Построение треугольника стороне двум прилежащим. Тема урока: Построение треугольника по трём элементам

Представляем вашему вниманию видеоурок по теме «Построение треугольника по трем элементам». Вы сможете решить несколько примеров из класса задач на построение. Учитель подробно разберет задачу на построение треугольника по трем элементам, а также напомнит теорему о равенстве треугольников.

Данная тема имеет широкое практическое применение, поэтому рассмотрим некоторые типы решения задач. Напомним, что любые построения выполняются исключительно с помощью циркуля и линейки.

Пример 1:

Построить треугольник по двум сторонам и углу между ними.

Дано: Предположим, анализируемый треугольник выглядит так

Рис. 1.1. Анализируемый треугольник к примеру 1

Пусть заданные отрезки будут с и а, а заданный угол будет

Рис. 1.2. Заданные элементы к примеру 1

Построение:

Сначала следует отложить угол 1

Рис. 1.3. Отложенный угол 1 к примеру 1

Затем на сторонах данного угла откладываем циркулем две данные стороны: замеряем циркулем длину стороны а и помещаем остриё циркуля в вершину угла 1, а другой частью делаем насечку на стороне угла 1. Аналогичную процедуру проделываем со стороной с

Рис. 1.4. Отложенные стороны а и с к примеру 1

Затем соединяем полученные насечки, и мы получим искомый треугольник АВС

Рис. 1.5. Построенный треугольник АВС к примеру 1

Будет ли данный треугольник равный предполагаемому? Будет, ведь элементы полученного треугольника (две стороны и угол между ними) соответственно равны двум сторонам и углу между ними, данным в условии. Поэтому по первому свойству равенства треугольников - - искомый.

Построение выполнено.

Примечание:

Напомним, как отложить угол, равный данному.

Пример 2

Отложить от данного луча угол, равный данному. Заданы угол А и луч ОМ. Построить .

Построение:

Рис. 2.1. Условие к примеру 2

1. Построить окружность Окр(А, r = AB). Точки В и С - являются точками пересечения со сторонами угла А

Рис. 2.2. Решение к примеру 2

1. Построить окружность Окр(D, r = CB). Точки E и M - являются точками пересечения со сторонами угла А

Рис. 2.3. Решение к примеру 2

1. Угол МОЕ - искомый, так как .

Построение выполнено.

Пример 3

Построить треугольник АВС по известной стороне и двум прилежащим к ней углам.

Пусть анализируемый треугольник выглядит так:

Рис. 3.1. Условие к примеру 3

Тогда заданные отрезки выглядят таким образом

Рис. 3.2. Условие к примеру 3

Построение:

Отложим угол на плоскости

Рис. 3.3. Решение к примеру 3

Отложим на стороне данного угла длину стороны а

Рис. 3.4. Решение к примеру 3

Затем отложим от вершины С угол . Необщие стороны углов γ и α пересекаются в точке А

Рис. 3.5. Решение к примеру 3

Является построенный треугольник искомым? Является, так как сторона и два прилежащих к ней угла построенного треугольника соответственно равны стороне и углу между ними, данных в условии

Искомый по второму признаку равенства треугольников

Построение выполнено

Пример 4

Построить треугольник по 2 катетам

Пусть анализируемый треугольник выглядит так

Рис. 4.1. Условие к примеру 4

Известные элементы - катеты

Рис. 4.2. Условие к примеру 4

Данная задача отличается от предыдущих тем, что угол между сторонами можно определить по умолчанию - 90 0

Построение:

Отложим угол, равный 90 0 . Делать это будем точно так же, как показано в примере 2

Рис. 4.3. Решение к примеру 4

Затем на сторонах данного угла откладываем длины сторон а и b , данных в условии

Рис. 4.4. Решение к примеру 4

В результате полученный треугольник - искомый, ведь его две стороны и угол между ними соответственно равны двум сторонам и углу между ними, данными в условии

Заметим, что отложить угол 90 0 можно, построив две перпендикулярные прямые. Как выполнить эту задачу, рассмотрим в дополнительном примере

Дополнительный пример

Восстановить перпендикуляр к прямой р, проходящий через точку А,

Прямая р, и точка А, лежащая на данной прямой

Рис. 5.1. Условие к дополнительному примеру

Построение:

Сначала выполним построение окружности произвольного радиуса с центром в точке А

Рис. 5.2. Решение к дополнительному примеру

Данная окружность пересекает прямую р в точках К и Е. Затем построим две окружности Окр(К, R = КЕ), Окр(E, R = КЕ). Данные окружности пересекаются в точках С и В. Отрезок СВ - искомый,

Рис. 5.3. Ответ к дополнительному примеру

  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Репетитор по математике ().
  1. № 285, 288. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. под редакцией Тихонова А. Н. Геометрия 7-9 классы. М.: Просвещение. 2010 г.
  2. Постройте равнобедренный треугольник по боковой стороне и углу, противолежащему основанию.
  3. Постройте прямоугольный треугольник по гипотенузе и острому углу
  4. Постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины данного угла.

