Диффузионный потенциал и его физическая природа. Мембранный диффузионный потенциал

Диффузионные потенциалы возникают на границе соприкосновения двух растворов. Причем это могут быть как растворы разных веществ, так и растворы одного и того же вещества, только в последнем случае они обязательно должны отличаться друг от друга своими концентрациями.

При соприкосновении двух растворов происходит взаимопроникновение в них частиц (ионов) растворенных веществ вследствие процесса диффузии.

Причина возникновения при этом диффузионного потенциала заключается в неодинаковой подвижности ионов растворенных веществ. Если ионы электролита обладают разной скоростью диффузии, то более быстрые ионы постепенно оказываются впереди менее подвижных. Образуются как бы две волны разнозаряженных частиц.

Если смешиваются растворы одного и того же вещества, но с разной концентрацией, то более разбавленный раствор приобретает заряд, совпадающий по знаку с зарядом более подвижных ионов, а менее разбавленный – заряд, совпадающий по знаку с зарядом менее подвижных ионов (рис. 90).

Рис. 90. Возникновение диффузионного потенциала вcледствие разной скорости ионов:I – «быстрые» ноны, заряженные отрицательно;II – «медленные» ионы, заряженные положительно

На границе раздела растворов возникает так называемый диффузионный потенциал. Он усредняет скорости движения ионов (тормозит более «быстрые» и ускоряет более «медленные»).

Постепенно, с завершением процесса диффузии данный потенциал снижается до нуля (обычно в течение 1-2 часов).

Диффузионные потенциалы могут возникать и в биологических объектах при повреждении оболочек клеток. При этом нарушается их проницаемость и электролиты могут диффундировать из клетки в тканевую жидкость или наоборот в зависимости от разности концентрации по обе стороны мембраны.

В результате диффузии электролитов возникает так называемый потенциал повреждения, который может достигать величин порядка 30-40 мV. Причем поврежденная ткань чаще всего заряжается отрицательно по отношению к неповрежденной.

Диффузионный потенциал возникает в гальванических элементах на границе соприкосновения двух растворов. Поэтому при точных вычислениях э.д.с. гальванических цепей обязательно должна вводиться поправка на его величину. Для устранения влияния диффузионного потенциала электроды в гальванических элементах часто соединяют друг с другом «солевым мостиком», представляющим собой насыщенный раствор KCl .

Ионы калия и хлора имеют почти одинаковые подвижности, поэтому их применение позволяет в значительной степени уменьшить влияние диффузионного потенциала на величину э.д.с.

Диффузионный потенциал может сильно возрасти, если растворы электролитов разного состава или разных концентраций разделить мембраной, проницаемой только для ионов определенного знака заряда или вида. Такие потенциалы будут гораздо более стойкими и могут сохраняться в течение более длительного времени – они называются иначе мембранными потенциалами . Мембранные потенциалы возникают при неравномерном распределении ионов по обе стороны мембраны, зависящем от её избирательной проницаемости, или в результате обмена ионами между самой мембраной и раствором.

На возникновении мембранного потенциала основан принцип работы так называемого ион-селективного илимембранного электрода.

Основой такого электрода является определенным образом полученная полупроницаемая мембрана, обладающая селективной ионной проводимостью. Особенностью мембранного потенциала является то, что в соответствующей ему электродной реакции не участвуют электроны. Здесь имеет место обмен ионами между мембраной и раствором.

Мембранные электроды с твердой мембраной содержат тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией. С внутренней стороны мембрану омывает стандартный раствор с точно известной концентрацией определяемых ионов, с внешней стороны – анализируемый раствор с неизвестной концентрацией определяемых ионов.

Вследствие различной концентрации растворов по обе стороны мембраны ионы обмениваются с внутренней и внешней сторонами мембраны неодинаковым образом. Это приводит к тому, что на разных сторонах мембраны образуется разный электрический заряд и как результат этого, возникает мембранная разность потенциалов.

Среди ионо-селективных электродов большое распространение получил стеклянный электрод, который применяют для определения рН растворов.

Центральной частью стеклянного электрода (рис. 91) является шарик, изготовленный из специального токопроводящего гидратированного стекла. Он заполнен водным раствором HClс известной концентрацией (0,1 моль/дм 3). В этот раствор помещают электрод второго рода – чаще всего хлорсеребряный, выступающий в роли электрода сравнения. При измерениях стеклянный шарик опускают в анализируемый раствор, в котором находится второй электрод сравнения.

Принцип действия электрода основан на том, что в структуре стекла ионы K + ,Na + ,Li + заменены на ионы Н + путем его длительного вымачивания в растворе кислоты. Таким образом стеклянная мембрана может обмениваться своими ионами Н + с внутренним и внешним растворами (рис. 92). Причем по обе стороны мембраны вследствие этого процесса возникают различные потенциалы.

Рис. 91. Схема стеклянного электрода: 1 – стеклянный шарик (мембрана); 2 – внутренний раствор НС1; 3 – хлорсеребряный электрод; 4 – измеряемый раствор; 5 – металлический проводник

Рис. 92. Стеклянный электрод в растворе с неизвестной концентрацией ионов Н + (а) и схема обмена ионов между двумя фазами (б)

С помощью электродов сравнения, помещенных во внешний и внутренний растворы, измеряют их разность.

Потенциал на внутренней стороне мембраны постоянен, поэтому разность потенциалов стеклянного электрода будет зависеть только от активности ионов водорода в исследуемом растворе.

Общая схема цепи, включающая стеклянный электрод и два электрода сравнения, представлена на рис. 93.

