Как читать химические формулы. Формулы по химии

Задачи на определение формулы органического вещества бывают нескольких видов. Обычно решение этих задач не представляет особых сложностей, однако часто выпускники теряют баллы на этой задаче. Причин бывает несколько:

  1. Некорректное оформление;
  2. Решение не математическим путем, а методом перебора;
  3. Неверно составленная общая формула вещества;
  4. Ошибки в уравнении реакции с участием вещества, записанного в общем виде.

Типы задач в задании С5.

  1. Определение формулы вещества по массовым долям химических элементов или по общей формуле вещества;
  2. Определение формулы вещества по продуктам сгорания;
  3. Определение формулы вещества по химическим свойствам.

Необходимые теоретические сведения.

  1. Массовая доля элемента в веществе.
    Массовая доля элемента — это его содержание в веществе в процентах по массе.
    Например, в веществе состава С 2 Н 4 содержится 2 атома углерода и 4 атома водорода. Если взять 1 молекулу такого вещества, то его молекулярная масса будет равна:
    Мr(С 2 Н 4) = 2 12 + 4 1 = 28 а.е.м. и там содержится 2 12 а.е.м. углерода.

    Чтобы найти массовую долю углерода в этом веществе, надо его массу разделить на массу всего вещества:
    ω(C) = 12 2 / 28 = 0,857 или 85,7%.
    Если вещество имеет общую формулу С х Н у О z , то массовые доли каждого их атомов так же равны отношению их массы к массе всего вещества. Масса х атомов С равна — 12х, масса у атомов Н — у, масса z атомов кислорода — 16z.
    Тогда
    ω(C) = 12 х / (12х + у + 16z)

    Если записать эту формулу в общем виде, то получится следующее выражение:

  2. Молекулярная и простейшая формула вещества.

    Молекулярная (истинная) формула — формула, в которой отражается реальное число атомов каждого вида, входящих в молекулу вещества.
    Например, С 6 Н 6 — истинная формула бензола.
    Простейшая (эмпирическая) формула — показывает соотношение атомов в веществе.
    Например, для бензола соотношение С:Н = 1:1, т.е. простейшая формула бензола — СН.
    Молекулярная формула может совпадать с простейшей или быть кратной ей.

    Примеры.

    Если в задаче даны только массовые доли элементов, то в процессе решения задачи можно вычислить только простейшую формулу вещества. Для получения истинной формулы в задаче обычно даются дополнительные данные — молярная масса, относительная или абсолютная плотность вещества или другие данные, с помощью которых можно определить молярную массу вещества.

  3. Относительная плотность газа Х по газу У — D поУ (Х).
    Относительная плотность D — это величина, которая показывает, во сколько раз газ Х тяжелее газа У. Её рассчитывают как отношение молярных масс газов Х и У:
    D поУ (Х) = М(Х) / М(У)
    Часто для расчетов используют относительные плотности газов по водороду и по воздуху .
    Относительная плотность газа Х по водороду:
    D по H 2 = M (газа Х) / M (H 2) = M (газа Х) / 2
    Воздух — это смесь газов, поэтому для него можно рассчитать только среднюю молярную массу. Её величина принята за 29 г/моль (исходя из примерного усреднённого состава).
    Поэтому:
    D по возд. = М (газа Х) / 29
  4. Абсолютная плотность газа при нормальных условиях.

    Абсолютная плотность газа — это масса 1 л газа при нормальных условиях. Обычно для газов её измеряют в г/л.
    ρ = m (газа) / V (газа)
    Если взять 1 моль газа, то тогда:
    ρ = М / V m ,
    а молярную массу газа можно найти, умножая плотность на молярный объём.

  5. Общие формулы веществ разных классов.
    Часто для решения задач с химическими реакциями удобно пользоваться не обычной общей формулой, а формулой, в которой выделена отдельно кратная связь или функциональная группа.
    Класс органических веществ Общая молекулярная формула Формула с выделенной кратной связью и функциональной группой
    Алканы C n H 2n+2
    Алкены C n H 2n C n H 2n+1 -CH=CH 2
    Алкины C n H 2n−2 C n H 2n+1 -C≡CH
    Диены C n H 2n−2
    Гомологи бензола C n H 2n−6 С 6 Н 5 -С n H 2n+1
    Предельные одноатомные спирты C n H 2n+2 O C n H 2n+1 -OH
    Многоатомные спирты C n H 2n+2 O x C n H 2n+2−x (OH) x
    Предельные альдегиды C n H 2n O
    Сложные эфиры C n H 2n O 2

Определение формул веществ по массовым долям атомов, входящих в его состав.

Решение таких задач состоит из двух частей:

  • сначала находят мольное соотношение атомов в веществе — оно соответствует его простейшей формуле. Например, для вещества состава А х В у соотношение количеств веществ А и В соответствует соотношению числа их атомов в молекуле:
    х: у = n(A) : n(B);
  • затем, используя молярную массу вещества, определяют его истинную формулу.

    Пример 1.
    Определить формулу вещества, если оно содержит 84,21% С и 15,79% Н и имеет относительную плотность по воздуху, равную 3,93.

Решение примера 1.

  1. Пусть масса вещества равна 100 г. Тогда масса С будет равна 84,21 г, а масса Н — 15,79 г.
  2. Найдём количество вещества каждого атома:
    ν(C) = m / M = 84,21 / 12 = 7,0175 моль,
    ν(H) = 15,79 / 1 = 15,79 моль.
  3. Определяем мольное соотношение атомов С и Н:
    С: Н = 7,0175: 15,79 (сократим оба числа на меньшее) = 1: 2,25 (домножим на 4) = 4: 9.
    Таким образом, простейшая формула — С 4 Н 9 .
  4. По относительной плотности рассчитаем молярную массу:
    М = D (возд.) 29 = 114 г/моль.
    Молярная масса, соответствующая простейшей формуле С 4 Н 9 — 57 г/моль, это в 2 раза меньше истинно молярной массы.
    Значит, истинная формула — С 8 Н 18 .

Есть гораздо более простой метод решения такой задачи, но, к сожалению, за него не поставят полный балл . Зато он подойдёт для проверки истинной формулы, т.е. с его помощью вы можете проверить своё решение.

Метод 2: Находим истинную молярную массу (114 г/моль), а затем находим массы атомов углерода и водорода в этом веществе по их массовым долям.
m(C) = 114 0,8421 = 96; т.е. число атомов С 96/12 = 8
m(H) = 114 0,1579 = 18; т.е число атомов Н 18/1 = 18.
Формула вещества — С 8 Н 18 .

Ответ: С 8 Н 18 .

    Пример 2.
    Определить формулу алкина с плотностью 2,41 г/л при нормальных условиях.

Решение примера 2.

Общая формула алкина С n H 2n−2
Как, имея плотность газообразного алкина, найти его молярную массу? Плотность ρ — это масса 1 литра газа при нормальных условиях.
Так как 1 моль вещества занимает объём 22,4 л, то необходимо узнать, сколько весят 22,4 л такого газа:
M = (плотность ρ) (молярный объём V m) = 2,41 г/л 22,4 л/моль = 54 г/моль.
Далее, составим уравнение, связывающее молярную массу и n:

14 n − 2 = 54, n = 4.
Значит, алкин имеет формулу С 4 Н 6 .

Ответ: С 4 Н 6 .

    Пример 3.
    Определить формулу предельного альдегида, если известно, что 3 10 22 молекул этого альдегида весят 4,3 г.

Решение примера 3.

В этой задаче дано число молекул и соответствующая масса. Исходя из этих данных, нам необходимо вновь найти величину молярной массы вещества.
Для этого нужно вспомнить, какое число молекул содержится в 1 моль вещества.
Это число Авогадро: N a = 6,02 10 23 (молекул).
Значит, можно найти количество вещества альдегида:
ν = N / Na = 3 10 22 / 6,02 10 23 = 0,05 моль ,
и молярную массу:
М = m / n = 4,3 / 0,05 = 86 г/моль .
Далее, как в предыдущем примере, составляем уравнение и находим n.
Общая формула предельного альдегида С n H 2n O, то есть М = 14n + 16 = 86, n = 5 .

Ответ: С 5 Н 10 О, пентаналь.

    Пример 4.
    Определить формулу дихлоралкана, содержащего 31,86 % углерода.

Решение примера 4.

Общая формула дихлоралкана: С n H 2n Cl 2 , там 2 атома хлора и n атомов углерода.
Тогда массовая доля углерода равна:
ω(C) = (число атомов C в молекуле) (атомная масса C) / (молекулярная масса дихлоралкана)
0,3186 = n 12 / (14n + 71)
n = 3, вещество — дихлорпропан.

Ответ: С 3 Н 6 Cl 2 , дихлорпропан.

Определение формул веществ по продуктам сгорания.

В задачах на сгорание количества веществ элементов, входящих в исследуемое вещество, определяют по объёмам и массам продуктов сгорания — углекислого газа, воды, азота и других. Остальное решение — такое же, как и в первом типе задач.

    Пример 5.
    448 мл (н. у.) газообразного предельного нециклического углеводорода сожгли, и продукты реакции пропустили через избыток известковой воды, при этом образовалось 8 г осадка. Какой углеводород был взят?

Решение примера 5.

  1. Общая формула газообразного предельного нециклического углеводорода (алкана) — C n H 2n+2
    Тогда схема реакции сгорания выглядит так:

    C n H 2n+2 + О 2 → CO 2 + H 2 O
    Нетрудно заметить, что при сгорании 1 моль алкана выделится n моль углекислого газа.

    Количество вещества алкана находим по его объёму (не забудьте перевести миллилитры в литры!):

    ν(C n H 2n+2) = 0,488 / 22,4 = 0,02 моль.

  2. При пропускании углекислого газа через известковую воду Са(ОН) 2 выпадает осадок карбоната кальция:

    СО 2 + Са(ОН) 2 = СаСО 3 + Н 2 О

    Масса осадка карбоната кальция — 8 г, молярная масса карбоната кальция 100 г/моль.

    Значит, его количество вещества
    ν(СаСО 3) = 8 / 100 = 0,08 моль.
    Количество вещества углекислого газа тоже 0,08 моль.

  3. Количество углекислого газа в 4 раза больше чем алкана, значит формула алкана С 4 Н 10 .

Ответ: С 4 Н 10 .

    Пример 6.
    Относительная плотность паров органического соединения по азоту равна 2. При сжигании 9,8 г этого соединения образуется 15,68 л углекислого газа (н. у) и 12,6 г воды. Выведите молекулярную формулу органического соединения.

Решение примера 6.

Так как вещество при сгорании превращается в углекислый газ и воду, значит, оно состоит из атомов С, Н и, возможно, О. Поэтому его общую формулу можно записать как С х Н у О z .

  1. Схему реакции сгорания мы можем записать (без расстановки коэффициентов):

    С х Н у О z + О 2 → CO 2 + H 2 O

    Весь углерод из исходного вещества переходит в углекислый газ, а весь водород — в воду.

  2. Находим количества веществ CO 2 и H 2 O, и определяем, сколько моль атомов С и Н в них содержится:
    ν(CO 2) = V / V m = 15,68 / 22,4 = 0,7 моль.
    На одну молекулу CO 2 приходится один атом С, значит, углерода столько же моль, сколько CO 2 .

    ν(C) = 0,7 моль

    В одной молекуле воды содержатся два атома Н, значит количество водорода в два раза больше , чем воды.
    ν(H) = 0,7 2 = 1,4 моль.

  3. Проверяем наличие в веществе кислорода. Для этого из массы всего исходного вещества надо вычесть массы С и Н.
    m(C) = 0,7 12 = 8,4 г, m(H) = 1,4 1 = 1,4 г
    Масса всего вещества 9,8 г.
    m(O) = 9,8 − 8,4 − 1,4 = 0 , т.е.в данном веществе нет атомов кислорода.
    Если бы кислород в данном веществе присутствовал, то по его массе можно было бы найти количество вещества и рассчитывать простейшую формулу, исходя из наличия трёх разных атомов.
  4. Дальнейшие действия вам уже знакомы: поиск простейшей и истинной формул.
    С: Н = 0,7: 1,4 = 1: 2
    Простейшая формула СН 2 .
  5. Истинную молярную массу ищем по относительной плотности газа по азоту (не забудьте, что азот состоит из двухатомных молекул N 2 и его молярная масса 28 г/моль):
    M ист. = D по N 2 M (N 2) = 2 28 = 56 г/моль.
    Истиная формула СН 2 , её молярная масса 14.
    56 / 14 = 4.
    Истинная формула С 4 Н 8 .

