Кто впервые определил скорость света? Опыты Рёмера и Брэдли.

Впервые скорость света определил в 1676 Оле Рёмер по изменению промежутков времени между затмениями спутника Юпитера Ио.

С явлением света мы впервые знакомимся ещё в 9 классе. В 11-м начинаем рассматривать интереснейший материал о том, что такое скорость света.
Оказывается, история открытия этого явления не менее интересна, чем само явление.


Нужды торговли, которая развивалась быстрыми темпами, и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы. Оле Ремер - молодой датский астроном - был приглашен работать в новую парижскую обсерваторию.

Ученые предложили использовать для определения парижского времени и времени на борту корабля небесное явление, наблюдаемое ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы узнать парижское время. Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году.

Спутник Ио проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками составил 42 часа 28 минут. Такие же измерения, проведенные полгода спустя, показали, что спутник опоздал, появившись из тени на 22 минуты позже по сравнению с моментом времени, который можно было рассчитать на основании знания периода обращения Ио. Скорость имеет неточный результат из-за неверного определения времени запаздывания.

В 1849 году французский физик Арман Ипполит Луи Физо поставил лабораторный опыт по измерению скорости света. Параметры установки Физо таковы. Источник света и зеркало располагались в доме отца Физо близ Парижа, а зеркало 2 — на Монмартре. Расстояние между зеркалами составляло 8,66 км, колесо имело 720 зубцов. Оно вращалось под действием часового механизма, приводимого в движение опускающимся грузом. Используя счетчик оборотов и хронометр, Физо обнаружил, что первое затемнение наблюдается при скорости вращения колеса 12,6 об/с.

Свет от источника проходил через зубья вращающегося колеса и, отразившись от зеркала, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Используя метод вращающегося затвора, Физо получил значение скорости света: 3,14.105 км/с.

Весной 1879 года газета "Нью-Йорк Таймс" сообщила: "На научном горизонте Америки появилась новая яркая звезда. Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт Майкельсон, которому еще нет и 27 лет, добился выдающегося успеха в области оптики: он измерил скорость света!" Примечателен тот факт, что на выпускных экзаменах в академии Альберту достался вопрос об измерении скорости света. Кто мог предположить, что через короткое время Майкельсон сам войдет в историю физики, как измеритель скорости света.

До Майкельсона только единицам (все они были французами) удалось измерить ее с помощью земных средств. А на американском континенте до него никто даже не пытался поставить этот трудный эксперимент.

Установка Майкельсона размещалась на двух горных вершинах, разделенных расстоянием 35,4 км. Зеркалом служила восьмигранная стальная призма на горе Сан Антонио в Калифорнии, сама установка находилась на горе Маунт-Вильсон. После отражения от призмы луч света попадал на систему зеркал, возвращающих его назад. Для того чтобы луч попадал в глаз наблюдателя, вращающаяся призма должна за время распространения света туда и обратно, успеть повернуться хотя бы на 1/8 оборота.

Майкельсон писал: "То, что скорость света - является категорией, недоступной человеческому воображению, и что с другой стороны ее возможно измерить с необыкновенной точностью, делает ее определение одной из самых увлекательных проблем, с которыми может столкнуться исследователь.
Наиболее точное измерение скорости света было получено в 1972 году американским ученым К. Ивенсоном с сотрудниками. В результате независимых измерений частоты и длины волны лазерного измерения ими было получено значение 299792456,2±0,2м/с.

Однако в 1983 г. на заседании Генеральной ассамблеи мер и весов было принято новое определение метра (это длина пути, проходимое светом в вакууме за 1/299792458 долю секунды), из которого следует что скорость света в вакууме абсолютно точно равна с=299 792 458 м/с.

1676 г. - Оле Ремер - астрономический метод
с= 2,22.108 м/с

1849г. - Луи Физо - лабораторный метод
с= 3,12.108 м/с

1879 г. Альберт Майкельсон - лабораторный метод
C= 3,001.108м/с

1983 г. Заседание Генеральной ассамблеи мер и весов
с=299792458 м/с

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.


Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца. Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты. В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. К началу 70-х погрешность в измерениях снизилась до 1 км/сек. В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.

Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость. Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность .

Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.


В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран. Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.


Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами. Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.


Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света. К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

1) Впервые скорость света измерил датский ученый Ремер в 1676г используя астрономический метод. Он засекал время которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты.

Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного по астрономическим понятиям дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Так была доказана теория о конечной скорости света, и была примерно подсчитана его скорость она примерно составляла 299800 км/с.

2) Лабораторный метод позволяет определить скорость света на небольшом расстоянии и большой точностью. Первые лабораторные опыты провёл Фуко, а затем и Физо.

Ученые и их эксперименты

Впервые скорость света определил в 1676 году О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 году её установил Дж. Брадлей, исходя из своих наблюдений аберрации света звезд. В 1849 году А. И. Л. Физо первым измерил скорость света по времени прохождения светом точно известного расстояния (базы), так как показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину весьма близкую к скорости.

Опыт Физо

Опыт Физо - опыт по определению скорости света в движущихся средах (телах), осуществлённый в 1851 Луи Физо. Опыт демонстрирует эффект релятивистского сложения скоростей. С именем Физо связан также первый эксперимент по лабораторному определению скорости света.

В опыте Физо пучок света от источника света S, отраженный полупрозрачным зеркалом 3, периодически прерывался вращающимся зубчатым диском 2, проходил базу 4-1 (около 8 км) и, отразившись от зеркала 1, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр 4. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение c = 313300 км/с.

Опыт Фуко

В 1862 году Ж. Б. Л. Фуко реализовал высказанную в 1838 году идею Д. Арго, применив вместо зубчатого диска быстровращающееся зеркало (512 оборотов в секунду). Отражаясь от зеркала пучок света направлялся на базу и по возвращении вновь попадал на то же зеркало, успевшее повернуться на некоторый малый угол. При базе всего 20 м Фуко нашёл, что скорость света равна 298000 500 км/с. Схемы и основные идеи методов Физо и Фуко были многократно использованы в последующих работах по определению скорости света.

Определение скорости света методом вращающегося зеркала (Метод Фуко): S– источник света; R – быстровращающееся зеркало; C – неподвижное вогнутое зеркало, центр которого совпадает с осью вращения R (поэтому свет, отраженный C, всегда попадает обратно на R); M – полупрозрачное зеркало; L– объектив; E – окуляр; RC – точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через объектив L, который собирает отраженный пучок в точке S’, а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливается, измеряя смещение SS’.

Полученное А. Майкельсоном в1926 году значение c = 299796 4 км/с было тогда самым точным и вошло в интернациональные таблицы физических величин. свет скорость оптический волокно

Измерение скорости света в 19 веке сыграли большую роль в физике, дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 году сравнение скорости света одной и той же частоты в воздухе и воде показало, что скорость в воде u = c/n(n) в соответствии с предсказанием волновой теории. Была так же установлена связь оптики с теорией электромагнетизма: измеренная скорость света совпала со скоростью электромагнитных волн, вычисленной из отношения электромагнитных и электростатических единиц электрического заряда.

В современных измерениях скорости света используется модернизированный метод Физо с заменой зубчатого колеса на интерференционный или какой-либо другой модулятор света, полностью прерывающий или ослабляющий световой пучок. Приемником излучения служит фотоэлемент или фотоэлектрический умножитель. Применение лазера в качестве источника света, УЗ – модулятора со стабилизированной частотой и повышение точности измерения длины базы позволит снизить погрешности измерений и получить значение с = 299792,5 0,15 км/с. Помимо прямых измерения скорости света по времени прохождения известной базы, широко применяются косвенный методы, дающие большую точность.

Как можно более точное измерение величины «с» чрезвычайно важно не только в общетеоретическом плане и для определения значений других физических величин, но и для практических целей. К ним, в частности. Относится определение расстояний во времени прохождения радио или световых сигналов в радиолокации, оптической локации, светодальнометрии и в других подобных измерениях.

Светодальномерия

Светодальномер - геодезический прибор, позволяющий с высокой точностью (до нескольких миллиметров) измерять расстояния в десятки (иногда в сотни) километров. Так, например, светодальномером измерено расстояние от Земли до Луны с точностью до нескольких сантиметров.

Лазерный дальномер - прибор для измерения расстояний с применением лазерного луча.


В экспериментах участвует Вселенная

Метод, с помощью которого Леверье , покорил воображение ученых. За движением Нептуна стали тщательно следить и вскоре обнаружили столь значительные различия между наблюдаемой и теоретической орбитами нового светила, что это могло быть объяснено только существованием еще одной планеты, расположенной за Нептуном!