Рис. 93. Схема цепи, поясняющая принцип работы стеклянного электрода

Стеклянный электрод имеет ряд существенных преимуществ по сравнению с водородным электродом, с помощью которого тоже можно измерять концентрацию ионов Н + в растворе.

Он совершенно не чувствителен к различным примесям в растворе, «не отравляется ими», им можно пользоваться, если в анализируемых жидкостях содержатся сильные окислители и восстановители, а также в самом широком диапазоне значений рН – от 0 до 12. Недостатком стеклянного электрода является его большая хрупкость.

В ячейках с переносом контактируют между собой растворы полуячеек различного качественного и количественного состава. Подвижности (коэффициенты диффузии) ионов, их концентрации и природа в полуячейках в общем случае различаются. Более быстрый ион заряжает слой по одну сторону воображаемой границы слоев своим знаком, оставляя по другую сторону слой, заряженный противоположно. Электростатическое притяжение не дает процессу диффузии отдельных ионов развиваться далее. Происходит разделение положительных и отрицательных зарядов на атомном расстоянии, что по законам электростатики приводит к возникновению скачка электрического потенциала, называемого в данном случае диффузионным потенциалом Дф и (синонимы - жидкостной потенциал, потенциал жидкостного соединения, контакта). Однако, диффузия- миграция электролита в целом продолжается при определенном градиенте сил, химических и электрических.

Как известно, диффузия - существенно неравновесный процесс. Диффузионный потенциал - неравновесная составляющая ЭДС (в отличие от электродных потенциалов). Он зависит от физико-химических характеристик отдельных ионов и даже от устройства контакта между растворами: пористая диафрагма, тампон, шлиф, свободная диффузия, асбестовая или шелковая нить, и т. д. Его величина не может быть точно измерена, а оценивается экспериментально и теоретически с той или иной степенью приближения.

Для теоретической оценки Дф 0 используются различные подходы Доп4В. В одном из них, называемом квази-термодина- мическим, электрохимический процесс в ячейке с переносом в целом считается обратимым, а диффузия - стационарной. Принимается, что на границе растворов создается некоторый переходный слой, состав которого изменяется непрерывно от раствора (1) до раствора (2). Этот слой мысленно разбивается на тонкие подслои, состав которых, т. е. концентрации, а с ними и химические и электрические потенциалы, изменяются на бесконечно малую величину по сравнению с соседним подслоем:

Те же соотношения сохраняются между последующими подслоями, и так до раствора (2). Стационарность заключается в неизменности картины во времени.

В условиях измерения ЭДС происходит диффузионный перенос зарядов и ионов между подслоями, т. е. совершаются электрическая и химическая работа, разделимые только мысленно, как при выводе уравнения электрохимического потенциала (1.6). Систему считаем бесконечно большой, и рассчитываем на 1 экв. вещества и 1 Фарадей заряда, переносимым каждым видом участвующих ионов:

Справа минус, потому что работа диффузии производится в направлении убыли силы - градиента химического потенциала; t; - число переноса, т. е. доля заряда, переносимого данным /-м видом ионов.

Для всех ионов-участников и для всей суммы подслоев, составляющих переходный слой от раствора (1) до раствора (2), имеем:

Заметим слева определение диффузионного потенциала как интегральной величины потенциала, непрерывно меняющегося по составу переходного слоя между растворами. Подставляя |1, = |ф +/?Г1пй, и учитывая, что (I, =const при р,Т= const, получим:

Искомая связь между диффузионным потенциалом и характеристиками ионов, такими как числа переноса, заряд и активности отдельных ионов. Последние, как известно, термодинамически не определимы, что затрудняет расчет A(p D , требуя нетермодинамических допущений. Интегрирование правой части уравнения (4.12) производится при различных предположениях о строении границы между растворами.

М. Планк (1890) считал границу резкой, слой тонким. Интегрирование при этих условиях привело к получению уравнения Планка для Дф 0 , оказавшимся трансцендентным относительно этой величины. Его решение находят итерационным методом.

Гендерсон (1907) вывел свое уравнение для Дф 0 , исходя из предположения, что между контактирующими растворами создается переходный слой толщиной d, состав которого изменяется линейно от раствора (1) до раствора (2), т. е.

Здесь С; - концентрация иона, х - координата внутри слоя. При интегрировании правой части выражения (4.12) приняты допущения:

  • активности ионов а, заменены на концентрации С, (Гендерсон и не знал активностей!);
  • числа переноса (подвижности ионов) приняты независящими от концентрации и постоянными в пределах слоя.

Тогда получается общее уравнение Гендерсона:


Zj, С„ «, - заряд, концентрация и электролитическая подвижность иона в растворах (1) и (2); знаки + и _ вверху относятся к катионам и анионам соответственно.

В выражении для диффузионного потенциала отражаются различия характеристик ионов по разные стороны границы, т. е. в растворе (1) и в растворе (2). Для оценки Дф 0 чаще всего используется именно уравнение Гендерсона, которое в типичных частных случаях ячеек с переносом упрощается. При этом используются различные характеристики подвижности ионов, связанные с и, - ионные электропроводности, числа переноса (Таблица 2.2), т. е. величины, доступные из справочных таблиц.

Формула Гендерсона (4.13) может быть записана несколько компактнее, если использовать ионные электропроводности:


(здесь обозначения растворов 1 и 2 заменены на " и " соответственно).