Ответ: С 4 Н 8 .

    Пример 7.
    Определите молекулярную формулу вещества, при сгорании 9 г которого образовалось 17,6 г CO 2 , 12,6 г воды и азот. Относительная плотность этого вещества по водороду — 22,5. Определить молекулярную формулу вещества.

Решение примера 7.

  1. Вещество содержит атомы С,Н и N. Так как масса азота в продуктах сгорания не дана, её надо будет рассчитывать, исходя из массы всего органического вещества.
    Схема реакции горения:
    С х Н у N z + O 2 → CO 2 + H 2 O + N 2
  2. Находим количества веществ CO 2 и H 2 O, и определяем, сколько моль атомов С и Н в них содержится:

    ν(CO 2) = m / M = 17,6 / 44 = 0,4 моль.
    ν(C) = 0,4 моль.
    ν(Н 2 О) = m / M = 12,6 / 18 = 0,7 моль.
    ν(H) = 0,7 2 = 1,4 моль.

  3. Находим массу азота в исходном веществе.
    Для этого из массы всего исходного вещества надо вычесть массы С и Н.

    M(C) = 0,4 12 = 4,8 г,
    m(H) = 1,4 1 = 1,4 г

    Масса всего вещества 9,8 г.

    M(N) = 9 − 4,8 − 1,4 = 2,8 г,
    ν(N) = m /M = 2,8 / 14 = 0,2 моль.

  4. C: H: N = 0,4: 1,4: 0,2 = 2: 7: 1
    Простейшая формула — С 2 Н 7 N.
    Истинная молярная масса
    М = D по Н 2 М(Н 2) = 22,5 2 = 45 г/моль.
    Она совпадает с молярной массой, рассчитанной для простейшей формулы. То есть это и есть истинная формула вещества.

Ответ: С 2 Н 7 N.

    Пример 8.
    Вещества содержит С, Н, О и S. При сгорании 11 г его выделилось 8,8 г CO 2 , 5,4 г Н 2 О, а сера была полностью переведена в сульфат бария, масса которого оказалась равна 23,3 г. Определить формулу вещества.

Решение примера 8.

Формулу заданного вещества можно представить как C x H y S z O k . При его сжигании получается углекислый газ, вода и сернистый газ, который затем превращают в сульфат бария. Соответственно, вся сера из исходного вещества превращена в сульфат бария.

  1. Находим количества веществ углекислого газа, воды и сульфата бария и соответствующих химических элементов из исследуемого вещества:

    ν(CO 2) = m/M = 8,8/44 = 0,2 моль.
    ν(C) = 0,2 моль.
    ν(Н 2 О) = m / M = 5,4 / 18 = 0,3 моль.
    ν(H) = 0,6 моль.
    ν(BaSO 4) = 23,3 / 233 = 0,1 моль.
    ν(S) = 0,1 моль.

  2. Рассчитываем предполагаемую массу кислорода в исходном веществе:

    M(C) = 0,2 12 = 2,4 г
    m(H) = 0,6 1 = 0,6 г
    m(S) = 0,1 32 = 3,2 г
    m(O) = m вещества − m(C) − m(H) − m(S) = 11 − 2,4 − 0,6 − 3,2 = 4,8 г,
    ν(O) = m / M = 4,8 / 16 = 0,3 моль

  3. Находим мольное соотношение элементов в веществе:
    C: H: S: O = 0,2: 0,6: 0,1: 0,3 = 2: 6: 1: 3
    Формула вещества C 2 H 6 SO 3 .
    Надо отметить, что таким образом мы получили только простейшую формулу.
    Однако, полученная формула является истинной, поскольку при попытке удвоения этой формулы (С 4 Н 12 S 2 O 6) получается, что на 4 атома углерода, помимо серы и кислорода, приходится 12 атомов Н, а это невозможно.

Ответ: C 2 H 6 SO 3 .

Определение формул веществ по химическим свойствам.

    Пример 9.
    Определить формулу алкадиена, если г его могут обесцветить 80 г 2%-го раствора брома.

Решение примера 9.

  1. Общая формула алкадиенов — С n H 2n−2 .
    Запишем уравнение реакции присоединения брома к алкадиену, не забывая, что в молекуле диена две двойные связи и, соответственно, в реакцию с 1 моль диена вступят 2 моль брома:
    С n H 2n−2 + 2Br 2 → С n H 2n−2 Br 4
  2. Так как в задаче даны масса и процентная концентрация раствора брома, прореагировавшего с диеном, можно рассчитать количества вещества прореагировавшего брома:

    M(Br 2) = m раствора ω = 80 0,02 = 1,6 г
    ν(Br 2) = m / M = 1,6 / 160 = 0,01 моль.

  3. Так как количество брома, вступившего в реакцию, в 2 раза больше, чем алкадиена, можно найти количество диена и (так как известна его масса) его молярную массу:
    0,005 0,01
    С n H 2n−2 + 2Br 2 → С n H 2n−2 Br 4

    М диена = m / ν = 3,4 / 0,05 = 68 г/моль .

  4. Находим формулу алкадиена по его общей формул, выражая молярную массу через n:

    14n − 2 = 68
    n = 5.

    Это пентадиен С 5 Н 8 .

Ответ: C 5 H 8 .

    Пример 10.
    При взаимодействии 0,74 г предельного одноатомного спирта с металлическим натрием выделился водород в количестве, достаточном для гидрирования 112 мл пропена (н. у.). Что это за спирт?

Решение примера 10.

  1. Формула предельного одноатомного спирта — C n H 2n+1 OH. Здесь удобно записывать спирт в такой форме, в которой легко составить уравнение реакции — т.е. с выделенной отдельно группой ОН.
  2. Составим уравнения реакций (нельзя забывать о необходимости уравнивать реакции):

    2C n H 2n+1 OH + 2Na → 2C n H 2n+1 ONa + H 2
    C 3 H 6 + H 2 → C 3 H 8

  3. Можно найти количество пропена, а по нему — количество водорода. Зная количество водорода, по реакции находим количество вещества спирта:

    ν(C 3 H 6) = V / V m = 0,112 / 22,4 = 0,005 моль => ν(H 2) = 0,005 моль,
    ν спирта = 0,005 2 = 0,01 моль.

  4. Находим молярную массу спирта и n:

    M спирта = m / ν = 0,74 / 0,01 = 74 г/моль,
    14n + 18 = 74
    14n = 56
    n = 4.

    Спирт — бутанол С 4 Н 7 ОН.

Ответ: C 4 H 7 OH.

    Пример 11.
    Определить формулу сложного эфира, при гидролизе 2,64 г которого выделяется 1,38 г спирта и 1,8 г одноосновной карбоновой кислоты.

Решение примера 11.

  1. Общую формулу сложного эфира, состоящего из спирта и кислоты с разным числом атомов углерода можно представить в таком виде:
    C n H 2n+1 COOC m H 2m+1
    Соответственно, спирт будет иметь формулу
    C m H 2m+1 OH,
    а кислота
    C n H 2n+1 COOH .
    Уравнение гидролиза сложного эфира:
    C n H 2n+1 COOC m H 2m+1 + H 2 O → C m H 2m+1 OH + C n H 2n+1 COOH
  2. Согласно закону сохранения массы веществ, сумма масс исходных веществ и сумма масс продуктов реакции равны.
    Поэтому из данных задачи можно найти массу воды:

    M H 2 O = (масса кислоты) + (масса спирта) − (масса эфира) = 1,38 + 1,8 − 2,64 = 0,54 г
    ν H 2 O = m / M = 0,54 / 18 = 0,03 моль

    Соответственно, количества веществ кислоты и спирта тоже равны моль.
    Можно найти их молярные массы:

    М кислоты = m / ν = 1,8 / 0,03 = 60 г/моль,
    М спирта = 1,38 / 0,03 = 46 г/моль.

    Получим два уравнения, из которых найдём m и n:

    M C n H 2n+1 COOH = 14n + 46 = 60, n = 1 — уксусная кислота
    M C m H 2m+1 OH = 14m + 18 = 46, m = 2 — этанол.

    Таким образом, искомый эфир — это этиловый эфир уксусной кислоты, этилацетат.

Ответ: CH 3 COOC 2 H 5 .

    Пример 12.
    Определить формулу аминокислоты, если при действии на 8,9 г её избытком гидроксида натрия можно получить 11,1 г натриевой соли этой кислоты.

Решение примера 12.

  1. Общая формула аминокислоты (если считать, что она не содержит никаких других функциональных групп, кроме одной аминогруппы и одной карбоксильной):
    NH 2 -CH(R)-COOH .
    Можно было бы записать её разными способами, но для удобства написания уравнения реакции лучше выделять в формуле аминокислоты функциональные группы отдельно.
  2. Можно составить уравнение реакции этой аминокислоты с гидроксидом натрия:
    NH 2 -CH(R)-COOH + NaOH → NH 2 -CH(R)-COONa + H 2 O
    Количества вещества аминокислоты и её натриевой соли — равны. При этом мы не можем найти массу какого-либо из веществ в уравнении реакции. Поэтому в таких задачах надо выразить количества веществ аминокислоты и её соли через молярные массы и приравнять их:

    M(аминокислоты NH 2 -CH(R)-COOH) = 74 + М R
    M(соли NH 2 -CH(R)-COONa) = 96 + М R
    ν аминокислоты = 8,9 / (74 + М R),
    ν соли = 11,1 / (96 + М R)
    8,9 / (74 + М R) = 11,1 / (96 + М R)
    М R = 15

    Легко увидеть, что R = CH 3 .
    Можно это сделать математически, если принять, что R — C n H 2n+1 .
    14n + 1 = 15, n = 1 . Установите формулу предельной одноосновной карбоновой кислоты, кальциевая соль которой содержит 30,77 % кальция.

    Часть 2. Определение формулы вещества по продуктам сгорания.

    2-1. Относительная плотность паров органического соединения по сернистому газу равна 2. При сжигании 19,2 г этого вещества образуется 52,8 г углекислого газа (н.у.) и 21,6 г воды. Выведите молекулярную формулу органического соединения.

    2-2. При сжигании органического вещества массой 1,78 г в избытке кислорода получили 0,28 г азота, 1,344 л (н.у.) СО 2 и 1,26 г воды. Определите молекулярную формулу вещества, зная, что в указанной навеске вещества содержится 1,204 10 22 молекул.

    2-3. Углекислый газ, полученный при сгорании 3,4 г углеводорода, пропустили через избыток раствора гидроксида кальция и получили 25 г осадка. Выведите простейшую формулу углеводорода.

    2-4. При сгорании органического вещества, содержащего С, Н и хлор, выделилось 6,72 л (н.у.) углекислого газа, 5,4 г воды, 3,65 г хлороводорода. Установите молекулярную формулу сгоревшего вещества.

    2-5. (ЕГЭ-2011) При сгорании амина выделилось 0,448 л (н.у.) углекислого газа, 0,495 г воды и 0,056 л азота. Определить молекулярную формулу этого амина.

    Часть 3. Определение формулы вещества по химическим свойствам.

    3-1. Определить формулу алкена, если известно, что он 5,6 г его при присоединении воды образуют 7,4 г спирта.

    3-2. Для окисления 2,9 г предельного альдегида до кислоты потребовалось 9,8 г гидроксида меди (II). Определить формулу альдегида.

    3-3. Одноосновная моноаминокислота массой 3 г с избытком бромоводорода образует 6,24 г соли. Определить формулу аминокислоты.

    3-4. При взаимодействии предельного двухатомного спирта массой 2,7 г с избытком калия выделилось 0,672 л водорода. Определить формулу спирта.

    3-5. (ЕГЭ-2011) При окислении предельного одноатомного спирта оксидом меди (II) получили 9,73 г альдегида, 8,65 г меди и воду. Определить молекулярную формулу этого спирта.

    Ответы и комментарии к задачам для самостоятельного решения.

    1-2. С 3 Н 6 (NH 2) 2

    1-3. C 2 H 4 (COOH) 2

    1-5. (HCOO) 2 Ca — формиат кальция, соль муравьиной кислоты

    2-1. С 8 Н 16 О

    2-2. С 3 Н 7 NO

    2-3. С 5 Н 8 (массу водорода находим, вычитая из массы углеводорода массу углерода)

    2-4. C 3 H 7 Cl (не забудьте, что атомы водорода содержатся не только в воде, но и в HCl)

    3-2. С 3 Н 6 О

    3-3. С 2 Н 5 NO 2

    Химия – наука о составе, строении, свойствах и превращениях веществ.