Строим треугольник по стороне и двум прилежащим к ней углам — инструкция по построению.

Треугольник – это геометрическая фигура, которая образуется при соединении отрезками трёх точек, не принадлежащих одной прямой. Он однозначно определяется набором из трёх данных: тремя сторонами, двумя сторонами и углом между ними, или стороной и двумя прилежащими углами.

В качестве примера попробуем построить треугольник по стороне и двум прилежащим к ней углам?

Строим треугольник

Первым делом на прямой откладывается отрезок, равный длине заданной стороны. Концы отрезка отмечаем точками А и В.

Чтобы построить треугольник, нужно от точек А и В отложить заданные углы. Если заданы величины углов, то для построения воспользуйтесь транспортиром:

  • Нижнюю планку транспортира выравниваем по отрезку прямой;
  • Начало отсчёта устанавливаем в точке А для первого угла и в точке В – для второго;
  • Затем откладываем величины углов. Рядом с соответствующим делением шкалы ставим точки и обозначаем их М и N;
  • Соединяем прямыми точки А и М, В и N. Пересечение построенных прямых будет третьей последней вершиной треугольника С.

Таким образом по данной стороне и двум заданным прилежащим углам построен треугольник.

Графический угол

Часто для построения треугольника по данной стороне и двум заданным прилежащим углам, углы задаются графически. Задача усложняется, так как нужно построить угол, равный по величине заданному графическому углу.

Можно измерить величину заданного графически угла с помощью транспортира и получить величины прилежащих углов, а затем воспользоваться методом, описанным в предыдущем пункте и построить треугольник.

Используем циркуль

Для другого способа построения угла, соответствующего по величине заданному, понадобится циркуль:

  • Циркулем, с произвольным раствором, проводится окружность с центром в начальной точке угла. Пересечения окружности и сторон угла обозначим М и N;
  • Теперь вернёмся к отрезку АВ, равному стороне нужного треугольника. Не меняя раствор, от точки А проведите окружность и отметьте точку пересечения ее с отрезком АВ – получаем точку М1;
  • Вернитесь к заданному углу. Поставьте ножку циркуля в точку М и сделайте раствор равным МN;
  • Теперь, не меняя раствор циркуля, от точки М1 проведите окружность до пересечения её с первой окружностью – получаем точку N1;
  • Соедините прямой точки А и N1. Угол М1АN1 и будет равен заданному;
  • Так же строим второй угол в точке В. Пересечение сторон построенных углов и будет недостающей вершиной С.

Таким способом строиться треугольник с помощью циркуля по стороне и двум данным прилежащим углам при помощи циркуля.

Треугольник — это геометрическая фигура, которая образуется при соединении отрезками трёх точек, не принадлежащих одной прямой. Он однозначно определяется набором из трёх данных: тремя сторонами, двумя сторонами и углом между ними, или стороной и двумя прилежащими углами.

В качестве примера попробуем построить треугольник по стороне и двум прилежащим к ней углам?

Быстрая навигация по статье

Строим треугольник

Первым делом на прямой откладывается отрезок, равный длине заданной стороны. Концы отрезка отмечаем точками А и В.

Чтобы построить треугольник, нужно от точек А и В отложить заданные углы. Если заданы величины углов, то для построения воспользуйтесь транспортиром:

  • Нижнюю планку транспортира выравниваем по отрезку прямой;
  • Начало отсчёта устанавливаем в точке А для первого угла и в точке В — для второго;
  • Затем откладываем величины углов. Рядом с соответствующим делением шкалы ставим точки и обозначаем их М и N;
  • Соединяем прямыми точки А и М, В и N. Пересечение построенных прямых будет третьей последней вершиной треугольника С.

Таким образом по данной стороне и двум заданным прилежащим углам построен треугольник.

Графический угол

Часто для построения треугольника по данной стороне и двум заданным прилежащим углам, углы задаются графически. Задача усложняется, так как нужно построить угол, равный по величине заданному графическому углу.

Можно измерить величину заданного графически угла с помощью транспортира и получить величины прилежащих углов, а затем воспользоваться методом, описанным в предыдущем пункте и построить треугольник.