Следствием общих выражений (4.13) и (4.14) являются некоторые частные, приводимые ниже. Следует иметь в виду, что использование концентраций вместо ионных активностей и характеристик подвижности (электропроводности) ионов при бесконечном разбавлении делает эти формулы весьма приближенными (но тем более точными, чем более разбавлены растворы). При более строгом выводе учитываются зависимости характеристик подвижности и чисел переноса от концентрации, а вместо концентраций стоят активности ионов, которые с определенной степенью приближения можно заменить средними активностями электролита.

Частные случаи:

Для границы двух растворов одинаковой концентрации разных электролитов с общим ионом типа АХ и ВХ, или АХ и AY:

(формулы Льюиса - Сержента), где - предельные молярные электропроводности соответствующих ионов, А 0 - предельная молярная электропроводность соответствующих электролитов. Для электролитов типа АХ 2 и ВХ 2

С и С" одного и того же электролита типа 1:1

где V) и А.® - предельные молярные электропроводности катионов и анионов, t и г + - числа переноса аниона и катиона электролита.

Для границы двух растворов разной концентрации С" и С" одного и того же электролита с зарядами катионов z+, анионов z~, числами переноса t + и t_ соответственно

Для электролита типа М„+А г _, принимая во внимание условие электронейтральности v + z + = -v_z_ и стехиометрическое соотношение C + = v + C и C_ = v_C, можно упростить это выражение:

В приведенных выражениях для диффузионного потенциала отражаются различия подвижности (чисел переноса) и концентрации катионов и анионов по разные стороны границы растворов. Чем меньше эти различия, тем меньше величина Дф 0 . Это видно и из Табл. 4.1. Самые высокие значения Дфи (десятки мВ) получились для растворов кислоты и щелочей, содержащих ионы Н f и ОН“, обладающие уникально высокой подвижностью. Чем меньше различие подвижностей, т. е. чем ближе к 0.5 значение t + и тем меньше Дф ц. Это наблюдается для электролитов 6-10, которые называются «равнопроводя- щими» или «равнопереносягцими».

Для расчетов Дф 0 использованы предельные значения электропроводностей (и чисел переноса), но реальные значения концентраций. Это вносит определенную ошибку, которая для 1 - 1 электролитов (№№ 1 - 11) составляет от 0 до ±3%, тогда как для электролитов, содержащих ионы с зарядом |г,|>2 ошибка должна быть больше, ибо электропроводность изменяется с изменением ионной силы которую

наибольший вклад вносят именно многозарядные ионы.

Значения Дф 0 на границах растворов разных электролитов с одним и тем же анионом и одинаковыми концентрациями приведены в Табл. 4.2.

Заключения о диффузионных потенциалах, сделанные ранее для растворов одинаковых электролитов разных концентраций (Табл. 4.1), подтверждаются и в случае разных электролитов одинаковой концентрации (колонки 1-3 Табл. 4.2). Диффузионные потенциалы оказываются наибольшими, если по разные стороны границы находятся электролиты, содержащие ионы Н + или ОН". Они достаточно велики для электролитов, содержащих ионы, числа переноса которых в данном растворе далеки от 0.5.

Рассчитанные значения Афр неплохо совпадают с измеренными, особенно если учесть как приближения, использованные при выводе и применении уравнений (4.14а) и (4.14в), так и экспериментальные трудности (погрешности) при создании границы жидкостей.

Таблица 41

Предельные ионные электропроводности и электропроводности водных растворов электролитов, числа переноса и диффузионные потенциалы,

рассчитанные по формулам (414г- 414е) при для 25 °С

Электролит

Cm cm моль

См? cm 2 моль

См см 2 моль

Аф с,

NH 4CI

NH 4NO 3

CH 3COOU

У 2 СаС1 2

1/2 NcbSCX}

l/3LaCl 3

1/2 CuS0 4

l/2ZnS0 4

На практике чаще всего вместо количественной оценки величины Афр прибегают к его элиминированию, т. е. доведению его величины до минимума (до нескольких милливольт) включением между контактирующими растворами электролитического мостика («ключа»), заполненного концентрированным раствором так называемого равнопроводящего электролита, т. е.

электролита, катионы и анионы которого обладают близкими подвижностями и, соответственно, ~ / + ~ 0.5 (№№ 6-10 в Табл. 4.1). Ионы такого электролита, взятые в большой концентрации по отношению к электролитам в ячейке (в концентрации, близкой к насыщению), берут на себя роль основных переносчиков заряда через границу растворов. Вследствие близости подвижностей этих ионов и их преобладающей концентрации Дфо -> 0 мВ. Сказанное иллюстрируется колонками 4 и 5 Табл. 4.2. Диффузионные потенциалы на границах растворов NaCl и KCI с концентрированными растворами КС1 действительно близки к 0. В то же время на границах концентрированных растворов КС1 даже с разбавленными растворами кислоты и щелочи Д(р в не равен 0 и увеличивается с увеличением концентрации последних.

Таблица 4.2

Диффузионные потенциалы на границах растворов разных электролитов, рассчитанные но формуле (4.14а) при 25 °С

Жидкостное

соединение" 1

эксп. 6 ’,

Жидкостное соединение а),г>

нс1 о.1 :kci од

HCI 1.0||KCl Sa ,

НС1 0.1ЦКС1 Sat

НС1 0.01ЦКС1&,

НС10.1:NaCl 0.1

NaCl 1,0|| KCI 3,5

HCI 0.01 iNaCl 0.01

NaCl 0.11| KCI 3,5

HCI 0.01 ILiCl 0.01

KCI 0.1 iNaCl 0.1

KCI 0.1ЦКС1 Sat

KCI 0.01 iNaCl 0.01

KCI 0.01 iLiCl 0.01

NaOH 0.1ЦКС1 Sal

Kci o.oi :nh 4 ci o.oi

NaOH 1.0ЦКС1 Sat

LiCl 0.01:nh 4 ci 0.01

NaOH 1.0ЦКС1 3,5

LiCl 0.01 iNaCl 0.01

NaOH 0.1ЦКС1 0.1

Примечания:

Концентрации в моль/л.

