будет гаситься из-за интерференции волн, испущенных из участков траектории, разделенных расстоянием Д. Величина Д определяется очевидным уравнением , где Т - период световых колебаний. Это уравнение всегда имеет решение, если .

Если , то направления, в котором излученные волны, интерферируя, усиливаются, не существует, не может быть больше 1.

Рис. 2. Распределение звуковых волн и формирование ударной волны при движении тела

Излучение наблюдается только, если .

На опыте электроны летят в конечном телесном угле, с некоторым разбросом по скоростям, и в результате излучение распространяется в коническом слое около основного направления, определяемого углом .

В нашем рассмотрении мы пренебрегли замедлением электрона. Это вполне допустимо, так как потери на излучение Вавилова - Черенкова малы и в первом приближении можно считать, что теряемая электроном энергия не сказывается на его скорости и он движется равномерно. В этом принципиальное отличие и необычность излучения Вавилова - Черенкова. Обычно заряды излучают, испытывая значительные ускорения.

Электрон, обгоняющий свой свет, сходен с самолетом, летящим со скоростью, большей скорости звука. В этом случае перед самолетом тоже распространяется коническая ударная звуковая волна, (см. рис. 2).

Потери энергии на излучение у быстрых заряженных частиц почти в тысячу раз меньше потерь на ионизацию. Казалось бы, что столь незначительную энергию трудно использовать в практических приложениях. Однако по излучению Вавилова - Черенкова с помощью специальных детекторов удается измерить скорость, энергию, заряд быстрых частиц.

В 1958 г. за открытие и толкование этого эффекта советским физикам П. А. Черенкову, И. М. Франку и И. Е. Тамму была присуждена Нобелевская премия по физике.

Рентгеновское Гамма-излучение Ионизирующее Реликтовое Магнито-дрейфовое Двухфотонное Спонтанное Вынужденное

Эффект Вавилова - Черенко́ва (излучение Вавилова - Черенкова) - свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде. Черенковское излучение широко используется в физике высоких энергий для регистрации релятивистских частиц и определения их скоростей.

История открытия

В 1958 году Черенков, Тамм и Франк были награждены Нобелевской премией по физике «за открытие и истолкование эффекта Черенкова». Манне Сигбан из Шведской королевской академии наук в своей речи отметил, что «открытие явления, ныне известного как эффект Черенкова, представляет собой интересный пример того, как относительно простое физическое наблюдение при правильном подходе может привести к важным открытиям и проложить новые пути для дальнейших исследований».

Механизм и геометрия излучения

Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.

В 1934 году Павел Черенков проводил исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение (которое теперь названо его именем), вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Чуть позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде. Это был как бы оптический эквивалент ударной волны, которую вызывает в атмосфере сверхзвуковой самолет, преодолевая звуковой барьер. Представить это явление можно по аналогии с волнами Гюйгенса, расходящимися вовне концентрическими кругами со скоростью света, причем каждая новая волна испускается из следующей точки на пути движения частицы. Если частица летит быстрее скорости распространения света в среде, она обгоняет волны. Пики амплитуды этих волн и образуют волновой фронт излучения Черенкова.

Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, можно рассчитать по нему скорость частицы.

Применение

Излучение Вавилова-Черенкова нашло разнообразные применения в экспериментальной ядерной физике и физике элементарных частиц. На нем основано действие так называемых черенковских счетчиков, то есть детекторов релятивистских заряженных частиц, излучение которых регистрируется с помощью фотоумножителей. Основное назначение черенковских счетчиков - разделение релятивистских частиц с одинаковыми импульсами, но различными скоростями. Пусть, например, пучок, состоящий из релятивистских протонов и -мезонов, проходит через однородное поперечное магнитное поле. Направления траекторий прошедших частиц будут определяться только их импульсами, но не будут зависеть от их скоростей. С помощью диафрагм можно выделить протоны и -мезоны с одинаковыми импульсами. Из-за различия масс скорости -мезонов окажутся несколько больше скоростей протонов. Если полученный пучок направить в газ и подобрать показатель преломления n газа так, чтобы было, то -мезоны будут давать излучение Вавилова-Черенкова, а протоны - нет. Таким образом, счетчик будет регистрировать только -мезоны, но не будет регистрировать протоны.

Несмотря на чрезвычайную слабость свечения, приемники света достаточно чувствительны, чтобы зарегистрировать излучение, порожденное единственной заряженной частицей. Созданы приборы, которые позволяют по излучению Вавилова-Черенкова определить заряд, скорость и направление движения частицы, ее полную энергию. Практически важно применение этого излучения для контроля работы ядерных реакторов.