    Атомно-молекулярное учение. Вещества состоят из химических частиц (молекул, атомов, ионов), которые имеют сложное строение и состоят из элементарных частиц (протонов, нейтронов, электронов).

    Атом – нейтральная частица, состоящая из положительного ядра и электронов.

    Молекула – устойчивая группа атомов, связанных химическими связями.

    Химический элемент – вид атомов с одинаковым зарядом ядра. Элемент обозначают

    где X – символ элемента, Z – порядковый номер элемента в Периодической системе элементов Д.И. Менделеева, A – массовое число. Порядковый номер Z равен заряду ядра атома, числу протонов в ядре атома и числу электронов в атоме. Массовое число A равно сумме чисел протонов и нейтронов в атоме. Число нейтронов равно разности A – Z.

    Изотопы – атомы одного элемента, имеющие разные массовые числа.

    Относительная атомная масса (A r) – отношение средней массы атома элемента естественного изотопического состава к 1 / 12 массы атома изотопа углерода 12 С.

    Относительная молекулярная масса (M r) – отношение средней массы молекулы вещества естественного изотопического состава к 1 / 12 части массы атома изотопа углерода 12 С.

    Атомная единица массы (а.е.м) – 1 / 12 часть массы атома изотопа углерода 12 С. 1 а.е. м = 1,66 ? 10 -24 г.

    Моль – количество вещества, содержащее столько структурных единиц (атомов, молекул, ионов), сколько содержится атомов в 0,012 кг изотопа углерода 12 С. Моль – количество вещества, содержащее 6,02 10 23 структурных единиц (атомов, молекул, ионов).

    n = N/N A , где n – количество вещества (моль), N – число частиц, a N A – постоянная Авогадро. Количество вещества может обозначаться также и символом v.

    Постоянная Авогадро N A = 6,02 10 23 частиц/моль.

    Молярная масса M (г/моль) – отношение массы вещества m (г) к количеству вещества n (моль):

    М = m/n, откуда: m = М n и n = m/М.

    Молярный объем газа V M (л/моль) – отношение объема газа V (л) к количеству вещества этого газа n (моль). При нормальных условиях V M = 22,4 л/моль.

    Нормальные условия: температура t = 0°C, или Т = 273 К, давление р = 1 атм = 760 мм. рт. ст. = 101 325 Па = 101,325 кПа.

    V M = V/n, откуда: V = V M n и n = V/V M .

    В результате получается общая формула:

    n = m/M = V/V M = N/N A .

    Эквивалент – реальная или условная частица, взаимодействующая с одним атомом водорода, или замещающая его, или эквивалентная ему каким-либо другим способом.

    Молярная масса эквивалентов М э – отношение массы вещества к количеству эквивалентов этого вещества: М э = m/n (экв ) .

    В реакциях обмена зарядов молярная масса эквивалентов вещества

    с молярной массой М равна: М э = М/(n ? m).

    В окислительно-восстановительных реакциях молярная масса эквивалентов вещества с молярной массой М равна: М э = М/n(e), где n(e) – число переданных электронов.

    Закон эквивалентов – массы реагирующих веществ 1 и 2 пропорциональны молярным массам их эквивалентов. m 1 /m 2 = М Э1 /М Э2 , или m 1 /М Э1 = m 2 /М Э2 , или n 1 = n 2 , где m 1 и m 2 – массы двух веществ, М Э1 и М Э2 – молярные массы эквивалентов, n 1 и n 2 – количества эквивалентов этих веществ.

    Для растворов закон эквивалентов может быть записан в следующем виде:

    c Э1 V 1 = c Э2 V 2 , где с Э1 , с Э2 , V 1 и V 2 – молярные концентрации эквивалентов и объемы растворов этих двух веществ.

    Объединенный газовый закон: pV = nRT, где p – давление (Па, кПа), V – объем (м 3 , л), n – количество вещества газа (моль), T – температура (К), T (К) = t (°C) + 273, R – константа, R = 8,314 Дж/(К? моль), при этом Дж = Па м 3 = кПа л.

    2. Строение атома и Периодический закон

    Корпускулярно-волновой дуализм материи – представление о том, что каждый объект может иметь и волновые, и корпускулярные свойства. Луи де Бройль предложил формулу, связывающую волновые и корпускулярные свойства объектов: ? = h/(mV), где h – постоянная Планка, ? – длина волны, которая соответствует каждому телу с массой m и скоростью V. Хотя волновые свойства существуют для всех объектов, но наблюдаться они могут лишь для микрообъектов, имеющих массы порядка массы атома и электрона.

    Принцип неопределенности Гейзенберга: ?(mV x) ?х > h/2n или ?V x ?x > h/(2?m), где m – масса частицы, x – ее координата, V x – скорость в направлении x, ? – неопределенность, погрешность определения. Принцип неопределенности означает, что нельзя одновременно сколь угодно точно указать положение (координату x) и скорость (V x) частицы.

    Частицы с маленькими массами (атомы, ядра, электроны, молекулы) не являются частицами в понимании этого механикой Ньютона и не могут изучаться классической физикой. Они изучаются квантовой физикой.

    Главное квантовое число n принимает значения 1, 2, 3, 4, 5, 6 и 7, соответствующие электронным уровням (слоям) К, L, M, N, О, Р и Q.

    Уровень – пространство, где расположены электроны с одинаковым числом n. Электроны разных уровней пространственно и энергетически отделены друг от друга, поскольку число n определяет энергию электронов Е (чем больше n, тем больше Е) и расстояние R между электронами и ядром (чем больше n, тем больше R).

    Орбитальное (побочное, азимутальное) квантовое число l принимает значения в зависимости от числа n: l = 0, 1,…(n – 1). Например, если n = 2, то l = 0, 1; если n = 3, то l = 0, 1, 2. Число l характеризует подуровень (подслой).

    Подуровень – пространство, где расположены электроны с определенными n и l. Подуровни данного уровня обозначаются в зависимости от числа l: s – если l = 0, p – если l = 1, d – если l = 2, f – если l = 3. Подуровни данного атома обозначаются в зависимости от чисел n и l, например: 2s (п = 2, l = 0), 3d (n = 3, l = 2) и т. д. Подуровни данного уровня имеют разную энергию (чем больше l, тем больше Е): E s < E < Е А < … и разную форму орбиталей, составляющих эти подуровни: s-орбиталь имеет форму шара, p -орбиталь имеет форму гантели и т. д.

    Магнитное квантовое число m 1 характеризует ориентацию орбитального магнитного момента, равного l, в пространстве относительно внешнего магнитного поля и принимает значения: – l,…-1, 0, 1,…l, т. е. всего (2l + 1) значение. Например, если l = 2, то m 1 = -2, -1, 0, 1, 2.

    Орбиталь (часть подуровня) – пространство, где расположены электроны (не более двух) с определенными n, l, m 1 . Подуровень содержит 2l+1 орбиталь. Например, d – подуровень содержит пять d-орбиталей. Орбитали одного подуровня, имеющие разные числа m 1 , имеют одинаковую энергию.

    Магнитное спиновое число m s характеризует ориентацию собственного магнитного момента электрона s, равного?, относительно внешнего магнитного поля и принимает два значению: +? и _ ?.

    Электроны в атоме занимают уровни, подуровни и орбитали согласно следующим правилам.

    Правило Паули: в одном атоме два электрона не могут иметь четыре одинаковых квантовых числа. Они должны отличаться по меньшей мере одним квантовым числом.

    Из правила Паули следует, что на орбитали могут располагаться не более двух электронов, на подуровне может содержаться не более 2(2l + 1) электронов, на уровне содержится не более 2n 2 электронов.

    Правило Клечковского: заполнение электронных подуровней осуществляется в порядке возрастания суммы (n + l), а в случае одинаковой суммы (n + l) – в порядке возрастания числа n.

    Графическая форма правила Клечковского.


    Согласно правилу Клечковского, заполнение подуровней осуществляется в следующем порядке: 1s, 2s, 2р, 3s, Зр, 4s, 3d, 4р, 5s, 4d, 5р, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s,…

    Хотя заполнение подуровней происходит по правилу Клечковского, в электронной формуле подуровни записываются последовательно по уровням: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4р, 4d, 4f и т. д. Таким образом, электронная формула атома брома записывается следующим образом: Br(35e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 .

    Электронные конфигурации ряда атомов отличаются от предсказанных по правилу Клечковского. Так, для Сr и Cu:

    Сr(24e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 и Cu(29e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

    Правило Хунда (Гунда): заполнение ор-биталей данного подуровня осуществляется так, чтобы суммарный спин был максимален. Орбитали данного подуровня заполняются сначала по одному электрону.

    Электронные конфигурации атомов можно записать по уровням, подуровням, ор-биталям. Например, электронная формула Р(15e) может быть записана:

    а) по уровням)2)8)5;

    б) по подуровням 1s 2 2s 2 2p 6 3s 2 3p 3 ;

    в) по орбиталям


    Примеры электронных формул некоторых атомов и ионов:

    V(23e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 4s 2 ;

    V 3+ (20e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 0 .

    3. Химическая связь

    3.1. Метод валентных связей

    Согласно методу валентных связей, связь между атомами А и В образуется с помощью общей пары электронов.

    Ковалентная связь. Донорно-ацепторная связь.

    Валентность характеризует способность атомов образовывать химические связи и равна числу химических связей, образованных атомом. Согласно методу валентных связей, валентность равна числу общих пар электронов, а в случае ковалентной связи валентность равна числу неспаренных электронов на внешнем уровне атома в его основном или возбужденных состояниях.

    Валентность атомов

    Например, для углерода и серы:


    Насыщаемость ковалентной связи: атомы образуют ограниченное число связей, равное их валентности.

    Гибридизация атомных орбиталей – смешение атомных орбиталей (АО) разных подуровней атома, электроны которых участвуют в образовании эквивалентных?-связей. Эквивалентность гибридных орбиталей (ГО) объясняет эквивалентность образующихся химических связей. Например, в случае четырехвалентного атома углерода имеется один 2s– и три 2p -электрона. Чтобы объяснить эквивалентность четырех?-связей, образованных углеродом в молекулах CH 4 , CF 4 и т. д., атомные одна s- и три р- орбитали заменяют четырьмя эквивалентными гибридными sp 3 -орбиталями:

    Направленность ковалентной связи состоит в том, что она образуется в направлении максимального перекрывания орбиталей, образующих общую пару электронов.

    В зависимости от типа гибридизации гибридные орбитали имеют определенное расположение в пространстве:

    sp – линейное, угол между осями орби-талей 180°;

    sp 2 – треугольное, углы между осями орбиталей 120°;

    sp 3 – тетраэдрическое, углы между осями орбиталей 109°;

    sp 3 d 1 – тригонально-бипирамидальное, углы 90° и 120°;

    sp 2 d 1 – квадратное, углы между осями орбиталей 90°;

    sp 3 d 2 – октаэдрическое, углы между осями орбиталей 90°.

    3.2. Теория молекулярных орбиталей

    Согласно теории молекулярных орбита-лей, молекула состоит из ядер и электронов. В молекулах электроны находятся на молекулярных орбиталях (МО). МО внешних электронов имеют сложное строение и рассматриваются как линейная комбинация внешних орбиталей атомов, составляющих молекулу. Число образующихся МО равно числу АО, участвующих в их образовании. Энергии МО могут быть ниже (связывающие МО), равны (несвязывающие МО) или выше (разрыхляющие, антисвя-зывающие МО), чем энергии образующих их АО.

    Условия взаимодействия АО

    1. АО взаимодействуют, если имеют близкие энергии.

    2. АО взаимодействуют, если они перекрываются.

    3. АО взаимодействуют, если имеют соответствующую симметрию.

    Для двухатомной молекулы АВ (или любой линейной молекулы) симметрия МО может быть:

    Если данная МО имеет ось симметрии,

    Если данная МО имеет плоскость симметрии,

    Если МО имеет две перпендикулярные плоскости симметрии.