Используем циркуль

Для другого способа построения угла, соответствующего по величине заданному, понадобится циркуль:

  • Циркулем, с произвольным раствором, проводится окружность с центром в начальной точке угла. Пересечения окружности и сторон угла обозначим М и N;
  • Теперь вернёмся к отрезку АВ, равному стороне нужного треугольника. Не меняя раствор, от точки А проведите окружность и отметьте точку пересечения ее с отрезком АВ — получаем точку М1;
  • Вернитесь к заданному углу. Поставьте ножку циркуля в точку М и сделайте раствор равным МN;
  • Теперь, не меняя раствор циркуля, от точки М1 проведите окружность до пересечения её с первой окружностью — получаем точку N1;
  • Соедините прямой точки А и N1. Угол М1АN1 и будет равен заданному;
  • Так же строим второй угол в точке В. Пересечение сторон построенных углов и будет недостающей вершиной С.

Таким способом строиться треугольник с помощью циркуля по стороне и двум данным прилежащим углам при помощи циркуля.

Три доказанные в п. 188 теоремы о равенстве треугольников показывают, что треугольник вполне определен, если даны три его стороны, две стороны и угол, заключенный между ними, сторона и два прилегающих к ней угла (или вообще два каких-нибудь угла).

Существование треугольника, определенного заданием тех или иных конкретных величин сторон или углов, обнаруживается при решении задачи на построение треугольника по данным элементам: однозначность решения задачи на построение еще раз доказывает признаки равенства из п. 188. Сообразно трем признакам равенства возникают и три основные задачи на построение треугольников.

Задача 1. Даны три отрезка а, b, с. Построить треугольник, имеющий эти отрезки своими сторонами.

Решение. Пусть с - наибольший из трех отрезков: для того чтобы задача могла иметь решение, необходимо, чтобы выполнялось условие Будем считать, что это условие выполнено. На произвольной прямой (рис. 226) отложим в произвольном месте отрезок . Концы его примем за две вершины искомого треугольника. Третья вершина должна лежать на расстоянии b от точки А (или от точки В) и на расстоянии а от В (или А). Для построения недостающей вершины проводим окружность радиуса b с центром А и окружность радиуса а с центром В.

Эти две окружности пересекутся, так как по условию расстояние между их центрами меньше суммы радиусов и больше их разности, поскольку с - наибольший отрезок среди данных. Получаются две точки пересечения С и С, т. е. два возможных положения вершины С; соответственные два треугольника, однако, равны, как симметрично расположенные относительно АВ. На рис. 226 также показано, как получить еще два положения третьей вершины, если поменять местами радиусы окружностей.

Задача 2. Построить треугольник по двум сторонам и углу, заключенному между ними.

Задача 3. Построить треугольник по стороне и прилежащим к ней углам, сумма которых меньше .

При анализе признаков равенства треугольников обращают на себя внимание два обстоятельства:

1) Нет признаков, в которых равенство треугольников обеспечивалось бы только равенством трех углов. Это объясняется тем, что два треугольника, имеющие равные углы, еще не обязательно равны (подобные треугольники, см. подробнее гл. XVI).

2) Признак равенства треугольников по двум сторонам требует равенства не произвольных углов, но непременно заключенных между равными сторонами. Чтобы выяснить причину этого, поставим следующую задачу.

Задача 4. Построить треугольник по двум сторонам и углу, лежащему против одной из них.

Решение. Пусть, например, даны стороны а и b и угол а, лежащий против а (рис. 227). Для построения треугольника отложим отрезок b на произвольной прямой АС и из одной его вершины, например А, проведем луч AM под углом а к отрезку АС. Неизвестная третья сторона треугольника должна лежать на этом луче; ее конец и есть недостающая вершина треугольника. Известно, однако, что эта третья вершина лежит на расстоянии а от С и, значит, помещается на окружности с центром С радиуса а. Проведем такую окружность. Точки ее пересечения с лучом AM дадут возможные положения третьей вершины. Так как окружность и луч могут не иметь общих точек, иметь одну или две общие точки, то задача может не иметь решений, иметь одно или два решения.

На рис. 227 представлен случай, когда угол а острый, и четыре варианта для стороны для которых задача, соответственно, не имеет решений, имеет одно решение, два решения и снова одно решение. Показаны оба решения для Полный анализ этой задачи дается в п. 223 в связи с задачами на решение треугольников.

Можно ставить и другие разнообразные задачи на построение треугольников по тем или иным данным. Во всех случаях для возможности построения треугольника должны быть заданы либо три какие-нибудь его линейных элемента (т. е. три отрезка: стороны, медианы, высоты и т. п.), либо два отрезка и один угол, либо один отрезок и два угла.

Задача 5. Даны две стороны а, с треугольника и медиана . Построить треугольник.