61 Измерения ЭДС ячеек с переносом и без переноса; расчет с учетом средних коэффициентов активности; см. далее.

Расчет по уравнению Льюиса - Сержента (4Л4а).

" KCl Sal - это насыщенный раствор КС1 (~4.16 моль/л).

"Расчет по уравнению Гендерсона типа (4.13), но с использованием средних активностей вместо концентраций.

Диффузионные потенциалы с каждой стороны мостика имеют противоположные знаки, что способствует элиминированию суммарного Дф 0 , который в этом случае называют остаточным (residual) диффузионным потенциалом ДДф и res .

Границу жидкостей, на которой Дф р элиминирован включением электролитического мостика, принято обозначать (||), как это сделано в Табл. 4.2.

Дополнение 4В.

Практически измеренное точное значение ЭДС обычно отличается от теоретически рассчитанного по уравнению Нернста на некоторую малую величину, которая связана с разностями потенциалов, возникающими в месте контакта различных металлов (“контактный потенциал”) и различных растворов (“диффузионный потенциал”).

Контактный потенциал (точнее, контактная разность потенциалов) связан с различным значением работы выхода электрона для каждого металла. При каждой данной температуре он является постоянным для данного сочетания металлических проводников гальванического элемента и входит в ЭДС элемента как постоянное слагаемое.

Диффузионный потенциал возникает на границе между растворами различных электролитов или одинаковых электролитов с различной концентрацией. Его возникновение объясняется различной скоростью диффузии ионов из одного раствора в другой. Диффузия ионов обусловлена различным значением химического потенциала ионов в каждом из полуэлементов. Причем её скорость изменяется во времени из-за непрерывного изменения концентрации, а значит, и m . Поэтому диффузионный потенциал имеет, как правило, неопределённое значение, так как на него влияют многие факторы, в том числе и температура.

При обычных практических работах значение контактного потенциала сводят к минимуму применением монтажа проводниками, изготовленными из одного и того же материала (обычно меди), а диффузионного потенциала - использованием специальных устройств, называемых электролитическими (солевыми )мостиками или электролитическими ключами. Они представляют собой трубки различной конфигурации (иногда снабженные кранами), заполненные концентрированными растворами нейтральных солей. У этих солей подвижности катиона и аниона должны быть приблизительно равны друг другу (Например, KCl, NH 4 NO 3 и т. п.). В простейшем случае электролитический мостик может быть изготовлен из полоски фильтровальной бумаги или асбестового жгутика, смоченных раствором KCl. При использовании электролитов на основе неводных растворителей в качестве нейтральной соли обычно применяется хлорид рубидия.

Достигнутыми в результате принятых мер минимальными значениями контактного и диффузного потенциалов обычно пренебрегают. Однако при электрохимических измерениях, требующих большой точности, контактный и диффузионный потенциалы следует учитывать.

То обстоятельство, что в данном гальваническом элементе имеется электролитический мостик, отображается двойной вертикальной чертой в его формуле, стоящей в месте контакта двух электролитов. Если же электролитический мостик отсутствует, то в формуле ставится одиночная черта.


Говоря о гальваническом элементе, мы рассматривали только границу разде­ла металл - раствор его соли. Теперь обратимся к границе раздела между рас­творами двух различных электролитов. В гальванических элементах на границах соприкосновения растворов могут возникать так называемые диффузионные потенциалы. Они возникают также и на границе раздела между растворами одного и того же электролита в том случае, когда концентрация растворов неодинакова. Причина возникновения потенциала в подобных случаях заключается в неодина­ковой подвижности ионов в растворе.

Скачок потенциала на границе между неодинаковыми по составу или по концентрации растворами называется диффузионным потенциалом. Значение диффу­зионного потенциала зависит, как показывает опыт, от различия подвижностей ионов, а также от различия концентраций соприкасающихся растворов.

Диффузионный потенциал можно определить экспериментально, а также вы­числить. Так, значение диффузионного потенциала (ε Д), возникающего при сопри­косновении растворов различной концентрации одного и того же электролита, да­ющего однозарядные ионы, вычисляется по формуле

где l К и l а - подвижности ионов одного электролита; l К ’ и l a ’ - подвижности ионов другого электролита.



При точных вычислениях э.д.с. гальванических цепей обязательно должна вводиться поправка на величину диффузного потенциала, включая между растворами электролита насыщенный раствор хлорида калия. Так как подвижность ионов калия и хлора примерно одинаковы (l K + = 64,4 ·10 -4 и l Cl - = 65,5 · 10 -4 См·м 2), то диффузионный потенциал, вызываемый таким электро­литом, практически будет равен нулю.

Диффузионные потенциалы могут возникать и в биологических объектах при повреждении, например, оболочек клеток. При этом нарушается избирательность их проницаемости и электролиты начинают диффундировать в клетку или из нее - в зависимости от разности концентраций. В результате диффу­зии электролитов возникает так на­зываемый потенциал повреждения , который может достигать величин порядка 30-40 милливольт. Причем поврежденная ткань заряжается отри­цательно по отношению к неповреж­денной.

Диффузионный потенциал может сильно возрасти, если растворы элек­тролитов различных концентраций разделить специальной мембраной, проницаемой только для ионов одно­го какого-то знака.