    Присутствие электронов на связывающих МО стабилизирует систему, так как уменьшает энергию молекулы по сравнению с энергией атомов. Стабильность молекулы характеризуется порядком связи n, равным: n = (n св – n разр)/2, где n св и n разр - числа электронов на связывающих и разрыхляющих орбиталях.

    Заполнение МО электронами происходит по тем же правилам, что и заполнение АО в атоме, а именно: правилу Паули (на МО не может быть более двух электронов), правилу Хунда (суммарный спин должен быть максимален) и т. д.

    Взаимодействие 1s-AO атомов первого периода (Н и Не) приводит к образованию связывающей?-МО и разрыхляющей?*-МО:

    Электронные формулы молекул, порядки связей n, экспериментальные энергии связей Е и межмолекулярные расстояния R для двухатомных молекул из атомов первого периода приведены в следующей таблице:


    Другие атомы второго периода содержат, помимо 2s-AO, также и 2р х -, 2р y – и 2р z -АО, которые при взаимодействии могут образовывать?– и?-MO. Для атомов О, F и Ne энергии 2s– и 2р-АО существенно различаются, и можно пренебречь взаимодействием 2s-AO одного атома и 2р-АО другого атома, рассматривая взаимодействие между 2s-AO двух атомов отдельно от взаимодействия их 2р-АO. Схема МО для молекул O 2 , F 2 , Ne 2 имеет следующий вид:

    Для атомов В, С, N энергии 2s– и 2р-АО близки по своим энергиям, и 2s-AO одного атома взаимодействует с 2р z -АО другого атома. Поэтому порядок МО в молекулах В 2 , С 2 и N 2 отличается от порядка МО в молекулах O 2 , F 2 и Ne 2 . Ниже приведена схема МО для молекул В 2 , С 2 и N 2:

    На основании приведенных схем МО можно, например, записать электронные формулы молекул O 2 , O 2 + и O 2 ?:

    O 2 + (11e)? s 2 ? s *2 ? z 2 (? x 2 ? y 2)(? x *1 ? y *0)

    n = 2 R = 0,121 нм;

    O 2 (12e)? s 2 ? s *2 ? z 2 (? x 2 ? y 2)(? x *1 ? y *1)

    n = 2,5 R = 0,112 нм;

    O 2 ?(13e)? s 2 ? s *2 ? z 2 (? x 2 ? y 2)(? x *2 ? y *1)

    n = 1,5 R = 0,126 нм.

    В случае молекулы O 2 теория МО позволяет предвидеть большую прочность этой молекулы, поскольку n = 2, характер изменения энергий связи и межъядерных расстояний в ряду O 2 + – O 2 – O 2 ?, а также парамагнетизм молекулы O 2 , на верхних МО которой имеются два неспаренных электрона.

    3.3. Некоторые виды связей

    Ионная связь – электростатическая связь между ионами противоположных зарядов. Ионная связь может рассматриваться как предельный случай ковалентной полярной связи. Ионная связь образуется, если разница электроотрицательностей атомов?Х больше чем 1,5–2,0.

    Ионная связь является ненаправленной ненасыщаемой связью. В кристалле NaCl ион Na + притягивается всеми ионами Cl? и отталкивается всеми другими ионами Na + , независимо от направления взаимодействия и числа ионов. Это предопределяет большую устойчивость ионных кристаллов по сравнению с ионными молекулами.

    Водородная связь – связь между атомом водорода одной молекулы и электроотрицательным атомом (F, CI, N) другой молекулы.

    Существование водородной связи объясняет аномальные свойства воды: температура кипения воды гораздо выше, чем у ее химических аналогов: t кип (Н 2 O) = 100 °С, а t кип (H 2 S) = -61°C. Между молекулами H 2 S водородные связи не образуются.

    4. Закономерности протекания химических процессов

    4.1. Термохимия

    Энергия (Е) – способность производить работу. Механическая работа (А) совершается, например, газом при его расширении: А = р ?V.

    Реакции, которые идут с поглощением энергии, – эндотермические.

    Реакции, которые идут с выделением энергии, – экзотермические.

    Виды энергии: теплота, свет, электрическая, химическая, ядерная энергия и др.

    Типы энергии: кинетическая и потенциальная.

    Кинетическая энергия – энергия движущегося тела, это работа, которую может совершить тело до достижения им покоя.

    Теплота (Q) – вид кинетической энергии – связана с движением атомов и молекул. При сообщении телу массой (m) и удельной теплоемкостью (с) теплоты?Q его температура повышается на величину?t: ?Q = m с ?t, откуда?t = ?Q/(c т).

    Потенциальная энергия – энергия, приобретенная телом в результате изменения им или его составными частями положения в пространстве. Энергия химических связей – вид потенциальной энергии.

    Первый закон термодинамики: энергия может переходить из одного вида в другой, но не может исчезать или возникать.

    Внутренняя энергия (U) – сумма кинетической и потенциальной энергий частиц, составляющих тело. Поглощаемая в реакции теплота равна разности внутренней энергии продуктов реакции и реагентов (Q = ?U = U 2 – U 1), при условии, что система не совершила работы над окружающей средой. Если реакция идет при постоянном давлении, то выделяющиеся газы совершают работу против сил внешнего давления, и поглощаемая в ходе реакции теплота равна сумме изменений внутренней энергии ?U и работы А = р ?V. Эту поглощаемую при постоянном давлении теплоту называют изменением энтальпии: ?Н = ?U + р ?V, определяя энтальпию как Н = U + pV. Реакции жидких и твердых веществ протекают без существенного изменения объема (?V = 0), так что для этих реакций?Н близка к ?U (?Н = ?U ). Для реакций с изменением объема имеем ?Н > ?U , если идет расширение, и ?Н < ?U , если идет сжатие.

    Изменение энтальпии обычно относят для стандартного состояния вещества: т. е. для чистого вещества в определенном (твердом, жидком или газообразном) состоянии, при давлении 1 атм = 101 325 Па, температуре 298 К и концентрации веществ 1 моль/л.

    Стандартная энтальпия образования?Н обр – теплота, выделяемая или поглощаемая при образовании 1 моль вещества из простых веществ, его составляющих, при стандартных условиях. Так, например, ?Н обр (NaCl) = -411 кДж/моль. Это означает, что в реакции Na(тв) + ?Cl 2 (г) = NaCl(тв) при образовании 1 моль NaCl выделяется 411 кДж энергии.

    Стандартная энтальпия реакции?Н – изменение энтальпии в ходе химической реакции, определяется по формуле: = ?Н обр (продуктов) – ?Н обр (реагентов).

    Так для реакции NH 3 (г) + HCl(г) = NH 4 Cl(тв), зная?H o 6 p (NH 3)=-46 кДж/моль, ?H o 6 p (HCl) = -92 кДж/моль и?H o 6 p (NH 4 Cl) = -315 кДж/моль имеем:

    H = ?H o 6 p (NH 4 Cl) – ?H o 6 p (NH 3) – ?H o 6 p (HCl) = -315 – (-46) – (-92) = -177 кДж.

    Если?Н < 0, то реакция экзотермическая. Если?Н > 0, то реакция эндотермическая.

    Закон Гесса: стандартная энтальпия реакции зависит от стандартных энтальпий реагентов и продуктов и не зависит от пути протекания реакции.

    Самопроизвольно идущие процессы могут быть не только экзотермическими, т. е. процессами с уменьшением энергии (?Н < 0), но могут быть и эндотермическими процессами, т. е. процессами с увеличением энергии (?Н > 0). Во всех этих процессах «беспорядок» системы увеличивается.

    Энтропия S – физическая величина, характеризующая степень беспорядка системы. S – стандартная энтропия, ?S – изменение стандартной энтропии. Если?S > 0, беспорядок растет, если AS < 0, то беспорядок системы уменьшается. Для процессов в которых растет число частиц, ?S > 0. Для процессов, в которых число частиц уменьшается, ?S < 0. Например, энтропия меняется в ходе реакций:

    СаО(тв) + Н 2 O(ж) = Са(OH) 2 (тв), ?S < 0;

    CaCO 3 (тв) = СаО(тв) + CO 2 (г), ?S > 0.

    Самопроизвольно идут процессы с выделением энергии, т. е. для которых?Н < 0, и с увеличением энтропии, т. е. для которых?S > 0. Учет обоих факторов приводит к выражению для энергии Гиббса: G = Н – TS или?G = ?Н – Т ?S. Реакции, в которых энергия Гиббса уменьшается, т. е. ?G < 0, могут идти самопроизвольно. Реакции, в ходе которых энергия Гиббса увеличивается, т. е. ?G > 0, самопроизвольно не идут. Условие?G = 0 значит, что между продуктами и реагентами установилось равновесие.

    При низкой температуре, когда величина Т близка к нулю, идут лишь экзотермические реакции, так как T?S – мало и?G = ?Н < 0. При высоких температурах значения T?S велико, и, пренебрегая величиной?Н, имеем?G = – T?S, т. е. самопроизвольно будут идти процессы с увеличением энтропии, для которых?S > 0, a ?G < 0. При этом чем больше по абсолютной величине значение?G, тем более полно проходит данный процесс.

    Величина AG для той или иной реакции может быть определена по формуле:

    G = ?С обр (продуктов) – ?G o б p (реагентов).

    При этом величины?G o бр, а также?Н обр и?S o бр для большого числа веществ приведены в специальных таблицах.

    4.2. Химическая кинетика

    Скорость химической реакции (v ) определяется изменением молярной концентрации реагирующих веществ в единицу времени:

    где v – скорость реакции, с – молярная концентрация реагента, t – время.

    Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции (температуры, концентрации, присутствия катализатора и т. д.)

    Влияние концентрации. В случае простых реакций скорость реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их стехиометрическим коэффициентам.

    Для реакции

    где 1 и 2 соответственно направление прямой и обратной реакции:

    v 1 = k 1 ? [А] m ? [В] n и

    v 2 = k 2 ? [C] p ? [D] q

    где v – скорость реакции, k – константа скорости, [А] – молярная концентрация вещества А.

    Молекулярность реакции – число молекул, участвующих в элементарном акте реакции. Для простых реакций, например: mA + nB > рС + qD, молекулярность равна сумме коэффициентов (m + n). Реакции могут быть одномолекулярными, двумолекулярными и редко трехмолекулярными. Реакции более высокой молекулярности не встречаются.

    Порядок реакции равен сумме показателей степеней концентрации в экспериментальном выражении скорости химической реакции. Так, для сложной реакции

    mA + nB > рС + qD экспериментальное выражение скорости реакции имеет вид

    v 1 = k 1 ? [А] ? ? [В] ? и порядок реакции равен (? + ?). При этом? и? находятся экспериментально и могут не совпадать с m и n соответственно, поскольку уравнение сложной реакции представляет собой итог нескольких простых реакций.

    Влияние температуры. Скорость реакции зависит от числа эффективных столкновений молекул. Увеличение температуры увеличивает число активных молекул, сообщая им необходимую для протекания реакции энергию активации Е акт и увеличивает скорость химической реакции.

    Правило Вант-Гоффа. При увеличении температуры на 10° скорость реакции увеличивается в 2–4 раза. Математически это записывается в виде:

    v 2 = v 1 ? ? (t 2 – t 1)/10

    где v 1 и v 2 – скорости реакции при начальной (t 1) и конечной (t 2) температурах, ? – температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции при увеличении температуры на 10°.

    Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса:

    k = A ? e - E/(RT) ,

    где k – константа скорости, А – постоянная, не зависящая от температуры, е = 2,71828, Е – энергия активации, R = 8,314 Дж/(К? моль) – газовая постоянная; Т – температура (К). Видно, что константа скорости увеличивается с увеличением температуры и уменьшением энергии активации.

    4.3. Химическое равновесие

    Система находится в равновесии, если ее состояние не изменяется во времени. Равенство скоростей прямой и обратной реакции – условие сохранения равновесия системы.

    Примером обратимой реакции является реакция

    N 2 + 3H 2 - 2NH 3 .

    Закон действия масс: отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ (все концентрации указывают в степенях, равных их стехиометрическим коэффициентам) есть постоянная, называемая константой равновесия.


    Константа равновесия – это мера протекания прямой реакции.

    К = О – прямая реакция не идет;

    К = ? – прямая реакция идет до конца;

    К > 1 – равновесие сдвинуто вправо;

    К < 1 – равновесие сдвинуто влево.