Примечания

См. также

  • Конус Маха

Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Вавилова - Черенкова" в других словарях:

    Электромагнитное излучение Синхротронное Циклотронное Тормозное Тепловое Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерц … Википедия

    эффект Вавилова-Черенкова - Vavilovo Čerenkovo reiškinys statusas T sritis radioelektronika atitikmenys: angl. Vavilov Tcherenkov effect vok. Vavilov Tcherenkov Effekt, m rus. эффект Вавилова Черенкова, m pranc. effet Vavilov et Tcherenkov, m … Radioelektronikos terminų žodynas

    - (Черенкова Вавилова эффект), излучение света электрически заряженной ч цей, возникающее при её движении в среде с пост. скоростью v, превышающей фазовую скорость света в этой среде (скорость распространения световых волн). Обнаружено в 1934 при… … Физическая энциклопедия

    - (эффект Вавилова Черенкова), возникает при движении в веществе заряженных частиц со скоростью, превышающей фазовую скорость света (см. ФАЗОВАЯ СКОРОСТЬ) в этом веществе. Обнаружено в 1934 г. П. А. Черенковым (см. ЧЕРЕНКОВ Павел Алексеевич) при… … Энциклопедический словарь

    - (Черенкова Вавилова эффект, иногда наз. Вавилова Черенкова излучение) излучение света электрически заряженной частицей, возникающее при её движении в среде с пост. скоростью?, превышающей фазовую скорость света в этой среде (скорость… … Физическая энциклопедия

    ЭФФЕКТ - (1) физ. явление или результат, следствие каких либо причин, действий, влияние и др.; (2) Э. внутренний фотоэлектрический см. , (3) Э. динатронный испускание электронов в электронных приборах с поверхности металлического электрода при… … Большая политехническая энциклопедия

    Электромагнитное излучение Синхротронное Циклотронное Тормозное Равновесное Монохроматическое Черенковское Переходное Радиоизлучение Микроволновое Терагерцевое Инфракрасное Видимое Ультраф … Википедия

) в 1880-х, но этот эффект был обнаружен случайно, возможно, Марией и Пьером Кюри. Его тщательно изучал Павел Черенков в 1930-е годы, а через несколько лет эффект подробно объяснили Илья Михайлович Франк и Игорь Евгеньевич Тамм . Три этих физика получили за изучение этого явления нобелевскую премию в 1958 году.

Прим. перев.: в англоязычных источниках почти всегда при описании излучения Черенкова авторы спешат упомянуть чету Кюри и то, что они ещё в начале XX века вроде бы наблюдали некое голубое свечение в своих опытах с радием. При этом обычно источника этой информации они не указывают; в редких случаях пишут, что информация получена на основании прочтения художественной книги, биографией четы Кюри, написанной их дочерью, Евой.

А в самой биографии о голубом свечении сказано только вот что:

«И среди темного сарая стеклянные сосудики с драгоценными частицами радия, разложенные, за отсутствием шкафов, просто на столах, на прибитых к стенам дощатых полках, сияют голубоватыми фосфоресцирующими силуэтами, как бы висящими во мраке.» // «Пьер и Мария Кюри», пер. с французского С. А. Шукарев, Евгений Федорович Корш, изд. 1959 г.

Что это было за наблюдение? Черенков изучал голубой свет, появлявшийся в тот момент, когда радиоактивные объекты (содержащие атомы, чьё ядро распадается на другие ядра, выплёвывая частицы высокой энергии, среди которых встречаются электроны и позитроны) размещались рядом с водой и другими прозрачными материалами. Сейчас мы знаем, что любая электрически заряженная частица, такая, как электрон, движущаяся с достаточно высокой энергией через воду, воздух или другую прозрачную среду, будет испускать голубой свет. Свет этот движется от частицы под определённым углом к направлению её движения.

