Как решить рациональное уравнение.

Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применяется в том случае, когда вы не можете записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда вам дано рациональное уравнение с 3 или более дробями (в случае двух дробей лучше применить умножение крест-накрест).

  • Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ – это наименьшее число, которое делится нацело на каждый знаменатель.

    • Иногда НОЗ – очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
    • Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x - 3)/9, то НОЗ = 8*9 = 72.
    • Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и тоже число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).

    • Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
    • Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
  • Найдите х. Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.

    • В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить 2 дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
    • В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x - 3 + 2x -2, или 15х = х - 5. Решите и получите: х = -5/14.
  • Инструкция

    Приведение к общему знаменателю.

    Пусть даны дроби a/b и c/d.

    Числитель и знаменатель первой дроби умножается на НОК/b

    Числитель и знаменатель второй дроби умножается на НОК/d

    Пример приведён на рисунке.

    Для сравнения дробей их необходимо к общему знаменателю, затем сравнить числители. Например, 3/4 < 4/5, см. .

    Сложение и вычитание дробей.

    Для нахождения суммы двух обыкновенных дробей их необходимо привести к общему знаменателю, после чего сложить числители, знаменатель без изменений. Пример сложения дробей 1/2 и 1/3 приведён на рисунке.

    Разность дробей находится аналогичным образом, после нахождения общего знаменателя, числители дробей вычитаются, см. на рисунке.

    При умножении обыкновенных дробей, числители и знаменатели перемножаются между собой.

    Для того, чтобы разделить две дроби, необходимо дробь второй дроби, т.е. поменять его числитель и знаменатель , после чего произвести умножение полученных дробей.

    Видео по теме

    Источники:

    • дроби 5 класс на примере
    • Основные задачи на дроби

    Модуль представляет собой абсолютную величину выражения. Для обозначения модуля применяют прямые скобки. Заключенные в них значения считаются взятыми по модулю. Решение модуля состоит в раскрытии ных скобок по определенным правилам и нахождении множества значений выражения. В большинстве случаев модуль раскрывается таким образом, что подмодульное выражение получает ряд положительных и отрицательных значений с том числе и нулевое значение. Исходя из данных свойств модуля, составляются и решаются далее уравнения и неравенства исходного выражения.

    Инструкция

    Запишите исходное уравнение с . Для его раскройте модуль. Рассмотрите каждое подмодульное выражение. Определите, при каком значении входящих в него неизвестных величин выражение в модульных скобках обращается в ноль.

    Для этого приравняйте подмодульное выражение к нулю и найдите получившегося уравнения. Запишите найденные значения. Таким же образом определите значения неизвестной переменной для каждого модуля в заданном уравнении.

    Нарисуйте числовую прямую и отложите на ней полученные значения. Значения переменной в нулевом модуле будут служить ограничениями при решении модульного уравнения.

    В исходном уравнении нужно раскрыть модульные , меняя знак так, чтобы значения переменной соответствовали отображенным на числовой прямой. Решите полученное уравнение. Найденное значение переменной проверьте на ограничение, заданное модулем. Если решение удовлетворяет условию, оно истинно. Не удовлетворяющие ограничениям корни должны отбрасываться.

    Аналогичным образом раскрывайте модули исходного выражения с учетом знака и высчитывайте корни получаемого уравнения. Запишите все полученные корни, удовлетворяющие неравенствам ограничения.

    Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

    Вам понадобится

    • - калькулятор

    Инструкция

    Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
    - Переведение дробей в неправильный вид:
    - 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
    - Суммирование отдельно целых и дробных частей слагаемых:
    - 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

    Для с значениями под чертой найдите общий знаменатель. Например, для 5/9 и 7/12 общим знаменателем будет 36. Для этого числитель и знаменатель первой дроби надо умножить на 4 (получится 28/36), а второй – на 3 (получится 15/36). Теперь можете выполнить расчёты.

    Если вы собираетесь вычислять сумму или разность дробей, для начала запишите найденный общий знаменатель под черту. Выполните необходимые действия между числителями, а результат запишите над чертой новой дроби . Таким образом, новым числителем станет разность или сумма числителей первоначальных дробей.

    Для расчёта произведения дробей перемножьте числители дробей и запишите результат на место числителя итоговой дроби . То же самое проделайте для знаменателей. При делении одной дроби на другую запишите одну дробь, а затем умножьте её числитель на знаменатель второй. При этом знаменатель первой дроби умножается соответственно на числитель второй. При этом происходит своеобразный переворот второй дроби (делителя). Итоговая дробь будет из результатов умножения числителей и знаменателей обеих дробей. Несложно научиться дроби , записанные в условии в виде «четырёхэтажной» дроби . Если разделяет две дроби , перепишите их через разделитель «:» и продолжите обычное деление.

    Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

    Обратите внимание

    Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

    Полезный совет

    При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

    Инструкция

    Кликните один раз по пункту меню «Вставка», затем выберите пункт «Символ». Это один из самых простых способов вставки дроби в текст. Заключается он в следующем. В наборе готовых символов есть дроби . Их количество, как правило, невелико, но если вам в тексте нужно написать ½, а не 1/2, то для вас подобный вариант будетсамым оптимальным. Кроме того, количество символов дробей может зависеть и от шрифта. Например, для шрифта Times New Roman дробей немного меньше, чем для того же Arial. Варьируйте шрифтами, чтобы найти самый оптимальный вариант, если дело касается простых выражений.