В ряде случаев возникновение мембранного потенциала связано с тем, что поры мембраны не соответ­ствуют размерам ионов определенного знака. Мембранные потенциалы весь­ма стойки и могут без изменения со­храняться долгое время. В тканях растительных и животных организмов, даже внутри одной клетки, имеются мембранные и диффузионные потенциалы, обусловленные химической и морфологической неоднородностью внутриклеточно­го содержимого. Различные причины, изменяющие свойства микроструктур клет­ки, приводят к освобождению и диффузии ионов, т. е. к появлению различных биопотенциалов и биотоков. Роль этих биотоков в настоящее время еще до конца не изучена, но имеющиеся экспериментальные данные свидетельствуют об их важном значении в процессах саморегуляции живого организма.

Концентрационные цепи.

Известны гальванические элементы, в которых электрическая энергия образуется не за счет химической реакции, а за счет разни­цы концентраций растворов, в которые опущены электроды из одно­го и того же металла. Такие гальванические элементы называются концентрационными (рис. 4.12). В качестве примера можно назвать цепь, со­ставленную из двух цинковых электродов, погруженных в растворы ZnSO 4 различной концентрации:

В этой схеме С 1 и С 2 - концентрации электролитов, причем C 1 >C 2 Поскольку металл обоих электродов один и тот же, стандартные по­тенциалы их (ε o Zn) также одинаковы. Однако из-за различия кон­центрации катионов металла равновесие

в растворе в обоих полуэлементах неодинаково. В полуэлементе с менее концентрированным раствором (С 2) равновесие несколько сдвинуто вправо, т. е.

В этом случае цинк посылает в раствор больше катионов, что при­водит к возникновению на электроде некоторого избытка электро­нов. По внешней цепи они перемещаются ко второму электроду, по­груженному в более концентрированный раствор сульфата цинка ZnSO 4 .

Таким образом, электрод, погруженный в раствор большей кон­центрации (C 1), зарядится положительно, а электрод, погруженный в раствор меньшей концентрации, зарядится отрицательно.

В процессе работы гальванического элемента концентрация С 1 постепенно уменьшается, концентрация С 2 увеличивается. Элемент работает до тех пор, пока сравняются концентрации у анода и ка­тода.

Вычисление э.д.с. концентрационных элементов рассмотрим на примере цинкового концентрационного элемента.

Допустим, что концентрация C 1 = l моль/л, а С 2 = 0,01 моль/л. Коэффициенты активности Zn 2+ в растворах этих концентраций со­ответственно равны: f 1 = 0,061, а f 2 = 0,53. Для вычисления э.д.с. це­пи воспользуемся уравнением (4.91). На основании уравнения Нернста можем написать

Учитывая, что

Из уравнения (4.100) видно, что концентрацию ионов в данном рас- творе можно легко вычислить, если составить цепь, один из элек­тродов которой опущен в исследуемый раствор, а другой- в раствор с известной активностью тех же ионов. Для этой цели необходимо только измерить э.д.с. составленной цепи, что может быть легко сде­лано с помощью соответствующей установки. Концентрационные цепи широко используются в практике для определения рН раство­ров, произведения растворимости труднорастворимых соединений, а также для определения валентности ионов и констант нестойкости в случае комплексообразования.

Электроды сравнения.

Как уже отмечалось, потенциалы различных электродов изме­ряются по отношению к потенциалу нормального водородного элек­трода. Наряду с водородным в электрохимии в настоящее время широко применяется другой электрод сравнения - так называемый каломельный электрод, который, как показал опыт, обладает по­стоянным и хорошо воспроизводимым потенциалом.

Водородный электрод. Благородные металлы, например золото, платина и некоторые другие, обладают прочной кристаллической решеткой, и их катионы не переходят в раствор из металла. Следо­вательно, такие металлы не имеют на границе металл - раствор своего характерного скачка потенциала. Однако, если на поверхно­сти этих металлов адсорбируются вещества, которые способны окис­ляться или восстанавливаться, эти металлы с адсорбированными ве­ществами уже представляют собой системы, находящиеся в равно­весии с раствором. Если веществом, адсорбирующимся на поверх­ности благородного металла, является газ, электрод называется га­зовым.

Таким образом, платиновая пластинка или проволока, поглотив­шая молекулярный водород и опущенная в раствор, содержащий ионы водорода, представляет собой водородный электрод. Посколь­ку сама платина не участвует в электродной реакции (ее роль сво­дится лишь к тому, что она поглощает водород и, будучи проводником, делает возможным перемещение электронов от одного электро­да к другому), химический

символ платины в схеме водородного электрода обычно заключают в скобки: (Pt)H 2 |2H+.

Существуют различные конструкции сосудов для водородного электрода, две из которых показаны на рис. 4.13.

На поверхности водородного электрода устанавливается равно­весие:

В результате этих процессов на границе между платиной и раствором ионов водорода образуется двойной электрический слой, обус­ловливающий скачок потенциала. Величина этого потенциала при данной температуре зависит от активности водородных ионов в рас­творе и от количества поглощенного платиной газообразного водо­рода, которое пропорционально его давлению:

4.102

где а Н + - активность водородных ионов в растворе; Р Н2 ,- дав­ление, под которым поступает для насыщения электрода газообраз­ный водород. Опыт показывает: чем больше давление для насыще­ния платины водородом, тем более отрицательное значение прини­мает потенциал водородного электрода.

Электрод, состоящий из платины, насыщенной водородом под давлением в 101,325 кПа и погруженной в водный раствор с актив­ностью ионов водорода, равной единице, называется нормальным водородным электродом.