    Константа равновесия реакции К связана с величиной изменения стандартной энергии Гиббса?G для этой же реакции:

    G = – RT lnK, или?G = -2,3RT lgK, или К= 10 -0,435?G/RT

    Если К > 1, то lgK > 0 и?G < 0, т. е. если равновесие сдвинуто вправо, то реакция – переход от исходного состояния к равновесному – идет самопроизвольно.

    Если К < 1, то lgK < 0 и?G > 0, т. е. если равновесие сдвинуто влево, то реакция самопроизвольно вправо не идет.

    Закон смещения равновесия: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, в системе возникает процесс, который противодействует внешнему воздействию.

    5. Окислительно-восстановительные реакции

    Окислительно-восстановите льные реакции – реакции, которые идут с изменением степеней окисления элементов.

    Окисление – процесс отдачи электронов.

    Восстановление – процесс присоединения электронов.

    Окислитель – атом, молекула или ион, который принимает электроны.

    Восстановитель – атом, молекула или ион, который отдает электроны.

    Окислители, принимая электроны, переходят в восстановленную форму:

    F 2 [ок. ] + 2e > 2F? [восст.].

    Восстановители, отдавая электроны, переходят в окисленную форму:

    Na 0 [восст. ] – 1e > Na + [ок.].

    Равновесие между окисленной и восстановленной формами характеризуется с помощью уравнения Нернста для окислительно-восстановительного потенциала:

    где Е 0 – стандартное значение окислительно-восстановительного потенциала; n – число переданных электронов; [восст. ] и [ок. ] – молярные концентрации соединения в восстановленной и окисленной формах соответственно.

    Величины стандартных электродных потенциалов Е 0 приведены в таблицах и характеризуют окислительные и восстановительные свойства соединений: чем поло-жительнее величина Е 0 , тем сильнее окислительные свойства, и чем отрицательнее значение Е 0 , тем сильнее восстановительные свойства.

    Например, для F 2 + 2e - 2F?Е 0 = 2,87 вольт, а для Na + + 1e - Na 0 Е 0 = -2,71 вольт (процесс всегда записывается для реакций восстановления).

    Окислительно-восстановительная реакция представляет собой совокупность двух полуреакций, окисления и восстановления, и характеризуется электродвижущей силой (э.д.с.) ?Е 0: ?Е 0 = ?Е 0 ок – ?Е 0 восст , где Е 0 ок и?Е 0 восст – стандартные потенциалы окислителя и восстановителя для данной реакции.

    Э.д.с. реакции?Е 0 связана с изменением свободной энергии Гиббса?G и константой равновесия реакции К:

    ?G = – nF ?Е 0 или?Е = (RT/nF) lnK.

    Э.д.с. реакции при нестандартных концентрациях?Е равна: ?Е = ?Е 0 – (RT/nF) ? IgK или?Е = ?Е 0 – (0,059/n )lgK .

    В случае равновесия?G = 0 и?Е = 0, откуда?Е = (0,059/n)lgK и К = 10 n?E/0,059 .

    Для самопроизвольного протекания реакции должны выполняться соотношения: ?G < 0 или К >> 1, которым соответствует условие?Е 0 > 0. Поэтому для определения возможности протекания данной окислительно-восстановительной реакции необходимо вычислить значение?Е 0 . Если?Е 0 > 0, реакция идет. Если?Е 0 < 0, реакция не идет.

    Химические источники тока

    Гальванические элементы – устройства, преобразующие энергию химической реакции в электрическую энергию.

    Гальванический элемент Даниэля состоит из цинкового и медного электродов, погруженных в растворы ZnSO 4 и CuSO 4 соответственно. Растворы электролитов сообщаются через пористую перегородку. При этом на цинковом электроде идет окисление: Zn > Zn 2+ + 2e, а на медном электроде – восстановление: Cu 2+ + 2e > Cu. В целом идет реакция: Zn + CuSO 4 = ZnSO 4 + Cu.

    Анод – электрод, на котором идет окисление. Катод – электрод, на котором идет восстановление. В гальванических элементах анод заряжен отрицательно, а катод – положительно. На схемах элементов металл и раствор отделены вертикальной чертой, а два раствора – двойной вертикальной чертой.

    Так, для реакции Zn + CuSO 4 = ZnSO 4 + Cu схемой гальванического элемента является запись: (-)Zn | ZnSO 4 || CuSO 4 | Cu(+).

    Электродвижущая сила (э.д.с.) реакции равна?Е 0 = Е 0 ок – Е 0 восст = Е 0 (Cu 2+ /Cu) – Е 0 (Zn 2+ /Zn) = 0,34 – (-0,76) = 1,10 В. Из-за потерь напряжение, создаваемое элементом, будет несколько меньше, чем?Е 0 . Если концентрации растворов отличаются от стандартных, равных 1 моль/л, то Е 0 ок и Е 0 восст вычисляются по уравнению Нернста, а затем вычисляется э.д.с. соответствующего гальванического элемента.

    Сухой элемент состоит их цинкового корпуса, пасты NH 4 Cl с крахмалом или мукой, смеси MnO 2 с графитом и графитового электрода. В ходе его работы идет реакция: Zn + 2NH 4 Cl + 2MnO 2 = Cl + 2MnOOH.

    Схема элемента: (-)Zn | NH 4 Cl | MnO 2 , C(+). Э.д.с. элемента – 1,5 В.

    Аккумуляторы. Свинцовый аккумулятор представляет собой две свинцовые пластины, погруженные в 30%-ный раствор серной кислоты и покрытые слоем нерастворимого PbSO 4 . При заряде аккумулятора на электродах идут процессы:

    PbSO 4 (тв) + 2e > Рb(тв) + SO 4 2-

    PbSO 4 (тв) + 2H 2 O > РbO 2 (тв) + 4H + + SO 4 2- + 2e

    При разряде аккумулятора на электродах идут процессы:

    РЬ(тв) + SO 4 2- > PbSO 4 (тв) + 2e

    РbO 2 (тв) + 4H + + SO 4 2- + 2e > PbSO 4 (тв) + 2Н 2 O

    Суммарную реакцию можно записать в виде:

    Для работы аккумулятор нуждается в регулярной зарядке и контроле концентрации серной кислоты, которая может несколько уменьшаться при работе аккумулятора.

    6. Растворы

    6.1. Концентрация растворов

    Массовая доля вещества в растворе w равна отношению массы растворенного вещества к массе раствора: w = m в-ва /m р-ра или w = m в-вa /(V ? ? ), так как m р-ра = V p-pa ? ? р-ра.

    Молярная концентрация с равна отношению числа молей растворенного вещества к объему раствора: с = n (моль)/V (л) или с = m/(М? V(л)).

    Молярная концентрация эквивалентов (нормальная или эквивалентная концентрация) с э равна отношению числа эквивалентов растворенного вещества к объему раствора: с э = n (моль экв.)/V (л) или с э = m/(М э? V(л)).

    6.2. Электролитическая диссоциация

    Электролитическая диссоциация – распад электролита на катионы и анионы под действием полярных молекул растворителя.

    Степень диссоциации? – отношение концентрации диссоциированных молекул (с дисс) к общей концентрации растворенных молекул (с об): ? = с дисс /с об.

    Электролиты можно разделить на сильные (? ~ 1) и слабые.

    Сильные электролиты (для них? ~ 1) – соли и основания, растворимые в воде, а также некоторые кислоты: HNO 3 , HCl, H 2 SO 4 , HI, HBr, HClO 4 и другие.

    Слабые электролиты (для них? << 1) – Н 2 O, NH 4 OH, малорастворимые основания и соли и многие кислоты: HF, H 2 SO 3 , H 2 CO 3 , H 2 S, CH 3 COOH и другие.

    Ионные уравнения реакций. В ионных уравнениях реакций сильные электролиты записываются в виде ионов, а слабые электролиты, малорастворимые вещества и газы – в виде молекул. Например:

    CaCO 3 v + 2HCl = CaCl 2 + Н 2 O + CO 2 ^

    CaCO 3 v + 2H + + 2Cl? = Са 2+ + 2Cl? + Н 2 O + CO 2 ^

    CaCO 3 v + 2Н + = Са 2+ + Н 2 O + CO 2 ^

    Реакции между ионами идут в сторону образования вещества, дающего меньше ионов, т. е. в сторону более слабого электролита или менее растворимого вещества.

    6.3. Диссоциация слабых электролитов

    Применим закон действия масс к равновесию между ионами и молекулами в растворе слабого электролита, например уксусной кислоты:

    CH 3 COOH - CH 3 COО? + Н +

    Константы равновесия реакций диссоциации называются константами диссоциации. Константы диссоциации характеризуют диссоциацию слабых электролитов: чем меньше константа, тем меньше диссоциирует слабый электролит, тем он слабее.

    Многоосновные кислоты диссоциируют ступенчато:

    Н 3 PO 4 - Н + + Н 2 PO 4 ?

    Константа равновесия суммарной реакции диссоциации равна произведению констант отдельных стадий диссоциации:

    Н 3 PO 4 - ЗН + + PO 4 3-

    Закон разбавления Оствальда: степень диссоциации слабого электролита (а) увеличивается при уменьшении его концентрации, т. е. при разбавлении:

    Влияние общего иона на диссоциацию слабого электролита: добавление общего иона уменьшает диссоциацию слабого электролита. Так, при добавлении к раствору слабого электролита CH 3 COOH

    CH 3 COOH - CH 3 COО? + Н + ? << 1

    сильного электролита, содержащего общий с CH 3 COOH ион, т. е. ацетат-ион, например CH 3 COОNa

    CH 3 COОNa - CH 3 COО? + Na + ? = 1

    концентрация ацетат-иона увеличивается, и равновесие диссоциации CH 3 COOH сдвигается влево, т. е. диссоциация кислоты уменьшается.

    6.4. Диссоциация сильных электролитов

    Активность иона а – концентрация иона, проявляющаяся в его свойствах.

    Коэффициент активности f – отношение активности иона а к концентрации с: f = а/с или а = fc.

    Если f = 1, то ионы свободны и не взаимодействуют между собой. Это имеет место в очень разбавленных растворах, в растворах слабых электролитов и т. д.

    Если f < 1, то ионы взаимодействуют между собой. Чем меньше f, тем больше взаимодействие между ионами.

    Коэффициент активности зависит от ионной силы раствора I: чем больше ионная сила, тем меньше коэффициент активности.

    Ионная сила раствора I зависит от зарядов z и концентраций с ионов:

    I = 0,52?с z 2 .

    Коэффициент активности зависит от заряда иона: чем больше заряд иона, тем меньше коэффициент активности. Математически зависимость коэффициента активности f от ионной силы I и заряда иона z записывается с помощью формулы Дебая-Хюккеля:

    Коэффициенты активности ионов можно определить с помощью следующей таблицы:


    6.5 Ионное произведение воды. Водородный показатель

    Вода – слабый электролит – диссоциирует, образуя ионы Н + и OH?. Эти ионы гидратированы, т. е. соединены с несколькими молекулами воды, но для простоты их записывают в негидратированной форме

    Н 2 O - Н + + OH?.

    На основании закона действия масс, для этого равновесия:

    Концентрацию молекул воды [Н 2 O], т. е. число молей в 1 л воды, можно считать постоянной и равной [Н 2 O] = 1000 г/л: 18 г/моль = 55,6 моль/л. Отсюда:

    К [Н 2 O] = К (Н 2 O) = [Н + ] = 10 -14 (22°C).

    Ионное произведение воды – произведение концентраций [Н + ] и – есть величина постоянная при постоянной температуре и равная 10 -14 при 22°C.

    Ионное произведение воды увеличивается с увеличением температуры.

    Водородный показатель рН – отрицательный логарифм концентрации ионов водорода: рН = – lg. Аналогично: pOH = – lg.

    Логарифмирование ионного произведения воды дает: рН + рOH = 14.

    Величина рН характеризует реакцию среды.

    Если рН = 7, то [Н + ] = – нейтральная среда.

    Если рН < 7, то [Н + ] > – кислотная среда.

    Если рН > 7, то [Н + ] < – щелочная среда.

    6.6. Буферные растворы

    Буферные растворы – растворы, имеющие определенную концентрацию ионов водорода. рН этих растворов не меняется при разбавлении и мало меняется при добавлении небольших количеств кислот и щелочей.

    I. Раствор слабой кислоты НА, концентрация – с кисл, и ее соли с сильным основанием ВА, концентрация – с соли. Например, ацетатный буфер – раствор уксусной кислоты и ацетата натрия: CH 3 COOH + CHgCOONa.