    Кликните по пункту меню «Вставка» и выберите подпункт «Объект». Перед вами появится окно с перечнем возможных объектов для вставки. Выберите среди них Microsoft Equation 3.0. Это приложение поможет вам печатать дроби . Причем не только дроби , но и сложные математические выражения, содержащие различные тригонометрические функции и прочие элементы. Дважды кликните по этому объекту левой кнопкой мышки. Перед вами появится окно, содержащее много символов.

    Чтобы напечатать дробь, выберите символ изображающий дробь с пустым числителем и знаменателем. Кликните по нему один раз левой кнопкой мыши. Появится дополнительное меню, уточняющее схему самой дроби . Может быть несколько ее вариантов. Выберите наиболее для вас подходящий и кликните по нему один раз левой кнопкой мыши.

    Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

    Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни. Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

    Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

    Разновидности дробей:

    • Обыкновенные
    • Десятичные
    • Смешанные

    Пример обыкновенных дробей:

    Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

    1/2, 3/7, 19/5, 32/8, 10/100, 4/1

    Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

    Пример десятичных дробей:

    0,2, или 6,71 или 0,125

    Состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

    Пример смешанных дробей:

    Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

    • Сложение
    • Вычитание
    • Умножение
    • Деление

    Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

    Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

    Вам нужно осуществить расчет примера:

    После введения показателей в поля формы получаем:


    Чтобы сделать самостоятельный расчет, введите данные в форму.

    Калькулятор дробей

    Введите две дроби:
    + - * :

    Сопутствующие разделы.

    Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
    Например, требуется решить простое уравнение x/b + c = d.

    Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

    Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

    Например, как решить дробное уравнение:
    x/5+4=9
    Умножаем обе части на 5. Получаем:
    х+20=45
    x=45-20=25

    Другой пример, когда неизвестное находится в знаменателе:

    Уравнения такого типа называются дробно-рациональными или просто дробными.

    Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

    • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
    • нельзя делить или умножать уравнение на выражение =0.

    Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

    Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

    Например, требуется решить дробное уравнение:

    Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

    Избавляемся от знаменателя путем умножения всех членов уравнения на х

    И решаем обычное уравнение

    5x – 2х = 1
    3x = 1
    х = 1/3

    Ответ: х = 1/3

    Решим уравнение посложнее:

    Здесь также присутствует ОДЗ: х -2.

    Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

    Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

    Это самое обычное умножение дробей, которое мы уже рассмотрели выше

    Запишем это же уравнение, но несколько по-другому

    Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

    х = 4 – 2 = 2, что соответствует нашей ОДЗ

    Ответ: х = 2.

    Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

    Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

      Приведя дроби к общему знаменателю

      Используя основное свойство пропорции

    Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

    1 способ. Приведение дробей к общему знаменателю.

    Пример 1

    $\frac{2x+3}{2x-1}=\frac{x-5}{x+3}$

    Решение:

    1.Перенесем дробь из правой части уравнения в левую

    \[\frac{2x+3}{2x-1}-\frac{x-5}{x+3}=0\]

    Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

    2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

    Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

    \[\frac{(2x+3)(х+3)}{(2x-1)(х+3)}-\frac{(x-5)(2х-1)}{(x+3)(2х-1)}=0\]

    Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним, что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

    \[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9\]

    Приведем подобные слагаемые в полученном выражении

    \[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9=\] \[{=2х}^2+9х+9\]

    Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

    $\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1={2х}^2-х-10х+5={2х}^2-11х+5$

    Тогда уравнение примет вид:

    \[\frac{{2х}^2+9х+9}{(2x-1)(х+3)}-\frac{{2х}^2-11х+5}{(x+3)(2х-1)}=0\]

    Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

    \[\frac{{2х}^2+9х+9-({2х}^2-11х+5)}{(2x-1)(х+3)}=0\]

    Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми, стоящими в скобках на противоположные

    \[{2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5\]

    Приведем подобные слагаемые

    ${2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5=20х+4$

    Тогда дробь примет вид

    \[\frac{{\rm 20х+4}}{(2x-1)(х+3)}=0\]

    3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

    \[{\rm 20х+4=0}\]

    Решим линейное уравнение:

    4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

    Поставим условие, что знаменатели не равны $0$

    х$\ne 0,5$ х$\ne -3$

    Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

    Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и,конечно, не был бы включен в ответ.

    Ответ: $-0,2.$

    Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

    Алгоритм решения уравнения, которое содержит переменную в знаменателе

      Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

      Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

      Приравнять числитель к $0$ и найти корни получившегося уравнения.

      Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

    2 способ. Используем основное свойство пропорции

    Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

    Пример 2

    Используем данное свойство для решения этого задания

    \[\frac{2x+3}{2x-1}=\frac{x-5}{x+3}\]

    1.Найдем и приравняем произведение крайних и средних членов пропорции.

    $\left(2x+3\right)\cdot(\ x+3)=\left(x-5\right)\cdot(2x-1)$

    \[{2х}^2+3х+6х+9={2х}^2-10х-х+5\]

    Решив полученное уравнение, мы найдем корни исходного

    2.Найдем допустимые значения переменной.

    Из предыдущего решения (1 способ) мы уже нашли, что допустимы любые значения, кроме $-3$ и $0,5$.

    Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.