Что происходит? Как поняли Франк и Тамм, это фотонный удар, аналогичный звуковому удару, происходящему, когда сверхзвуковой летательный аппарат движется быстрее скорости звука, или волнению, которое создаёт судно, идущее по воде. Свет в прозрачной среде будет двигаться со скоростью, отличающейся от скорости света в вакууме из-за взаимодействия между светом и заряженными частицами (электронами и ядрами атомов), составляющими эту среду. К примеру, в воде свет перемещается примерно на 25% медленнее, чем в вакууме! Поэтому электрону высокой энергии легче перемещаться быстрее, чем свет перемещается в воде, и при этом не превышать скорости света в вакууме. Если такая частица идёт через воду, она создаёт электромагнитную взрывную волну, похожую на взрывную волну, создаваемую сверхзвуковым самолётом в плотном воздухе. Эта волна исходит от частицы, так же, как звуковая волна исходит от самолёта, и переносит в себе энергию во многих формах (длинах волн) электромагнитного излучения, включая и видимый свет. На фиолетовом конце радуги энергии создаётся больше, чем на красном, поэтому свет для наших глаз и мозга выглядит в основном голубым.

Такое излучение чрезвычайно полезно в физике частиц, ибо оно даёт прекрасный способ обнаружения частиц высокой энергии! Мы не только можем видеть присутствие заряженных частиц высокой энергии благодаря испускаемому ими свету, мы можем постичь гораздо больше, изучая подробности этого света. Точная схема излучения может помочь определить (а) по какому пути частица следует в среде, (б) сколько энергии она переносит, и даже (в) кое-что по поводу её массы (поскольку электроны будут рассеиваться в среде, а более тяжёлые частицы будут вести себя по-другому). Несколько очень важных экспериментов, включая и те, что впоследствии получили нобелевку, основываются на этом излучении. Среди них эксперименты, сыгравшие главную роль в изучении нейтрино, например, Супер-Камиоканде .

Излучение Черенкова также очень полезно при проверках правильности описания природы эйнштейновской теорией относительности. Космические лучи – частицы, летящие из глубокого космоса (часто сталкивающиеся с чем-нибудь в атмосфере и порождающие каскады частиц, которые можно обнаружить детекторами на земле), в редких случаях могут обладать чрезвычайно высокой энергией – в 100 миллионов раз большей, чем энергия протонов в Большом Адронном Коллайдере. Эти частицы (насколько мы знаем) были созданы на расстоянии многих световых лет от Земли в таких мощных астрономических событиях, как сверхновые. Предположим, что скорость света была бы не универсальным ограничением скорости, и эти частицы перемещались бы быстрее света в вакууме космоса. Тогда эти высокоэнергетические частицы также вызывали бы излучение Черенкова. А поскольку их путь был таким долгим, они потеряли бы много энергии на это излучение. Оказывается, что эта потеря энергии может происходить очень быстро, и что эти частицы в таком случае не могли бы преодолеть астрономические расстояния и сохранить такие высокие уровни энергии, если только их скорость не оставалась меньше, чем скорость света.

Короче говоря, если бы космические лучи сверхвысоких энергий могли двигаться быстрее света, тогда мы не могли бы наблюдать никаких космических лучей с такой энергией, ибо они должны были бы растерять всю свою энергию до того, как достигнут Земли. Но мы их наблюдаем.

Тут есть небольшой подвох: мы почти уверены, что большая часть их обладает зарядом: их свойства говорят о том, что они участвуют в сильном ядерном взаимодействии, а единственные стабильные частицы, способны пройти такие расстояния – это протоны, и вообще, ядра атомов, и все они обладают электрическим зарядом. Если даже воспользоваться этим подвохом, но ограничения можно немного ослабить, но они всё равно останутся довольно сильными.

Из этого можно заключить: космические лучи сверхвысоких энергий (а также вообще все космические лучи низких энергий) не могут двигаться быстрее скорости света, по крайней мере, сильно быстрее. И если это опережение существует, то его оценки, сделанные в конце 1990-х знаменитыми физиками Сидни Коулманом и Шелдоном Глэшоу , говорят, что эта величина может быть равной десяти частям из триллиона триллионов. С тех пор эти ограничения, вероятно, были улучшены благодаря данным экспериментов.

Точно так же, то, что мы можем наблюдать высокоэнергетические электроны, накладывает ограничение на их скорость по отношению к скорости света. Одно из последних заявлений, о которых я читал, говорит, что из наблюдений за электронами с энергиями до 0,5 ТэВ следует, что электроны не могут превышать скорость света больше, чем на одну часть из тысячи триллионов.

В 1934 году П.А.Черенков, работавший тогда под руководством С.Н. Вавилова, изучая действие электромагнитного излучения на вещество, обнаружил особый вид свечения жидкости под действием γ-лучей радия. Подобное излучение света было обнаружено и под действием других заряженных частиц, например электронов.