    рН = рК кисл + lg(с соли /с кисл).

    II. Раствор слабого основания ВOH, концентрация – с осн, и его соли с сильной кислотой ВА, концентрация – с соли. Например, аммиачный буфер – раствор гидроксида аммония и хлорида аммония NH 4 OH + NH 4 Cl.

    рН = 14 – рК осн – lg(с соли /с осн).

    6.7. Гидролиз солей

    Гидролиз солей – взаимодействие ионов соли с водой с образованием слабого электролита.

    Примеры уравнений реакций гидролиза.

    I. Соль образована сильным основанием и слабой кислотой:

    Na 2 CO 3 + H 2 O - NaHCO 3 + NaOH

    2Na + + CO 3 2- + H 2 O - 2Na + + HCO 3 ? + OH?

    CO 3 2- + H 2 O - HCO 3 ? + OH?, pH > 7, щелочная среда.

    По второй ступени гидролиз практически не идет.

    II. Соль образована слабым основанием и сильной кислотой:

    AlCl 3 + H 2 O - (AlOH)Cl 2 + HCl

    Al 3+ + ЗCl? + H 2 O - AlOH 2+ + 2Cl? + Н + + Cl?

    Al 3+ + H 2 O - AlOH 2+ + Н + , рН < 7.

    По второй ступени гидролиз идет меньше, а по третьей ступени практически не идет.

    III. Соль образована сильным основанием и сильной кислотой:

    К + + NO 3 ? + Н 2 O ? нет гидролиза, рН? 7.

    IV. Соль образована слабым основанием и слабой кислотой:

    CH 3 COONH 4 + H 2 O - CH 3 COOH + NH 4 OH

    CH 3 COO? + NH 4 + + H 2 O - CH 3 COOH + NH 4 OH, рН = 7.

    В ряде случаев, когда соль образована очень слабыми основаниями и кислотами, идет полный гидролиз. В таблице растворимости у таких солей символ – «разлагаются водой»:

    Al 2 S 3 + 6Н 2 O = 2Al(OH) 3 v + 3H 2 S^

    Возможность полного гидролиза следует учитывать в обменных реакциях:

    Al 2 (SO 4) 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 v + 3Na 2 SO 4 + 3CO 2 ^

    Степень гидролиза h – отношение концентрации гидролизованных молекул к общей концентрации растворенных молекул.

    Для солей, образованных сильным основанием и слабой кислотой:

    = ch, рOH = – lg, рН = 14 – рOH.

    Из выражения следует, что степень гидролиза h (т. е. гидролиз) увеличивается:

    а) с увеличением температуры, так как увеличивается K(H 2 O);

    б) с уменьшением диссоциации кислоты, образующей соль: чем слабее кислота, тем больше гидролиз;

    в) с разбавлением: чем меньше с, тем больше гидролиз.

    Для солей, образованных слабым основанием и сильной кислотой

    [Н + ] = ch, рН = – lg.

    Для солей, образованных слабым основанием и слабой кислотой

    6.8. Протолитическая теория кислот и оснований

    Протолиз – процесс передачи протона.

    Протолиты – кислоты и основания, отдающие и принимающие протоны.

    Кислота – молекула или ион, способные отдавать протон. Каждой кислоте соответствует сопряженное с нею основание. Сила кислот характеризуется константой кислоты К к.

    Н 2 CO 3 + Н 2 O - Н 3 O + + HCO 3 ?

    К к = 4 ? 10 -7

    3+ + Н 2 O - 2+ + Н 3 O +

    К к = 9 ? 10 -6

    Основание – молекула или ион, способные принимать протон. Каждому основанию соответствует сопряженная с ним кислота. Сила оснований характеризуется константой основания К 0 .

    NH 3 ? Н 2 O (Н 2 O) - NH 4 + + OH?

    К 0 = 1,8 ?10 -5

    Амфолиты – протолиты, способные к отдаче и к присоединению протона.

    HCO 3 ? + H 2 O - Н 3 O + + CO 3 2-

    HCO 3 ? – кислота.

    HCO 3 ? + H 2 O - Н 2 CO 3 + OH?

    HCO 3 ? – основание.

    Для воды: Н 2 O+ Н 2 O - Н 3 O + + OH?

    K(H 2 O) = [Н 3 O + ] = 10 -14 и рН = – lg.

    Константы К к и К 0 для сопряженных кислот и оснований связаны между собой.

    НА + Н 2 O - Н 3 O + + А?,

    А? + Н 2 O - НА + OH?,

    7. Константа растворимости. Растворимость

    В системе, состоящей из раствора и осадка, идут два процесса – растворение осадка и осаждение. Равенство скоростей этих двух процессов является условием равновесия.

    Насыщенный раствор – раствор, который находится в равновесии с осадком.

    Закон действия масс в применении к равновесию между осадком и раствором дает:

    Поскольку = const,

    К = K s (AgCl) = .

    В общем виде имеем:

    А m B n (тв.) - m A +n + n B -m

    K s (A m B n) = [А +n ] m -m ] n .

    Константа растворимости K s (или произведение растворимости ПР) – произведение концентраций ионов в насыщенном растворе малорастворимого электролита – есть величина постоянная и зависит лишь от температуры.

    Растворимость малорастворимого вещества s может быть выражена в молях на литр. В зависимости от величины s вещества могут быть разделены на малорастворимые – s < 10 -4 моль/л, среднерастворимые – 10 -4 моль/л? s ? 10 -2 моль/л и хорошо растворимые s >10 -2 моль/л.

    Растворимость соединений связана с их произведением растворимости.


    Условие осаждения и растворения осадка

    В случае AgCl: AgCl - Ag + + Cl?

    K s = :

    а) условие равновесия между осадком и раствором: = K s .

    б) условие осаждения: > K s ; в ходе осаждения концентрации ионов уменьшаются до установления равновесия;

    в) условие растворения осадка или существования насыщенного раствора: < K s ; в ходе растворения осадка концентрация ионов увеличивается до установления равновесия.

    8. Координационные соединения

    Координационные (комплексные) соединения – соединения с донорно-акцеп-торной связью.

    Для K 3 :

    ионы внешней сферы – 3К + ,

    ион внутренней сферы – 3- ,

    комплексообразователь – Fe 3+ ,

    лиганды – 6CN?, их дентатность – 1,

    координационное число – 6.

    Примеры комплексообразователей: Ag + , Cu 2+ , Hg 2+ , Zn 2+ , Ni 2+ , Fe 3+ , Pt 4+ и др.

    Примеры лигандов: полярные молекулы Н 2 O, NH 3 , CO и анионы CN?, Cl?, OH? и др.

    Координационные числа: обычно 4 или 6, реже 2, 3 и др.

    Номенклатура. Называют сначала анион (в именительном падеже), затем катион (в родительном падеже). Названия некоторых лигандов: NH 3 – аммин, Н 2 O – акво, CN? – циано, Cl? – хлоро, OH? – гидроксо. Названия координационных чисел: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Указывают степень окисления комплек-сообразователя:

    Cl – хлорид диамминсеребра(I);

    SO 4 – сульфат тетрамминмеди(II);

    K 3 – гексацианоферрат(III) калия.

    Химическая связь.

    Теория валентных связей предполагает гибридизацию орбиталей центрального атома. Расположение образующихся при этом гибридных орбиталей определяет геометрию комплексов.

    Диамагнитный комплексный ион Fe(CN) 6 4- .

    Цианид-ион – донор

    Ион железа Fe 2+ – акцептор – имеет формулу 3d 6 4s 0 4p 0 . С учетом диамагнитности комплекса (все электроны спарены) и координационного числа (нужны 6 свободных орбиталей) имеем d 2 sp 3 -гибридизацию:

    Комплекс диамагнитный, низкоспиновый, внутриорбитальный, стабильный (не используются внешние электроны), октаэд-рический (d 2 sp 3 -гибридизация).

    Парамагнитный комплексный ион FeF 6 3- .

    Фторид-ион – донор.

    Ион железа Fe 3+ – акцептор – имеет формулу 3d 5 4s 0 4p 0 . С учетом парамагнитности комплекса (электроны распарены) и координационного числа (нужны 6 свободных орбиталей) имеем sp 3 d 2 -гибридизацию:

    Комплекс парамагнитный, высокоспиновый, внешнеорбитальный, нестабильный (использованы внешние 4d-орбитали), октаэдрический (sp 3 d 2 -гибридизация).

    Диссоциация координационных соединений.

    Координационные соединения в растворе полностью диссоциируют на ионы внутренней и внешней сфер.

    NO 3 > Ag(NH 3) 2 + + NO 3 ?, ? = 1.

    Ионы внутренней сферы, т. е. комплексные ионы, диссоциируют на ионы металла и лиганды, как слабые электролиты, по ступеням.


    где K 1 , К 2 , К 1 _ 2 называются константами нестойкости и характеризуют диссоциацию комплексов: чем меньше константа нестойкости, тем меньше диссоциирует комплекс, тем он устойчивее.

    В любой науке есть своя система обозначений. Химия в этом плане не исключение. Вам уже известно, что для обозначения химических элементов используются символы, образованные от латинских названий элементов. Химические элементы способны образовывать как простые, так и сложные вещества, состав которых можно выразить химической формулой.

    Чтобы написать химическую формулу простого вещества необходимо записать символ химического элемента, который образует простое вещество, и справа внизу записать цифру, показывающую количество его атомов. Данная цифра называется индексом.

    Например, химическая формула кислорода – О2. Цифра 2 после символа кислорода – это индекс, указывающий, что молекула кислорода состоит из двух атомов элемента кислорода.

    Индекс – число, показывающее в химической формуле количество атомов определенного типа Чтобы написать химическую формулу сложного вещества, необходимо знать, из атомов каких элементов оно состоит (качественный состав), и число атомов каждого элемента (количественный состав).

    Например, химическая формула пищевой соды – NaHCO3. В состав этого вещества входят атомы натрия, водорода, углерода, кислорода – это его качественный состав. Атомов натрия, водорода, углерода по одному, а атомов кислорода – три. Это количественный состав соды

    • Качественный состав вещества показывает, атомы каких элементов входят в его состав
    • Количественный состав вещества показывает количество атомов, которые входят в его состав

    Химическая формула – условная запись состава вещества при помощи химических символов и индексов

    Обратите внимание на то, что если в химической формуле присутствует только один атом одного вида, индекс 1 не ставится. Например, формулу углекислого газа записывают так – CO2, а не С1О2.

    Как правильно понимат ь химические формулы?

    При записи химических формул нередко встречаются цифры, которые записывают перед химической формулой.

    Например, 2Na, или 5О2. Что обозначают эти цифры и для чего они нужны? Цифры, записанные перед химической формулой, называют коэффициентами.

    Коэффициенты показывают общее количество частиц вещества: атомов, молекул, ионов.

    Коэффициент – число, которое показывает общее количество частиц.

    Коэффициент записывается перед химической формулой вещества молекул кислорода. Обратите внимание, что молекулы не могут состоять из одного атома, минимальное количество атомов в молекуле – два.

    • Таким образом, записи: 2Н, 4P обозначают два атома водорода и четыре атома фосфора соответственно.
    • Запись 2Н2 обозначает две молекулы водорода, содержащие по два атома элемента водорода.
    • Запись 4S8 – обозначает четыре молекулы серы, каждая из которых содержит восемь атомов элемента серы.
    • Подобная система обозначений количества частиц используется и для ионов. Запись 5K+ обозначает пять ионов калия .

    Стоит отметить, что ионы могут быть образованы не только атомом одного элемента.

    • Ионы, образованные атомами одного химического элемента, называют простыми: Li+, N3−.
    • Ионы, образованные несколькими химическими элементами, называют сложными: OH⎺, SO4 2−. Обратите внимание, что заряд иона обозначают верхним индексом.

    А что будет обозначать запись 2NaCl ?

    Если на этот вопрос ответить – две молекулы поваренной соли, то ответ не правильный. Поваренная соль, или хлорид натрия, имеет ионную кристаллическую решетку, то есть это ионное соединение и состоит из ионов Na+ и Сl⎺ . Пару этих ионов называют формульной единицей вещества. Таким образом, запись 2NaCl обозначает две формульных единицы хлорида натрия. Термин формульная единица используют так же и для веществ атомного строения.