18 февраля 1930 года молодой астроном Клайд Томбо из Ловелловской обсерватории в Америке наконец обнаружил (на расстоянии, почти в три раза превышающем радиус орбиты Нептуна) новую планету Солнечной системы, получившую название Плутон . Томбо тем самым подтвердил расчеты известных астрономов-теоретиков ПерсиваляЛовелла и Вильяма Пикеринга.

Поистине, как сказал знаменитый французский оптик и астроном Франсуа Араго, «…умственные глаза могут заменять сильные телескопы…».

Больших планет Солнечной системы стало девять: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером расположено большое число маленьких планет, получивших название астероидов. Однако астрономы продолжают искать новые планеты.

Теоретические прогнозы показали, что пока на перемещения небесных тел в Солнечной системе не влияет притяжение далеких звезд и других планетарных систем нашей галактики. Солнце должно «привлекать» к себе малые и большие планеты. Сила тяготения Солнца распространяется на расстояние в 200 тысяч раз большее, чем путь от Земли до Солнца!

Не может быть, чтобы в таком огромном пространстве не было плотных небесных тел, хотя пока поиски десятой планеты Солнечной системы с помощью самых мощных современных телескопов не увенчались успехом…

Как мы видим, небесная механика неизменно подтверждает законы земной механики, выведенные Ньютоном. Движение небесных тел, как выяснилось еще во времена Ньютона, позволяет не только проверить закон всемирного тяготения, но и дает в руки исследователей прекрасный способ определения скорости света .

Странно, что о таком способе не догадался Галилей, предлагавший для этой цели лишь опыт с фонарями. Два человека стоят на большом удалении друг от друга с фонарями в руках и отмечают время, за которое свет внезапно зажженного фонаря преодолеет расстояние между ними. Опыт, к сожалению, совершенно неосуществимый из-за слишком большой скорости света…

Как измерили скорость света?

В сентябре 1676 года молодой датчанин Олаф Рёмер , работавший в Парижской обсерватории, представил Французской Академии наук доклад, в котором описал, как, пользуясь вращением Земли вокруг Солнца, можно определить скорость света.

Рёмер при своих исследованиях наблюдал перемещение одного из спутников Юпитера. Время полного оборота спутника вокруг планеты было строго постоянным и хорошо известным астрономам. Рёмер заметил: если Земля при своем вращении вокруг Солнца находится в наиболее удаленной от Юпитера точке орбиты, то вхождение спутника в тень Юпитера астрономы наблюдают на 22 минуты позже, чем в тот момент, когда Земля находится к Юпитеру ближе всего. Рёмер догадался о причине странного явления - свету нужно 22 минуты, чтобы преодолеть расстояние от ближайшей до наиболее далекой от Юпитера точки орбиты Земли. Зная время, которое тратит на это свет, и вычислив диаметр орбиты Земли, мы легко можем определить скорость света!

Вероятно, это был один из первых в истории науки случаев, когда ученый пользовался Вселенной как гигантской естественной лабораторией…

Рёмер получил значения скорости света, которые раза в полтора меньше современных значений этой величины. Но за это вряд ли можно его упрекнуть: мы же знаем, какими приборами измерял время его великий современник Галилео Галилей.

Астрономический способ измерения скорости света широко использовался физиками в течение трех веков, прошедших после наблюдений и расчетов Рёмера. Сейчас общепринятым считается значение скорости света в вакууме, равное 299,79 тысячи километров в секунду.

В XIX веке научились определять скорость света на Земле. Высокого совершенства достиг в этих экспериментах американский физик Альберт Майкельсон. Его сложный массивный прибор со множеством зеркал, удлинявших путь света, был размещен на каменной плите площадью 1,5 м 2 и толщиной 30 см. Чтобы избежать малейших возможных сотрясений прибора, подставка для плиты была заполнена ртутью.

Майкельсон установил, что скорость света не зависит от направления луча, на распространение света не влияет вращение Земли. Исключительная тщательность опытов Майкельсона, достигнутая в начале XIX века высокая точность в определении истинного значения скорости света, быть может, натолкнула Альберта Эйнштейна на мысль считать скорость света в вакууме самой высокой скоростью, которая возможна в Природе. Эта мысль составляет один из важнейших постулатов созданной Эйнштейном теории относительности - наиболее общей современной теории движения, в которую законы Ньютона вошли как частный случай.