Характерные особенности этого излучения:

во-первых, свечение имело голубоватый цвет и наблюдалось у всех чистых прозрачных жидкостей, причем яркость и цвет свечения мало зависели от химического состава жидкости;

во-вторых, в отличие от люминесценции , не наблюдалось ни температурного, ни примесного ослабления свечения;

в-третьих, излучение имеет поляризацию и направленность вдоль направления движения частицы.

Вавилов предположил, что обнаруженное явление не является люминесценцией, свет излучают быстрые электроны, движущиеся в жидкости . В 1937 году И.Е. Тамм и И.М. Франк объяснили механизм свечения и создали количественную теорию, основанную на уравнениях классической электродинамики. В 1940 году В.Л. Гинзбург создал квантовую теорию, которая привела к тем же результатам.

Излучение Вавилова–Черенкова – это излучение электрически заряженной частицы, движущейся в среде, со скоростью превышающей скорость света в этой среде :

Согласно электромагнитной теории, заряд, движущийся равномерно не излучает электромагнитной волны. Однако Тамм и Франк показали, что это справедливо лишь для скоростей частиц, не превышающих фазовую скорость волны в данной среде. В процессе излучения Вавилова–Черенкова энергия и скорость излучающей свободной частицы уменьшается, то есть частица тормозится.

Заряженная частица вызывает кратковременную поляризацию вещества в окрестности тех точек, через которые она проходит при своем движении. Поэтому молекулы среды, лежащие на пути частицы, становятся кратковременно действующими когерентными источниками элементарных электромагнитных волн, которые интерферируют друг с другом.

При движении заряженной частицы в изотропной среде со скоростью элементарные волны будут представлять собой сферы, распространяющиеся со скоростью (рис. 10.10).

Согласно принципу Гюйгенса–Френеля, в результате интерференции элементарные волны гасят друг друга всюду, за исключением их общей огибающей. А при движении частицы со скоростью общей огибающей волн нет: все окружности лежат одна в другой. Поэтому заряд, движущийся равномерно прямолинейно со скоростью , свет не излучает .

Если частица движется быстрее, чем распространяются волны в среде ( ), то соответствующие элементарным волнам сферы пересекаются и их общая огибающая (волновая поверхность) представляет собой конус с вершиной в точке, совпадающей с мгновенным положением движущейся частицы (рис.10.11). В данном случае, в результате интерференции элементарные волны усиливают друг друга . Нормали к образующим конуса определяют волновые векторы, т.е. направления распространения света. Угол , который составляет волновой вектор с направлением движения частицы, удовлетворяет соотношению: .

В этих направлениях вторичные волны будут усиливаться и формировать излучение Вавилова–Черенкова . Свет, возникающий на каждом малом участке траектории частицы, распространяется вдоль образующей конуса, ось которого совпадает с направлением движения свободного электрона , а угол при вершине равен 2 (рис. 10.12).

Эффект Вавилова - Черенкова (излучение Вавилова - Черенкова) - свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде.

В 1934 году Павел Черенков проводил в лаборатории Сергея Вавилова исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение, вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде.

При прохождении света через прозрачный материал, например стекло, свет распространяется медленнее, чем в вакууме. Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.

Уже первые эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили ряд характерных особенностей излучения: свечение наблюдается у всех чистых прозрачных жидкостей, причем яркость мало зависит от их химического состава, излучение имеет поляризацию с преимущественной ориентацией электрического вектора вдоль направления первичного пучка, при этом в отличие от люминесценции не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавиловым было сделано основополагающее утверждение, что обнаруженное явление - не люминесценция жидкости, а свет излучают движущиеся в ней быстрые электроны.

Излучение Черенкова можно наблюдать и невооруженным взглядом на небольших исследовательских ядерных реакторах, которые часто устанавливают на дне бассейна для обеспечения радиационной защиты. Сердечник реактора в этом случае окружен эффектным голубым свечением - это и есть излучение Черенкова под воздействием быстрых частиц, излучаемых в результате ядерной реакции.
Теоретическое объяснение явления было дано И. Таммом и И. Франком в 1937 году.

Интересно, что распространенное ранее представление о том, что на больших глубинах в океане царит полный мрак, так как свет с поверхности туда не доходит, является ошибочным. Как следствие распада радиоактивных изотопов в океанской воде, в частности, калия-40, даже на больших глубинах вода слабо светится из-за эффекта Вавилова - Черенкова. Существуют гипотезы, что большие глаза нужны глубоководным созданиям затем, чтобы видеть при столь слабом освещении.