    Формульная единица – наименьшая частица вещества немолекулярного строения Ионные соединения так же электронейтральны, как и молекулярные. Значит, положительный заряд катионов полностью уравновешен отрицательным зарядом анионов. Например, какова формульная единица вещества, состоящего из ионов Ag+ и PO4 3−? Очевидно, что для компенсации отрицательного заряда иона (заряд –3), необходимо иметь заряд +3. С учетом того, что катион серебра имеет заряд +1, то таких катионов понадобиться три. Значит формульная единица (формула) данного вещества – Ag3PO4.

    Таким образом, при помощи символов химических элементов, индексов и коэффициентов, можно четко составить химическую формулу вещества, которая даст информацию, как о качественном, так и о количественном составе вещества.

    В завершение рассмотрим, как правильно произносить химические формулы. Например, запись 3Ca2+ произносится: «три иона кальций два плюс» или «три иона кальция с зарядом два плюс». Запись 4НСl , произносится «четыре молекулы аш хлор». Запись 2NaCl , произносится как «две формульных единицы хлорида натрия».

    Закон постоянства состава вещества

    Одно и то же химическое соединение можно получить различными способами. Так, например, углекислый газ, CO2 , образуется при сжигании топлива: угля, природного газа. Во фруктах содержится много глюкозы. При длительном хранении фрукты начинают портиться, начинается процесс, называемый брожением глюкозы, в результате которого выделяется углекислый газ.

    Углекислый газ образуется и при нагревании таких горных пород, как мел, мрамор, известняк. Химические реакции совершенно разные, но вещество, образовавшееся в результате их протекания, имеет одинаковый качественный и количественный состав – CO2.

    Эта закономерность касается, в основном, веществ молекулярного строения. В случае веществ немолекулярного строения, возможны случаи, когда состав вещества зависит от методов его получения.

    Закон постоянства состава веществ молекулярного строения: состав сложного вещества всегда одинаков и не зависит от способа его получения

    Итог статьи по теме Химические формулы веществ :

    • Индекс – число, показывающее в химической формуле количество атомов определенного типа
    • Качественный состав вещества показывает, атомы каких элементов входят в его состав
    • Количественный состав вещества показывает количество атомов, которые входят в его состав
    • Химическая формула – условная запись состава вещества при помощи химических символов и индексов (если нужно)
    • Коэффициент – число, которое показывает общее количество частиц. Коэффициент записывается перед химической формулой вещества
    • Формульная единица – наименьшая частица вещества атомного или ионного строения

    Ну и чтобы завершить знакомство со спиртами, приведу ещё формулу другого известного вещества - холестерина . Далеко не все знают, что он является одноатомным спиртом!

    |`/`\\`|<`|w>`\`/|<`/w$color(red)HO$color()>\/`|0/`|/\<`|w>|_q_q_q<-dH>:a_q|0<|dH>`/<`|wH>`\|dH; #a_(A-72)<_(A-120,d+)>-/-/<->`\

    Гидроксильную группу в нём я обозначил красным цветом.

    Карбоновые кислоты

    Любой винодел знает, что вино должно храниться без доступа воздуха. Иначе оно скиснет. Но химики знают причину - если к спирту присоединить ещё один атом кислорода, то получится кислота.
    Посмотрим на формулы кислот, которые получаются из уже знакомых нам спиртов:
    Вещество Скелетная формула Брутто-формула
    Метановая кислота
    (муравьиная кислота)
    H/C`|O|\OH HCOOH O//\OH
    Этановая кислота
    (уксусная кислота)
    H-C-C\O-H; H|#C|H CH3-COOH /`|O|\OH
    Пропановая кислота
    (метилуксусная кислота)
    H-C-C-C\O-H; H|#2|H; H|#3|H CH3-CH2-COOH \/`|O|\OH
    Бутановая кислота
    (масляная кислота)
    H-C-C-C-C\O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-COOH /\/`|O|\OH
    Обобщённая формула {R}-C\O-H {R}-COOH или {R}-CO2H {R}/`|O|\OH

    Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH), которая и придаёт таким веществам кислотные свойства.

    Все, кто пробовал уксус, знают что он весьма кислый. Причиной этого является наличие в нём уксусной кислоты. Обычно столовый уксус содержит от 3 до 15% уксусной кислоты, а остальное (по большей части) - вода. Употребление в пищу уксусной кислоты в неразбавленном виде представляет опасность для жизни.

    Карбоновые кислоты могут иметь несколько карбоксильных групп. В этом случае они называются: двухосновная , трёхосновная и т.д...

    В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

    Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся. Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов. Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
    Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

    Радикалы

    Радикалы - это ещё одно понятие, которое оказало влияние на химические формулы. Само слово наверняка всем известно, но в химии радикалы не имеют ничего общего с политиками, бунтовщиками и прочими гражданами с активной позицией.
    Здесь это всего лишь фрагменты молекул. И сейчас мы разберёмся, в чём их особенность и познакомимся с новым способом записи химических формул.

    Выше по тексту уже несколько раз упоминались обобщённые формулы: спирты - {R}-OH и карбоновые кислоты - {R}-COOH . Напомню, что -OH и -COOH - это функциональные группы. А вот R - это и есть радикал. Не зря он изображается в виде буквы R.

    Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода. Ну а если отнять два атома водорода, то получится двухвалентный радикал.

    Радикалы в химии получили собственные названия. Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов. И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
    Всё это демонстрируется в следующей таблице.

    Название Структурная формула Обозначение Краткая формула Пример спирта
    Метил CH3-{} Me CH3 {Me}-OH CH3OH
    Этил CH3-CH2-{} Et C2H5 {Et}-OH C2H5OH
    Пропил CH3-CH2-CH2-{} Pr C3H7 {Pr}-OH C3H7OH
    Изопропил H3C\CH(*`/H3C*)-{} i-Pr C3H7 {i-Pr}-OH (CH3)2CHOH
    Фенил `/`=`\//-\\-{} Ph C6H5 {Ph}-OH C6H5OH

    Думаю, что здесь всё понятно. Хочу только обратить внимание на колонку, где приводятся примеры спиртов. Некоторые радикалы записываются в виде, напоминающем брутто-формулу, но функциональная группа записывается отдельно. Например, CH3-CH2-OH превращается в C2H5OH .
    А для разветвлённых цепочек вроде изопропила применяются конструкции со скобочками.

    Существует ещё такое явление, как свободные радикалы . Это радикалы, которые по каким-то причинам отделились от функциональных групп. При этом нарушается одно из тех правил, с которых мы начали изучение формул: число химических связей уже не соответствует валентности одного из атомов. Ну или можно сказать, что одна из связей становится незакрытой с одного конца. Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

    Знакомство с азотом. Амины

    Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот .
    Он обозначается латинской буквой N и имеет валентность, равную трём.

    Посмотрим, какие вещества получаются, если к знакомым нам углеводородам присоединить азот:

    Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
    Аминометан
    (метиламин)
    H-C-N\H;H|#C|H CH3-NH2 \NH2
    Аминоэтан
    (этиламин)
    H-C-C-N\H;H|#C|H;H|#3|H CH3-CH2-NH2 /\NH2
    Диметиламин H-C-N<`|H>-C-H; H|#-3|H; H|#2|H $L(1.3)H/N<_(A80,w+)CH3>\dCH3 /N<_(y-.5)H>\
    Аминобензол
    (Анилин)
    H\N|C\\C|C<\H>`//C<|H>`\C<`/H>`||C<`\H>/ NH2|C\\CH|CH`//C<_(y.5)H>`\HC`||HC/ NH2|\|`/`\`|/_o
    Триэтиламин $slope(45)H-C-C/N\C-C-H;H|#2|H; H|#3|H; H|#5|H;H|#6|H; #N`|C<`-H><-H>`|C<`-H><-H>`|H CH3-CH2-N<`|CH2-CH3>-CH2-CH3 \/N<`|/>\|

    Как Вы уже наверное догадались из названий, все эти вещества объединяются под общим названием амины . Функциональная группа {}-NH2 называется аминогруппой . Вот несколько обобщающих формул аминов:

    В общем, никаких особых новшеств здесь нет. Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии, используя какой-нибудь учебник или интернет.
    Но мне бы хотелось ещё рассказать о формулах в неорганической химии. Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

    Рациональные формулы

    Не следует делать вывод о том, что неорганическая химия проще, чем органическая. Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды. Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева. А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

    Так вот, ничего этого я рассказывать не буду. Тема моей статьи - химические формулы. А с ними как раз всё относительно просто.
    Наиболее часто в неорганической химии употребляются рациональные формулы . И мы сейчас разберёмся, чем же они отличаются от уже знакомых нам.

    Для начала, познакомимся с ещё одним элементом - кальцием. Это тоже весьма распространённый элемент.
    Обозначается он Ca и имеет валентность, равную двум. Посмотрим, какие соединения он образует с известными нам углеродом, кислородом и водородом.

    Вещество Структурная формула Рациональная формула Брутто-формула
    Оксид кальция Ca=O CaO
    Гидроксид кальция H-O-Ca-O-H Ca(OH)2
    Карбонат кальция $slope(45)Ca`/O\C|O`|/O`\#1 CaCO3
    Гидрокарбонат кальция HO/`|O|\O/Ca\O/`|O|\OH Ca(HCO3)2
    Угольная кислота H|O\C|O`|/O`|H H2CO3

    При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой. Но пока что не очень понятно, как они получаются. Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

    Кальций в чистом виде - это мягкий белый металл. В природе он не встречается. Но его вполне возможно купить в магазине химреактивов. Он обычно хранится в специальных баночках без доступа воздуха. Потому что на воздухе он вступает в реакцию с кислородом. Собственно, поэтому он и не встречается в природе.
    Итак, реакция кальция с кислородом:

    2Ca + O2 -> 2CaO

    Цифра 2 перед формулой вещества означает, что в реакции участвуют 2 молекулы.
    Из кальция и кислорода получается оксид кальция. Это вещество тоже не встречается в природе потому что он вступает в реакцию с водой:

    CaO + H2O -> Ca(OH2)

    Получается гидроксид кальция. Если присмотреться к его структурной формуле (в предыдущей таблице), то видно, что она образована одним атомом кальция и двумя гидроксильными группами, с которыми мы уже знакомы.
    Таковы законы химии: если гидроксильная группа присоединяется к органическому веществу, получается спирт, а если к металлу - то гидроксид.

    Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа. Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов, при пожарах и извержениях вулканов. Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

    CO2 + H2O <=> H2CO3

    Знак <=> говорит о том, что реакция может проходить в обе стороны при одинаковых условиях.

    Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой и превращается в малорастворимый карбонат кальция:

    Ca(OH)2 + H2CO3 -> CaCO3"|v" + 2H2O

    Стрелка вниз означает, что в результате реакции вещество выпадает в осадок.
    При дальнейшем контакте карбоната кальция с углекислым газом в присутствии воды происходит обратимая реакция образования кислой соли - гидрокарбоната кальция, который хорошо растворим в воде

    CaCO3 + CO2 + H2O <=> Ca(HCO3)2

    Этот процесс влияет на жесткость воды. При повышении температуры гидрокарбонат обратно превращается в карбонат. Поэтому в регионах с жесткой водой в чайниках образуется накипь.

    Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы. Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д...
    Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

    Этот небольшой рассказ о круговороте кальция в природе должен пояснить, для чего нужны рациональные формулы. Так вот, рациональные формулы записываются так, чтобы были видны функциональные группы. В нашем случае это:

    Кроме того, отдельные элементы - Ca, H, O(в оксидах) - тоже являются самостоятельными группами.

    Ионы

    Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо. А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

    В общем, природа химических связей обычно заключается в том, что одни элементы отдают электроны, а другие их получают. Электроны - это частицы с отрицательным зарядом. Элемент с полным набором электронов имеет нулевой заряд. Если он отдал электрон, то его заряд становится положительным, а если принял - то отрицатеньным. Например, водород имеет всего один электрон, который он достаточно легко отдаёт, превращаясь в положительный ион. Для этого существует специальная запись в химических формулах:

    H2O <=> H^+ + OH^-

    Здесь мы видим, что в результате электролитической диссоциации вода распадается на положительно заряженный ион водорода и отрицательно заряженную группу OH. Ион OH^- называется гидроксид-ион . Не следует его путать с гидроксильной группой, которая является не ионом, а частью какой-то молекулы. Знак + или - в верхнем правом углу демонстрирует заряд иона.
    А вот угольная кислота никогда не существует в виде самостоятельного вещества. Фактически, она является смесью ионов водорода и карбонат-ионов (или гидрокарбонат-ионов):

    H2CO3 = H^+ + HCO3^- <=> 2H^+ + CO3^2-

    Карбонат-ион имеет заряд 2-. Это означает, что к нему присоединились два электрона.