По международному соглашению потенциал нормального водо­родного электрода условно принят равным нулю, с этим электродом сопоставляют потенциалы всех других электродов.

В самом деле, при Рн 2 ,- 101.325 кПа выражение для потенци­ала водородного электрода будет иметь вид

4.103

Уравнение (4.103) справедливо для разбавленных растворов.

Таким образом, при насыщении водородного электрода водоро­дом под давлением в 101,325 кПа потенциал его зависит только от концентрации (активности) водородных ионов в растворе. В связи с этим водородный электрод может применяться на практике не только как электрод сравнения, но и как индикаторный электрод, потенциал которого находится в прямой зависимости от присутст­вия Н + -ионов в растворе.

Приготовление водородного электрода представляет значитель­ные трудности. Нелегко добиться, чтобы давление газообразного водорода при насыщении платины равнялось точно 101,325 кПа. Кроме того, газообразный водород должен поступать для насыще­ния со строго постоянной скоростью, к тому же для насыщения не­обходимо применять совершенно чистый водород, так как уже весь­ма малые количества примесей, особенно H 2 S и H 3 As, «отравляют» поверхность платины и тем самым препятствуют установлению рав­новесия Н 2 ↔2Н + +2е - . Получение водорода высокой степени чисто­ты связано со значительным усложнением аппаратуры и самого процесса работы. Поэтому на практике чаще применяется более простой каломельный электрод, обладающий устойчивым и отлич­но воспроизводимым потенциалом.

Каломельный электрод. Неудобства, связанные с практическим применением водородного электрода сравнения, привели к необхо­димости создания других, более удобных электродов сравнения, од­ним из которых является каломельный электрод.

Для приготовления каломельного электрода на дно сосуда наливают тщательно очищенную ртуть. Последнюю сверху покрывают пастой, которая получается растиранием каломели Hg 2 Cl 2 с несколькими каплями чистой ртути в присутствии раствора хлорида калия КСl. Поверх пасты наливают раствор КСl, насыщен­ный каломелью. Металлическая ртуть, добавляемая в пасту, предо­храняет от окисления каломели до HgCl 2 . В ртуть погружают пла­тиновый контакт, от которого уже идет медная проволока к клемме. Каломельный электрод схематически записывается следующим об­разом: Hg|Hg 2 Cl 2 , KC1. Запятая между Hg 2 Cl 2 и КСl означает, что между этими веществами нет поверхности раздела, так как они на­ходятся в одном растворе.

Рассмотрим, как работает каломельный электрод. Каломель, растворяясь в воде, диссоциирует с образованием ионов Hg+ и Сl - :

В присутствии хлорида калия, содержащего одноименный с кало­мелью ион хлора, растворимость каломели снижается. Таким обра­зом, при данной концентрации КСl и данной температуре концен­трация ионов Hg+ постоянна, чем, собственно, и обеспечивается не­обходимая устойчивость потенциала каломельного электрода.

Потенциал (ε к) в каломельном электроде возникает на поверх­ности соприкосновения металлической ртути с раствором ее ионов и может быть выражен следующим уравнением:

Так как ПР при постоянной температуре есть величина постоян­ная, увеличение концентрации иона хлора может оказать существен­ное влияние на концентрацию ионов ртути, а следовательно, и на потенциал каломельного электрода.

Из уравнения (4.105)

Объединяя постоянные при данной температуре величины ε 0 Н g и Ж lg (ПР) в одну величину и обозначая ее через ε о к, получим уравнение потенциала каломельного электрода:


Пользуясь каломельным электродом, можно опытным путем оп­ределить потенциал любого электрода. Так, для определения по­тенциала цинкового электрода составляют гальваническую цепь из цинка, погруженного в раствор ZnSO 4 , и каломельного электрода

Допустим, что экспериментально определенная э.д.с. этой цепи дает величину E=1,0103 В. Потенциал каломельного электрода ε к =0,2503 В. Потенциал цинкового электрода E=ε к -ε Zn , откуда ε Zn =ε K -Е, или e Zn = 0,2503-1,0103 = -0,76 В.

Заменяя в данном элементе цинковый элект­род медным, можно определить потенциал меди и т. д. Таким образом можно определить потен­циалы почти всех электродов.

Хлорсеребряный электрод. Помимо каломель­ного электрода, в лабораторной практике в ка­честве электрода сравнения широкое распростра­нение получил также хлорсеребряный электрод. Этот электрод представляет собой серебряную проволоку или пластинку, припаянную к мед­ной проволоке и впаянную в стеклянную трубку. Серебро электролитически покрывают слоем хло­рида серебра и помещают в раствор КСl или НС1.

Потенциал хлорсеребряного электрода, так же как и каломельного, зависит от концентрации (активности) ио­нов хлора в растворе и выражается уравнением

4.109

где ε хс - потенциал хлорсеребряного электрода; е о хс - нормальный потенциал хлорсеребряного электрода. Схематически хлорсеребря­ный электрод записывается следующим образом:

Потенциал этого электрода возникает на границе раздела серебро-раствор хлористого серебра.

При этом имеет место следующая электродная реакция:

Ввиду чрезвычайно малой растворимости AgCl потенциал хлорсе­ребряного электрода имеет положительный знак по отношению к нормальному водородному электроду.

В 1 н. растворе КСl потенциал хлорсеребряного электрода по во­дородной шкале при 298 К равен 0,2381 В, а в 0,1 н. растворе ε x c = 0,2900 В и т. д. По сравнению с каломельным электродом хлорсеребряный электрод имеет значительно меньший температурный коэффициент, т. е. его потенциал в меньшей степени изменяется с температурой.

Индикаторные электроды.