Решение. Начнем решение задачи с анализа. Так называется этап решения, когда мы условно допускаем, что задача уже решена, и выясняем такие ее особенности, которые и в самом деле помогут нам ее решить. Итак, допустим, что треугольник ABC (рис. 228, а) - искомый. Тогда в нем

Заметим, что отрезок ВМ по определению медианы составляет половину с, т. е. может считаться известным. Но теперь в треугольнике ВМС известны все три стороны! Здесь ключ к решению задачи, остальное уже просто. Мы строим (рис. 228, б) треугольник ВМС по трем сторонам и продолжаем затем сторону ВМ на расстояние, равное , получая тем самым третью вершину А треугольника. Правильность выполненного построения ясна.

Условие разрешимости задачи состоит в возможности построить «частичный» треугольник по стороне а, медиане и половине другой стороны.

Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:

    Анализ задачи.

    В эту часть входит установление связи между элементами, которые необходимо построить и начальными условиями задачи. После выполнения этого пункта у нас должен появиться план по решению нашей задачи.

    Построение.

    Здесь мы выполняем построения по плану, который был нами составлен выше.

    Доказательство.

    Здесь мы доказываем то, что построенная нами фигура действительно удовлетворяет начальным условиям задачи.

    Исследование.

    Здесь мы выясняем, при каких данных задача имеет одно решение, при каких несколько, а при каких ни одного.

Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем рассматривать элементарные построения, таких как отрезок , угол и т.д. К этому моменту эти навыки уже у Вас должны иметься.

Построение треугольника по двум сторонами и углу между ними

Пример 1

Постройте треугольник, если нам даны две стороны и угол, который находится между этими сторонами.

Анализ.

Пусть нам даны отрезки $AB$ и $AC$ и угол $α$. Нам нужно построить треугольник $ABC$ с углом $C$ равным $α$.

Составим план построения:

  1. Принимая $AB$ за одну из сторон угла, отложим от нее угол $BAM$, равный углу $α$.
  2. На прямой $AM$ отложим отрезок $AC$.
  3. Соединим точки $B$ и $C$.

Построение.

Построим рисунок по составленному выше плану (рис. 1).

Доказательство.

Исследование.

Так как сумма углов треугольника равняется $180^\circ$. Значит, если угол α будет больше или равен $180^\circ$, то задача решений иметь не будет.

В другом случае решение есть. Так как прямая $a$ - произвольная прямая, то таких треугольников будет бесконечное количество. Но, так как они все равны между собой по первому признаку, то будем считать, что решение этой задачи единственно.

Построение треугольника по трем сторонам

Пример 2

Постройте треугольник, если нам даны три его стороны.

Анализ.

Пусть нам даны отрезки $AB$ и $AC$ и $BC$. Нам нужно построить треугольник $ABC$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $AB$.
  2. Построим $2$ окружности: первую с центром $A$ и радиусом $AC$, и вторую с центром $B$ и радиусом $BC$.
  3. Соединим одну из точек пересечения окружностей (которая будет точкой $C$) с точками $A$ и $B$.

Построение.

Построим рисунок по составленному выше плану (рис. 2).

Доказательство.

Из построения видно, что все начальные условия выполнены.

Исследование.

Из неравенства треугольника мы знаем, что любая сторона должна быть меньше суммы двух других. Следовательно, когда такое неравенство не выполняется для исходных трех отрезков, задача решения иметь не будет.

Так как окружности из построения имеют две точки пересечения, то мы можем построить два таких треугольника. Но, так как они равны между собой по третьему признаку, то будем считать, что решение этой задачи единственно.

Построение треугольника по стороне и двум прилежащим к ней углам

Пример 3

Постройте треугольник, если нам дана одна стороны и углы $α$ и $β$, прилегающие к ней.

Анализ.

Пусть нам дан отрезок $BC$ и углы $α$ и $β$. Нам нужно построить треугольник $ABC$, где $∠B=α$, а $∠C=β$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $BC$.
  2. Построим в вершине $B$ к стороне $BC$ угол $∠ K=α$.
  3. Построим в вершине $C$ к стороне $BC$ угол $∠ M=β$.
  4. Соединим точку пересечения (это и будет точка $A$) лучей $∠ K$ и $∠ M$ с точками $C$ и $B$,

Построение.

Построим рисунок по составленному выше плану (рис. 3).

Доказательство.

Из построения видно, что все начальные условия выполнены.

Исследование.

Так как сумма углов треугольника равняется $180^\circ$, то, если $α+β≥180^\circ$ задача решений иметь не будет.

В другом случае решение есть. Так как углы можем строить с двух сторон, то мы можем построить два таких треугольника. Но, так как они равны между собой по второму признаку, то будем считать, что решение этой задачи единственно.