    Отрицательно заряженные ионы называются анионы . Обычно к ним относятся кислотные остатки.
    Положительно заряженные ионы - катионы . Чаще всего это водород и металлы.

    И вот здесь наверное можно полностью понять смысл рациональных формул. В них сначала записывается катион, а за ним - анион. Даже если формула не содержит никаких зарядов.

    Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами. Вот скелетная формула гидрокарбонат-аниона:

    Здесь заряд указан непосредственно возле атома кислорода, который получил лишний электрон, и поэтому лишился одной чёрточки. Проще говоря, каждый лишний электрон уменьшает количество химических связей, изображаемых в структурной формуле. С другой стороны, если у какого-то узла структурной формулы стоит знак +, то у него появляется дополнительная палочка. Как всегда, подобный факт нужно продемонстрировать на примере. Но среди знакомых нам веществ не встречается ни одного катиона, который состоял бы из нескольких атомов.
    А таким веществом является аммиак . Его водный раствор часто называется нашатырный спирт и входит в состав любой аптечки. Аммиак является соединением водорода и азота и имеет рациональную формулу NH3 . Рассмотрим химическую реакцию, которая происходит при растворении аммиака в воде:

    NH3 + H2O <=> NH4^+ + OH^-

    То же самое, но с использованием структурных формул:

    H|N<`/H>\H + H-O-H <=> H|N^+<_(A75,w+)H><_(A15,d+)H>`/H + O`^-# -H

    В правой части мы видим два иона. Они образовались в результате того, что один атом водорода переместился из молекулы воды в молекулу аммиака. Но этот атом переместился без своего электрона. Анион нам уже знаком - это гидроксид-ион. А катион называется аммоний . Он проявляет свойства, схожие с металлами. Например, он может объединиться с кислотным остатком. Вещество, образованное соединением аммония с карбонат-анионом называется карбонат аммония: (NH4)2CO3 .
    Вот уравнение реакции взаимодействия аммония с карбонат-анионом, записанное в виде структурных формул:

    2H|N^+<`/H><_(A75,w+)H>_(A15,d+)H + O^-\C|O`|/O^- <=> H|N^+<`/H><_(A75,w+)H>_(A15,d+)H`|0O^-\C|O`|/O^-|0H_(A-15,d-)N^+<_(A105,w+)H><\H>`|H

    Но в таком виде уравнение реакции дано в демонстрационных целях. Обычно уравнения используют рациональные формулы:

    2NH4^+ + CO3^2- <=> (NH4)2CO3

    Система Хилла

    Итак, можно считать, что мы уже изучили структурные и рациональные формулы. Но есть ещё один вопрос, который стоит рассмотреть подробнее. Чем же всё-таки отличаются брутто-формулы от рациональных?
    Мы знаем почему рациональная формула угольной кислоты записывается H2CO3 , а не как-то иначе. (Сначала идут два катиона водорода, а за ними карбонат-анион). Но почему брутто-формула записывается CH2O3 ?

    В принципе, рациональная формула угольной кислоты вполне может считаться истинной формулой, ведь в ней нет повторяющихся элементов. В отличие от NH4OH или Ca(OH)2 .
    Но к брутто-формулам очень часто применяется дополнительное правило, определяющее порядок следования элементов. Правило довольно простое: сначала ставится углерод, затем водород, а дальше остальные элементы в алфавитном порядке.
    Вот и выходит CH2O3 - углерод, водород, кислород. Это называется системой Хилла. Она используется практически во всех химических справочниках. И в этой статье тоже.

    Немного о системе easyChem

    Вместо заключения мне хотелось бы рассказать о системе easyChem. Она разработана для того, чтобы все те формулы, которые мы тут обсуждали, можно было легко вставить в текст. Собственно, все формулы в этой статье нарисованы при помощи easyChem.

    Зачем вообще нужна какая-то система для вывода формул? Всё дело в том, что стандартный способ отображения информации в интернет-браузерах - это язык гипертекстовой разметки (HTML). Он ориентирован на обработку текстовой информации.

    Рациональные и брутто-формулы вполне можно изобразить при помощи текста. Даже некоторые упрощённые структурные формулы тоже могут быть записаны текстом, например спирт CH3-CH2-OH . Хотя для этого пришлось бы в HTML использовать такую запись: CH3-CH2-OH .
    Это конечно создаёт некоторые трудности, но с ними можно смириться. Но как изобразить структурную формулу? В принципе, можно использовать моноширинный шрифт:

    H H | | H-C-C-O-H | | H H Выглядит конечно не очень красиво, но тоже осуществимо.

    Настоящая проблема возникает при попытке изобразить бензольные кольца и при использовании скелетных формул. Здесь не остаётся иного пути, кроме подключения растрового изображения. Растры хранятся в отдельных файлах. Браузеры могут подключать изображения в формате gif, png или jpeg.
    Для создания таких файлов требуется графический редактор. Например, Фотошоп. Но я более 10 лет знаком с Фотошопом и могу сказать точно, что он очень плохо подходит для изображения химических формул.
    Гораздо лучше с этой задачей справляются молекулярные редакторы . Но при большом количестве формул, каждая из которых хранится в отдельном файле, довольно легко в них запутаться.
    Например, число формул в этой статье равно . Из них выведены виде графических изображений (остальные при помощи средств HTML).

    Система easyChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
    Кроме того, брутто-формулы в этой статье вычисляются автоматически. Потому что easyChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф), а затем с этой структурой можно выполнять различные действия. Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу, проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

    Таким образом, для подготовки этой статьи я пользовался только текстовым редактором. Причём, мне не пришлось думать, какая из формул будет графической, а какая - текстовой.

    Вот несколько примеров, раскрывающих секрет подготовки текста статьи: Описания из левого столбца автоматически превращаются в формулы во втором столбце.
    В первой строчке описание рациональной формулы очень похоже на отображаемый результат. Разница только в том, что числовые коэффициенты выводятся подстрочником.
    Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом; Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия, которые потребовались бы для изображения формулы карандашом на бумаге.
    В третьей строке демонстрируется использование наклонных линий при помощи символов \ и /. Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

    Здесь есть гораздо более подробная документация по использованию системы easyChem.

    На этом разрешите закончить статью и пожелать удачи в изучении химии.

    Краткий толковый словарь использованных в статье терминов

    Углеводороды Вещества, состоящие из углерода и водорода. Отличаются друг от друга структурой молекул. Структурные формулы схематические изображения молекул, где атомы обозначаются латинскими буквами, а химические связи - чёрточками. Структурные формулы бывают развёрнутыми, упрощёнными и скелетными. Развёрнутые структурные формулы - такие структурные формулы, где каждый атом представлен в виде отдельного узла. Упрощённые структурные формулы - такие структурные формулы, где атомы водорода записаны рядом с тем элементом, с которым они связаны. А если к одному атому крепится больше одного водорода, то количество записывается в виде числа. Так же можно сказать, что в качестве узлов в упрощённых формулах выступают группы. Скелетные формулы - структурные формулы, где атомы углерода изображаются в виде пустых узлов. Число атомов водорода, связанных с каждым атомом углерода равно 4 минус число связей, которые сходятся в узле. Для узлов, образованных не углеродом, применяются правила упрощённых формул. Брутто-формула (она же истинная формула) - список всех химических элементов, которые входят в состав молекулы, с указанием количества атомов в виде числа (если атом один, то единица не пишется) Система Хилла - правило, определяющее порядок следования атомов в брутто-формуле: первым ставится углерод, затем водород, а далее остальные элементы в алфавитном порядке. Это а система используется очень часто. И все брутто-формулы в этой статье записаны по системе Хилла. Функциональные группы Устойчивые сочетания атомов, которые сохраняются в процессе химических реакций. Часто функциональные группы имеют собственные названия, влияют на химические свойства и научное название вещества

    Ключевые слова: Химия 8 класс. Все формулы и определения, условные обозначения физических величин, единицы измерения, приставки для обозначения единиц измерения, соотношения между единицами, химические формулы, основные определения, кратко, таблицы, схемы.

    1. Условные обозначения, названия и единицы измерения
    некоторых физических величин, используемых в химии

    Физическая величина Обозначение Единица измерения
    Время t с
    Давление p Па, кПа
    Количество вещества ν моль
    Масса вещества m кг, г
    Массовая доля ω Безразмерная
    Молярная масса М кг/моль, г/моль
    Молярный объем V n м 3 /моль, л/моль
    Объем вещества V м 3 , л
    Объемная доля Безразмерная
    Относительная атомная масса A r Безразмерная
    M r Безразмерная
    Относительная плотность газа А по газу Б D Б (А) Безразмерная
    Плотность вещества р кг/м 3 , г/см 3 , г/мл
    Постоянная Авогадро N A 1/моль
    Температура абсолютная Т К (Кельвин)
    Температура по шкале Цельсия t °С (градус Цельсия)
    Тепловой эффект химической реакции Q кДж/моль

    2. Соотношения между единицами физических величин

    3. Химические формулы в 8 классе

    4. Основные определения в 8 классе

    • Атом - мельчайшая химически неделимая частица вещества.
    • Химический элемент - определённый вид атомов.
    • Молекула - мельчайшая частица вещества, сохраняющая его состав и химические свойства и состоящая из атомов.
    • Простые вещества - вещества, молекулы которых состоят из атомов одного вида.
    • Сложные вещества - вещества, молекулы которых состоят из атомов разного вида.
    • Качественный состав вещества показывает, из атомов каких элементов оно состоит.
    • Количественный состав вещества показывает число атомов каждого элемента в его составе.
    • Химическая формула - условная запись качественного и количественного состава вещества посредством химических символов и индексов.
    • Атомная единица массы (а.е.м.) - единица измерения массы атома, равная массы 1/12 атома углерода 12 С.
    • Моль - количество вещества, в котором содержится число частиц, равное числу атомов в 0,012 кг углерода 12 С.
    • Постоянная Авогадро (Na = 6*10 23 моль -1) - число частиц, содержащихся в одном моле.
    • Молярная масса вещества (М ) - масса вещества, взятого в количестве 1 моль.
    • Относительная атомная масса элемента А r - отношение массы атома данного элемента m 0 к 1/12 массы атома углерода 12 С.
    • Относительная молекулярная масса вещества М r - отношение массы молекулы данного вещества к 1/12 массы атома углерода 12 С. Относительная молекулярная масса равна сумме относительных атомных масс химических элементов, образующих соединение, с учётом числа атомов данного элемента.
    • Массовая доля химического элемента ω(Х) показывает, какая часть относительной молекулярной массы вещества X приходится на данный элемент.

    АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ
    1. Существуют вещества с молекулярным и немолекулярным строением.
    2. Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры.
    3. Молекулы находятся в непрерывном движении.
    4. Молекулы состоят из атомов.
    6. Атомы характеризуются определённой массой и размерами.
    При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются. Атомы при химических явлениях перегруппировываются, образуя молекулы новых веществ.

    ЗАКОН ПОСТОЯНСТВА СОСТАВА ВЕЩЕСТВА
    Каждое химически чистое вещество молекулярного строения независимо от способа получения имеет постоянный качественный и количественный состав.

    ВАЛЕНТНОСТЬ
    Валентность - свойство атома химического элемента присоединять или замещать определённое число атомов другого элемента.

    ХИМИЧЕСКАЯ РЕАКЦИЯ
    Химическая реакция — явление, в результате которого из одних веществ образуются другие. Реагенты — вещества, вступающие в химическую реакцию. Продукты реакции — вещества, образующиеся в результате реакции.
    Признаки химических реакций:
    1. Выделение теплоты (света).
    2. Изменение окраски.
    3. Появление запаха.
    4. Образование осадка.
    5. Выделение газа.

    • Химическое уравнение — запись химической реакции с помощью химических формул. Показывает, какие вещества и в каком количестве вступают в реакцию и получаются в результате реакции.

    ЗАКОН СОХРАНЕНИЯ МАССЫ ВЕЩЕСТВ
    Масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции. В результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка.

    Важнейшие классы неорганических веществ

    Конспект урока «Химия 8 класс. Все формулы и определения».

    Следующая тема: «».