Для определения концентрации (активности) различных ионов в растворе электрометрическим методом на практике используются гальванические элементы, составленные из двух электродов - элек­трода сравнения с устойчивым и хорошо известным потенциалом и индикаторного, потенциал которого зависит от концентрации (активности) определяемо­го иона в растворе. В качестве электродов сравнения наиболее часто применяют кало­мельный и хлорсеребряный электроды. Водородный электрод для этой цели в силу его громоздкости употребляют значительно ре­же. Гораздо чаще этот электрод используют в качестве индикаторного электрода при определении активности водородных ионов (рН) в исследуемых растворах.

Остановимся на характеристике индика­торных электродов, получивших за послед­ние годы наиболее широкое распростране­ние в различных областях народного хозяй­ства.

Хингидронный электрод. Одним из ши­роко распространенных в практике электро­дов, потенциал которых зависит от активно­сти водородных ионов в растворе, является так называемый хингидронный электрод (рис. 4.16). Этот электрод весьма выгодно отличается от водородного электрода своей простотой и удобством в работе. Он предоставляет собой платиновую проволоку 1, опу­щенную в сосуд с исследуемым раствором 2, в котором предварительно растворяют избыточное количество порошка хингидрона 3. Хингидрон представляет собой эквимолекулярное соединение двух органических соединений - хинона С 6 Н 4 О 2 и гидрохинона С б Н 4 (ОН) 2 , кристаллизующихся в виде мелких темно-зеленых с ме­таллическим блеском игл. Хинон является дикетоном, а гидрохи­нон- двухатомным спиртом.

В состав хингидрона входит одна молекула хинона и одна моле­кула гидрохинона С 6 Н 4 О 2 ·С 6 Н 4 (ОН) 2 . При приготовлении хингидронного электрода хингидрон всегда берут в количестве, гарантиру­ющем насыщенность им раствора, т. е. он должен оставаться час­тично не растворившимся в осадке. Необходимо отметить, что на­сыщенный раствор получается при внесении очень маленькой ще­потки хингидрона, так как его растворимость в воде составляет все­го около 0,005 моль на 1 л воды.

Рассмотрим теорию хингидронного электрода. При растворении в воде происходят следующие процессы: хингидрон распадается на хинон и гидрохинон:

Гидрохинон, являясь слабой кислотой, в незначительной степени диссоциирует на ионы по уравнению

В свою очередь образовавшийся ион хинона может окисляться в хи­нон при условии отвода электронов:

Суммарная реакция, протекающая на катоде,

Константа равновесия этой реакции

4.109

Благодаря тому, что в растворе, насыщенном хингидроном, концен­трации хинона и гидрохинона равны, концентрация водородного иона постоянна.

Хингидронный электрод можно рассматривать как водородный при очень малом давлении водорода (приблизительно 10 -25 МПа). Предполагают, что в этом случае вблизи электрода протекает реак­ция

Образующийся газообразный водород насыщает под таким давле­нием платиновую проволоку или пластинку, опущенную в раствор. Электроны, образующиеся согласно реакции (г), переходят на платину, в силу чего возникает разность потенциалов между плати­ной и прилегающим раствором. Таким образом, потенциал данной системы зависит от соотношения концентраций окисленной и восста­новленной форм и от концентрации ионов водорода в растворе. С учетом этого уравнение электродного потенциала хингидронного электрода имеет вид

Из формулы (4.111) видно, что потенциал хингидронного электрода находится в прямой зависимости от концентрации (точнее, от активности) во­дородных ионов в растворе. В результате практичес­ких измерений было уста­новлено, что нормальный по­тенциал хингидронного элек­трода (а н + =1) равен 0,7044 В при 291 К. Поэто­му, подставляя в уравнение (4.111) вместо ε 0 хг и Ж их численные значения, полу­чим окончательное уравне­ние потенциала хингидронного электрода:

Стеклянный электрод. Этот электрод в настоящее время полу­чил самое широкое распространение. Для изготовления стеклянного электрода применяют стекло определенного химического состава. Одной из наиболее часто употребляющихся форм стеклянного элек­трода является стеклянная трубка, заканчивающаяся тонкостенным шариком. Шарик заполняют раствором НСl с определенной концен­трацией ионов Н + , в который погружен вспомогательный электрод (например, хлорсеребряный). Иногда, стеклянные электроды изго­товляют в виде тонкостенной мембраны из стекла, обладающего во­дородной функцией. Мембрана припаивается к концу стеклянной трубки (рис. 4.17). Стеклянный электрод отличается от уже рассмотренных элек­тродов тем, что в соответствующей ему электродной реакции не участвуют электроны. Наружная поверхность стеклянной мембраны служит источником водородных ионов и обменивается ими с раство­ром подобно водородному электроду. Иными словами, электродная реакция сводится здесь к обмену ионами водорода между двумя фазами - раствором и стеклом: Н + = Н + ст. Поскольку заряд водо­родного иона соответствует элементарному положительному количеству электричества и переход иона водорода из одной фазы в дру­гую эквивалентен перемещению единичного заряда (n = 1), потен­циал стеклянного электрода (ε ст) может быть выражен следующим уравнением:
4.113

где ε 0 ст - стандартный потенциал стеклянного электрода.

Как показали исследования, в реакцию обмена, помимо ионов водорода, вовлекаются также входящие в состав стекла ионы ще­лочного металла. При этом они частично заменяются на ионы водо­рода, а сами переходят в раствор. Между поверхностным слоем стек­ла и раствором устанавливается равновесие ионообменного про­цесса:

где М + в зависимости от сорта стекла могут быть ионами лития, натрия или другого щелочного металла.

