Решение системы нормальных уравнений матричным способом. Правило Крамера

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения.

Рассмотрим систему линейных алгебраических уравнений (СЛАУ) относительно n неизвестных x 1 , x 2 , ..., x n :

Эта система в "свернутом" виде может быть записана так:

S n i=1 a ij x j = b i , i=1,2, ..., n .

В соответствии с правилом умножения матрицрассмотренная система линейных уравнений может быть записана вматричной форме Ax=b , где

Матрица A , столбцами которой являются коэффициенты при соответствующих неизвестных, а строками - коэффициенты при неизвестных в соответствующем уравнении называется матрицей системы . Матрица-столбец b , элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы . Матрица-столбец x , элементы которой - искомые неизвестные, называется решением системы .

Система линейных алгебраических уравнений, записанная в виде Ax=b , является матричным уравнением .

Если матрица системы невырождена , то у нее существует обратная матрица и тогда решение системы Ax=b дается формулой:

x=A -1 b .

Пример Решить систему матричным методом.

Решение найдем обратную матрицу для матрицы коэффициентов системы

Вычислим определитель, раскладывая по первой строке:

Поскольку Δ ≠ 0 , то A -1 существует.

Обратная матрица найдена верно.

Найдем решение системы

Следовательно, x 1 = 1, x 2 = 2, x 3 = 3 .

Проверка:

7. Теорема Кронекера-Капелли о совместности системы линейных алгебраических уравнений.

Система линейных уравнений имеет вид:

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 , (5.1)

a m1 x 1 + a m1 x 2 +... + a mn x n = b m .

Здесь а i j и b i (i = ; j = ) - заданные, а x j - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

где A = (а i j) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы , X = (x 1 , x 2 ,..., x n) T , B = (b 1 , b 2 ,..., b m) T - векторы-столбцы, составленные соответственно из неизвестных x j и из свободных членов b i .

Упорядоченная совокупность n вещественных чисел (c 1 , c 2 ,..., c n) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x 1 , x 2 ,..., x n каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c 1 , c 2 ,..., c n) T такой, что AC  B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой , если она не имеет решений.

,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (5.1) решается следующей теоремой.

Теорема Кронекера-Капелли . Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A иA совпадают, т.е. r(A) = r(A) = r.

Для множества М решений системы (5.1) имеются три возможности:

1) M =  (в этом случае система несовместна);

2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной );

3) M состоит более чем из одного элемента (тогда система называется неопределенной ). В третьем случае система (5.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда r(A) = n. При этом число уравнений - не меньше числа неизвестных (mn); если m>n, то m-n уравнений являются следствиями остальных. Если 0

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа :

a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 ,

a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2 , (5.3)

... ... ... ... ... ...

a n1 x 1 + a n1 x 2 +... + a nn x n = b n .

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.

Пример 2.12 . Исследовать систему уравнений и решить ее, если она совместна:

5x 1 - x 2 + 2x 3 + x 4 = 7,

2x 1 + x 2 + 4x 3 - 2x 4 = 1,

x 1 - 3x 2 - 6x 3 + 5x 4 = 0.

Решение. Выписываем расширенную матрицу системы:

.

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу = 7  0; содержащие его миноры третьего порядка равны нулю:

Следовательно, ранг основной матрицы системы равен 2, т.е. r(A) = 2. Для вычисления ранга расширенной матрицы A рассмотрим окаймляющий минор

значит, ранг расширенной матрицы r(A) = 3. Поскольку r(A)  r(A), то система несовместна.

По формулам Крамера;

Методом Гаусса;

Решение : Теорема Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы этой системы равен рангу ее расширенной матрицы, т. е. r (A )=r (A 1 ), где

Расширенная матрица системы имеет вид:

Умножим первую строку на (–3 ),а вторую на (2 ); прибавим после этого элементы первой строки к соответствующим элементам второй строки; вычтем из второй строки третью. В полученной матрице первую строку оставляем без изменений.

6 ) и поменяем местами вторую и третью строки:

Умножим вторую строку на (–11 ) и прибавим к соответствующим элементам третьей строки.

Разделим элементы третьей строки на (10 ).

Найдем определитель матрицы А .

Следовательно, r (A )=3 . Ранг расширенной матрицы r (A 1 ) так же равен 3 , т.е.

r (A )=r (A 1 )=3 Þ система совместна.

1) Исследуя систему на совместность, расширенную матрицу преобразовали по методу Гаусса.

Метод Гаусса состоит в следующем:

1. Приведение матрицы к треугольному виду, т. е. ниже главной диагонали должны находиться нули (прямой ход).

2. Из последнего уравнения находим х 3 и подставляем его во второе, находим х 2 , и зная х 3 , х 2 подставляем их в первое уравнение, находим х 1 (обратный ход).

Запишем, преобразованную по методу Гаусса, расширенную матрицу

в виде системы трех уравнений:

Þ х 3 =1

х 2 =х 3 Þ х 3 =1

2х 1 =4+х 2 +х 3 Þ 2х 1 =4+1+1 Þ

Þ 2х 1 =6 Þ х 1 =3

.

2) Решим систему по формулам Крамера: если определитель системы уравнений Δ отличен от нуля, то система имеет единственное решение, которое находится по формулам

Вычислим определитель системы Δ:

Т.к. определитель системы отличен от нуля, то согласно правилу Крамера, система имеет единственное решение. Вычислим определители Δ 1 , Δ 2 , Δ 3 . Они получаются из определителя системы Δ заменой соответствующего столбца на столбец свободных коэффициентов.