Условие равновесия этой реакции выражается законом действу­ющих масс:

уравнение константы обмена можно переписать в следу­ющем виде:

Замена а н+ /а н ст+ в уравнении электродного потенциала стекла (4.113) его значением из уравнения (4.117) приводит к следу­ющему выражению:

т. е. электрод обладает водородной функцией и потому может служить индикаторным электродом при определении рН.

Если в растворе а н+ <<К обм а м +, то

Стеклянный электрод с металлической функцией может исполь­зоваться в качестве индикаторного электрода для определения ак­тивности ионов соответствующего щелочного металла.

Таким образом, в зависимости от сорта стекла (точнее, от раз­мера константы обмена) стеклянный электрод может обладать водородной и металлической функцией.

Изложенные представления о стеклянном электроде лежат в ос­нове термодинамической теории стеклянного электрода, разработан­ной Б. П. Никольским (1937) и основанной на представлении о су­ществовании обмена ионами между стеклом и раствором.

Схематически стеклянный электрод с водородной функцией можно записать так:

В качестве внутреннего электрода здесь взят хлорсеребряный электрод.

Ввиду того, что в уравнении стеклянного электрода (4.121) ве­личина Ж на практике получается несколько меньше теоретической и ε 0 ст зависит от сорта стекла и даже от способа приготовления электрода (т. е. является неустойчивой величиной), стеклянный электрод (так же как и сурьмяный) перед определением рН иссле­дуемого раствора предварительно калибруют по стандартным бу­ферным растворам, рН которых точно известен.

Преимущество стеклянного электрода перед водородным и хингидронным электродами заключается в том, что он позволяет опре­делять рН раствора любого химического со­единения в достаточно широком диапазоне значений.

Мембранные электрические потенциалы существуют фактически у всех клеток организма. Некоторые клетки, например нервные и мышечные, способны генерировать быстро-изменяющиеся электрохимические импульсы, которые используются для передачи сигналов вдоль мембран этих клеток. В клетках других типов, например железистых, макрофагах и реснитчатых, локальные изменения мембранных потенциалов также активируют многие клеточные функции. В данной главе обсуждаются мембранные потенциалы, генерируемые нервными и мышечными клетками в покое и в активном состоянии.

Диффузионный потенциал , обусловленный различием ионных концентраций по обеим сторонам мембраны. Концентрация ионов калия внутри нервного волокна - высокая, но снаружи - очень низкая. Предположим, что в этом случае мембрана проницаема для ионов калия, но непроницаема для других ионов. Из-за большого градиента концентрации существует мощная тенденция к диффузии из клетки через мембрану большого числа ионов калия. В процессе диффузии они выносят наружу положительные электрические заряды, в результате мембрана снаружи заряжается положительно, а внутри - отрицательно, поскольку оставшиеся внутри отрицательные анионы не диффундируют из клетки вместе с ионами калия.

В течение примерно 1 мсек разность потенциалов между внутренней и наружной сторонами мембраны, называемая диффузионным потенциалом, становится достаточно большой, чтобы блокировать дальнейшую диффузию ионов калия наружу, несмотря на их высокий градиент концентрации. В нервных волокнах млекопитающих необходимая для этого разность потенциалов составляет около 94 мВ с отрицательным зарядом внутри волокна. Эти ионы также имеют положительный заряд, но на этот раз мембрана высокопроницаема для ионов натрия и непроницаема для других ионов. Диффузия положительно заряженных ионов натрия внутрь волокна создает мембранный потенциал противоположной полярности по сравнению с мембранным потенциалом на рисунке - с отрицательным зарядом снаружи и положительным внутри.

Как и в первом случае, мембранный потенциал в течение доли миллисекунды становится достаточным для прекращения диффузии ионов натрия внутрь волокна. В этом случае для нервных волокон млекопитающих потенциал равен примерно 61 мВ с положительным зарядом внутри волокна.

Таким образом, разность концентраций ионов через избирательно проницаемую мембрану при соответствующих условиях может создавать мембранный потенциал. В следующих разделах этой главы мы покажем, что быстрые изменения мембранных потенциалов, наблюдаемые при передаче нервных и мышечных импульсов, возникают в результате быстрого изменения диффузионных потенциалов.

Связь диффузионного потенциала с разностью концентраций. Потенциал Нернста. Уровень мембранного диффузионного потенциала, который полностью прекращает общую диффузию определенного иона через мембрану, называют потенциалом Нернста для этого иона. Величина потенциала Нернста определяется отношением концентраций специфического иона по обе стороны мембраны. Чем больше это отношение, тем больше стремление иона диффундировать в одном направлении и, следовательно, выше потенциал Нернста, необходимый для предупреждения общей диффузии. С помощью приведенного далее уравнения Нернста можно вычислить потенциал Нернста для любых одновалентных ионов в условиях нормальной температуры тела (37°С):
ЭДС (мВ) = ± 61 log (Концентрация внутри/Концентрация снаружи) , где ЭДС - электродвижущая сила (разность потенциалов).

При использовании этой формулы потенциал внеклеточной жидкости снаружи мембраны обычно принимают равным нулю, а потенциал Нернста представляет потенциал внутри мембраны. Кроме того, знак потенциала положительный (+), если диффундирующий изнутри наружу ион является отрицательным, и отрицательный (-), если ион - положительный. Следовательно, если концентрация положительных ионов калия внутри в 10 раз больше, чем снаружи, десятичный логарифм 10 равен 1, поэтому потенциал внутри, согласно уравнению Нернста, должен быть равен -61 мВ.