Находим по формулам неизвестные:

Ответ: х 1 =3 , х 2 =1, х 3 =1.

3) Решим систему средствами матричного исчисления, т. е. при помощи обратной матрицы.

А×Х=В Þ Х=А -1 × В , где А -1 – обратная матрица к А ,

Столбец свободных членов,

Матрица-столбец неизвестных.

Обратная матрица считается по формуле:

где D - определитель матрицы А , А ij – алгебраические дополнения элемента а ij матрицы А . D = 60 (из предыдущего пункта). Определитель отличен от нуля, следовательно, матрица А обратима, и обратную к ней матрицу можно найти по формуле (*). Найдем алгебраические дополнения для всех элементов матрицы А по формуле:



А ij = (-1 ) i+j M ij .

х 1 , х 2 , х 3 обратили каждое уравнение в тождество, то они найдены верно.

Пример 6 . Решить систему методом Гаусса и найти какие-нибудь два базисных решения системы.

(иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ . Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^{-1}$.
  3. Используя равенство $X=A^{-1}\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ - матрица системы, $B$ - матрица свободных членов, $X$ - матрица неизвестных. Пусть матрица $A^{-1}$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^{-1}$ слева:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B.$$

Так как $A^{-1}\cdot A=E$ ($E$ - единичная матрица), то записанное выше равенство станет таким:

$$E\cdot X=A^{-1}\cdot B.$$

Так как $E\cdot X=X$, то:

$$X=A^{-1}\cdot B.$$

Пример №1

Решить СЛАУ $ \left \{ \begin{aligned} & -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end{aligned} \right.$ с помощью обратной матрицы.

$$ A=\left(\begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right);\; B=\left(\begin{array} {c} 29\\ -11 \end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \end{array}\right). $$

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^{-1}$. В примере №2

$$ A^{-1}=-\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$. Затем выполним умножение матриц

$$ \left(\begin{array} {c} x_1\\ x_2 \end{array}\right)= -\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right)\cdot \left(\begin{array} {c} 29\\ -11 \end{array}\right)=\\ =-\frac{1}{103}\cdot \left(\begin{array} {c} 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end{array}\right)= -\frac{1}{103}\cdot \left(\begin{array} {c} 309\\ -206 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right). $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Ответ : $x_1=-3$, $x_2=2$.

Пример №2

Решить СЛАУ $ \left\{\begin{aligned} & x_1+7x_2+3x_3=-1;\\ & -4x_1+9x_2+4x_3=0;\\ & 3x_2+2x_3=6. \end{aligned}\right.$ методом обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

$$ A=\left(\begin{array} {ccc} 1 & 7 & 3\\ -4 & 9 & 4 \\0 & 3 & 2\end{array}\right);\; B=\left(\begin{array} {c} -1\\0\\6\end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right). $$

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^{-1}$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^{-1}$:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)= \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)\cdot \left(\begin{array} {c} -1\\0\\6\end{array}\right)=\\ =\frac{1}{26}\cdot \left(\begin{array} {c} 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end{array}\right)=\frac{1}{26}\cdot \left(\begin{array} {c} 0\\-104\\234\end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right) $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Уравнения вообще, линейные алгебраические уравнения и их системы, а также методы их решения занимают в математике, как теоретической, так и прикладной, особое место.

Это связано с тем обстоятельством, что подавляющее большинство физических, экономических, технических и даже педагогических задач могут быть описаны и решены с помощью разнообразных уравнений и их систем. В последнее время особую популярность среди исследователей, ученых и практиков приобрело математическое моделирование практически во всех предметных областях, что объясняется очевидными его преимуществами перед другими известными и апробированными методами исследования объектов различной природы, в частности, так называемых, сложных систем. Существует великое многообразие различных определений математической модели, данных учеными в разные времена, но на наш взгляд, самое удачное, это следующее утверждение. Математическая модель – это идея, выраженная уравнением. Таким образом, умение составлять и решать уравнения и их системы – неотъемлемая характеристика современного специалиста.

Для решения систем линейных алгебраических уравнений наиболее часто используются методы: Крамера, Жордана-Гаусса и матричный метод.

Матричный метод решения - метод решения с помощью обратной матрицы систем линейных алгебраических уравнений с ненулевым определителем.

Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то систему линейных алгебраических уравнений можно записать в виде следующего матричного уравнения A · X = B, которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю. При этом решение системы уравнений можно найти следующим способом X = A -1 · B , где A -1 - обратная матрица.

Матричный метод решения состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными:

Её можно переписать в матричной форме: AX = B , где A - основная матрица системы, B и X - столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A -1 - матрицу, обратную к матрице A : A -1 (AX ) = A -1 B

Так как A -1 A = E , получаем X = A -1 B . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A . Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A : detA ≠ 0.

Для однородной системы линейных уравнений, то есть когда вектор B = 0 , действительно обратное правило: система AX = 0 имеет нетривиальное (то есть не нулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

Пример решения неоднородной системы линейных алгебраических уравнений .

Убедимся в том, что определитель матрицы, составленный из коэффициентов при неизвестных системы линейных алгебраических уравнений не равен нулю.

Следующим шагом будет вычисление алгебраических дополнений для элементов матрицы, состоящей из коэффициентов при неизвестных. Они понадобятся для нахождения обратной матрицы.